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Abstract

Imaging techniques are increasingly integrated into modern radiotherapy (RT). Multimodal imaging is used to define
the target for RT planning and imaging technology is also being integrated into linear accelerators, with the purpose to
ensure delivery of radiation with high geometric accuracy. The integration of imaging in RT calls for a stronger
collaboration between diagnostic radiologists and the professions involved in RT.
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Introduction

Radiotherapy (RT) technology has improved consider-
ably over the last decades. Inclusion of multiple imaging
modalities and modern computer technology into treat-
ment planning, together with the technological achieve-
ments of the linear accelerator (linac) has increased
the precision of RT delivery considerably. In intensity-
modulated radiotherapy (IMRT), the radiation dose dis-
tributions are shaped to the target with a steep fall in the
dose to the neighbouring normal tissues[1]. Whereas con-
ventional RT techniques (e.g. 4-field box techniques)
resulted in a bath of high-dose radiation to a large
volume, IMRT provides highly selective irradiation of
the target. However, the steep dose gradients make
IMRT more sensitive to uncertainties, e.g. caused by
changes in shape and position of the target and normal
tissues as well as variations in the daily set-up of the
patient. High precision in delivery can be achieved by
image-guided radiotherapy (IGRT) where the target is
imaged immediately before treatment with the patient
in the treatment position[2].

The present article provides a review of these novel
technologies that have become standard and gives some
examples of innovative areas within clinical RT.

Principles and definitions in
radiotherapy

The nomenclature of the RT targets and organs at risk
(ORs) have changed over time. Today we are using the
ICRU-62 and -83 reports (Fig. 1)[3,4]. The gross tumour
volume (GTV) is defined as the tumour visible by any
imaging modality or by clinical examination. The clinical
target volume (CTV) is formed by addition of a margin
around the GTV to account for subclinical tumour infil-
tration and the internal target volume (ITV) by adding a
further margin for internal intra- and inter-fractional
movement of the target. Finally, a safety margin related
to uncertainly in daily set-up at the treatment unit is
added to form the planning target volume (PTV). An
OR is defined as an organ receiving a radiation dose
close to its tolerance. The treated volume receives a
dose that may control the tumour and the irradiated
volume receives a dose that may cause toxicity.

Imaging in radiotherapy planning

Computed tomography (CT) is the standard imaging
modality in RT planning. Electron density information
from CT allows exact radiation dose calculation and
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CT also has high geometric stability. In cases where CT is
insufficient for target definition, additional magnetic res-
onance imaging (MRI) and positron emission tomogra-
phy (PET) examinations may provide the necessary
anatomical and/or functional information. In planning
of prostate cancer MRI gives a more exact definition of
the prostate, in particular at the apex of the prostate[5],
and in the definition of brain tumours, MRI is also

superior to CT (Fig. 2)[6]. [18F]Fluorodeoxyglucose
(FDG)-PET/CT may be superior to CT in specific
cases such as advanced lung cancer. In bronchial
cancer, FDG-PET/CT may be more accurate than CT
in definition of the CTV, especially if the tumour
causes collapse of the lung[7]. MRI and PET may also
be better than CT for assessment of tumour response
following RT of some tumours.

Diffusion-weighted (DW)-MRI is promising in RT
planning. Apparent diffusion coefficients (ADC) deter-
mined by DW-MRI correlate significantly with tumour
cell density in cervical cancer and it is hypothesized
that radiation dose should be intensified in volumes
with high ADC values[8]. Dynamic contrast-enhanced
MRI also seems promising in identification of cancer
in the prostate, which may be useful for even further
escalation of the radiation dose to focal tumour dense
volumes[9]. PET/CT with hypoxic tracers (i.e.
[18F]misonidazole[10], [18F]fluoroazomycin-arabino-
side[11]) may identify hypoxic subvolumes of radioresis-
tant tumours that need escalated radiation doses.
Functional imaging of normal tissues may reveal subvo-
lumes of, for example, brain, parotid glands, lung and
liver, with high functionality, which therefore should be
spared the radiation dose[12]. These techniques have yet
to be tested in clinical trials.

With the need for electron density information from
CT, high-resolution soft tissue information from MRI,
and metabolic information from PET, there is a great
demand for imaging co-registration[13]. Furthermore,
accurate co-registration in IGRT can reveal information
about deformations of the organs and enable
voxelwise dose accumulation based on the actual dose
delivered to the target and normal tissues during the
treatment[14]. Rigid and deformable multimodal image

Figure 2 Treatment planning CT (A) and preoperative MRI (B) with delineation of the gross tumour volume (GTV) for
a patient with glioblastoma multiforme.

Figure 1 Definitions of targets in the ICRU-62 and -83
reports (GTV, gross tumour volume; CTV, clinical target
volume; ITV, internal target volume; PTV, planning target
volume). For definitions, see text.
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co-registration software is now commercially available,
but still has severe limitations for many organs and
image modalities.

Intensity-modulated radiotherapy

IMRT can be used to obtain highly individualized irra-
diation of the primary tumour and elective lymph
nodes, whenever desired, with sparing of the normal
tissues (Fig. 2). IMRT planning using advanced treat-
ment planning algorithms and powerful computers
results in dose distributions conforming to the shape
of the target with steep dose fall-off outside the target.
By volumetric arc therapy (VMAT), the radiation is
delivered during one or two perpendicular gantry rota-
tions around the patient with constant movement of
the MLC.

IMRT has been shown to be particularly beneficial in
RT of head and neck cancer where it allows sparing of
the parotid glands[15] as well as in RT of the prostate[16]

and bladder cancer[17] where the radiation dose to the
target can be escalated without increased rectal morbidity
when treatment is delivered by the IMRT technique
(Fig. 3). The steep dose fall close to the target periphery
demands high precision in the treatment delivery. For
this reason, IGRT procedures are essential when IMRT
is used.

The terms dose sculpturing or dose painting by num-
bers are principles based on IMRT where the radiation
dose is heterogeneously distributed over the target so that
radioresistant subvolumes of the target characterized
by hypoxia or high tumour cell density identified by
functional imaging receive an escalated radiation dose,
whereas more radiosensitive subvolumes receive the stan-
dard dose[18].

Stereotactic radiotherapy

Stereotactic radiotherapy (SRT) is a highly precise and
conformal RT technique for treatment of small targets by
use of a high number of treatment beams. Until recently
it was guided by external coordinates, but now most SRT
is guided by IGRT, which may improve the geometric
precision even further and can also be delivered quickly
and with less resources. SRT was originally developed for
treatment of intracranial benign and malignant tumours
and a dedicated RT machine, the gamma-knife, was
invented for this specific purpose. Today, most centres
use conventional linear accelerators for SRT of intracra-
nial tumours[19].

Since 1995, stereotactic body radiation therapy
(SBRT) has been used in the treatment of small primary
or metastatic tumours outside the brain, primarily in the
lungs and liver. The patients are often immobilized in a
stereotactic body frame (SBF), but also frame-less tech-
niques are used. In SBRT, the high dose volume is highly
conformed to the shape of the target, formed by a high

number of beams (Fig. 4). A number of studies have
shown that SBRT leads to high local control rates
together with a low risk for complications[20�22]. SBRT
is often considered the primary alternative to lobectomy
in patients with limited stage lung cancer who are unfit
for thoracic surgery.

Image-guided radiotherapy

Previously, patients were set up at the treatment unit
based on skin marks and room lasers. Portal X-ray
films acquired at the first treatment session had poor
resolution as mega-voltage (MV) beam quality was used
to verify the patient position based on bony anatomy.
Nowadays, there are numerous commercially available
options including 2-D and 3-D imaging technology inte-
grated into the linacs. These provide much better
image quality to ensure correct daily set-up of the patient
based on either bony structures, implanted fiducials (as
for prostate cancer) or even the target (as for lung
tumours).

The so-called electronic portal imaging device (EPID)
enables the simplest online patient position verification
method. 2-D images can be registered to digitally recon-
structed radiographs (DRR) of the treatment planning
CT scan. Due to the MV beam quality, the EPID still
has a relatively poor soft tissue contrast. For this reason,
vendors have integrated kilovoltage (kV) X-ray on the
linear accelerators. This allows better 2-D image quality
for alignment of the patients based on bony anatomy or
fiducial marker match. Volumetric imaging based on the
cone beam CT (CBCT) principle can be obtained by
reconstruction of more than 500 planar images acquired
during a rotation of the gantry around the patient
(Fig. 5). This is possible with kV as well as the MV
technique. In the tomo-therapy machine, an MV single-
slice CT is integrated with a compact linear accelerator,
which treats the patient in a slice-by-slice fashion. The
CBCT has soft tissue resolution, which allows direct
online target alignment prior to each treatment session.
Commercially available software for automatic rigid co-
registration of the CBCT and the treatment planning CT
scan calculates the set-up error in the three orthogonal
directions and three rotations. The magnitude of error
can be directly transferred to the couch controller,
which shifts the position (and rotation) of the treatment
couch. Image acquisition, reconstruction and match only
take a few minutes and are in many institutions operated
by a radiotherapy technologist.

Use of IGRT considerably reduces the uncertainty
related to movement of the target between the treatment
sessions and IGRT is today considered as a standard in
RT. For prostate cancer, CTV�PTV margins of 8�10 mm
were needed to account for inter-fractional geometric
uncertainties when a conventional set-up by skin marks
and room lasers was used. By use of gold markers
implanted in the prostate and daily IGRT, these margins
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can be reduced to 2�7 mm[23]. Using systems enabling
detection of the movement during the treatment session
(intrafractional movement), the margin can be even fur-
ther reduced[24]. In conventional RT for lung cancer,
CBCT reduces the median set-up error from 5�6 mm to
2 mm when IGRT with a match on the vertebral column
replaced conventional set-up by skin marks[25]. In SBRT
for small lung tumours, the errors were reduced from
11 mm to 2 mm with the introduction of CBCT with a
daily match on the lung tumour[26].

Figure 3 IMRT (AþC) and conventional radiotherapy (CRT) (BþD) of two planes of the planning CT in a patient
with urinary bladder cancer. The figure shows the improved conformation of the radiation dose to the target (bladder and
pelvic lymph nodes) in IMRT compared to CRT.

Figure 5 IMRT for prostate cancer. The figure shows the
treatment planning CT with dose colour wash (A) and kV
CBCT acquired with the patient in treatment position on
the treatment couch (B).

Figure 4 SBRT for a limited stage non-small cell lung
cancer. Colour wash indicates the 15-Gy dose level (in
3 fractions) in a 6-field SBRT plan with 67.5 Gy (in 3 frac-
tions) prescribed to the clinical target volume (CTV).
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Management of respiration-related
target motion

Targets in the thorax and upper abdomen move with
respiration and therefore there is a risk for a systematic
positional error when RT planning CT acquisition and
treatment are not in the same respiratory phases. For this
reason, the RT planning CT for these patients is often
acquired as a 4-D CT with simultaneous registration of
the respiration. In the reconstruction, slices are sorted
according to the respiratory phases and most often the
mid-ventilation CT is used for RT planning. The simplest
methods to minimize the respiratory motion are to
acquire scans and treat the patient in a defined respira-
tory phase by active breathing technique[27] or apply
pressure on the upper abdominal wall, which has been
shown to reduce the internal target movement by 50%[28].
In RT of the left breast, deep inspiratory breathhold is
often used to spare the left anterior descending coronary
artery[29] with the aim of reducing the risk of treatment-
related coronary morbidity. Both these methods are used
in SBRT of lung and liver tumours.

Methods for tracking the target with the beam from the
linear accelerator through continuous modulation of the
MLC are currently under development. The methods
demand exact online localization of the target by contin-
uous imaging during delivery of the treatment[30].
The Cyper-knife is a small linear accelerator mounted
on a robotic arm which moves synchronously with the
respiration; today, this is the only commercially available
beam-tracking RT system.

Adaptive strategies

The target and normal tissues may change considerably
in size, shape or position during the course of treatment
and this may lead to unintended distribution of the radi-
ation dose. A collapse of the lung resolving due to regres-
sion of a central lung tumour may considerably change
the position and lead to under-dosage of the lung
tumour[31]. Similarly, shrinkage of large neck nodes
during RT of head and neck cancer may lead to under-
dosage of the cancer and over-dosage of the normal tis-
sues[32]. Adaptive RT plans based on systematic feedback
of daily or weekly imaging during the treatment course
may compensate for anatomical changes and ensure full
dose throughout the RT course[33]. A plan-of-the-day
strategy means that the patient�s RT plan is modified
based on images acquired immediately before treatment.
This method is especially useful for RT of bladder cancer
which is challenging due to the day-to-day change in
shape and size of the bladder.

Discussion

A number of normal tissues have a pronounced volume
effect, meaning that radiation to decreased volume leads

to decreased toxicity[34]. This is exploited in modern RT
where IMRT with selective irradiation to targets can be
delivered with a high-precision IGRT technique. High
precision and normal tissue sparing allow dose escalation
without further increase in morbidity and thereby
increase the therapeutic ratio of RT.

However, the small margin may also lead to increased
risk of geographic failure. Marginal failures have been
reported in IMRT of head and neck cancer[35] and
increased risk of biochemical failure has been reported
in RT for prostate cancer if margins were too small[36].
Pathology examination of excised lung and liver tumours
has demonstrated microscopic tumour extension 15 and
10 mm beyond the macroscopic border of lung and liver
tumours, respectively[37,38]. This subclinical disease
should be given particular attention in modern RT with
highly conformal dose distributions.

There is a great demand for further development and
integration of imaging techniques into RT. In 2011, the
European RT field has celebrated the 30th anniversary of
the separation of the European Society for Radiotherapy
and Oncology (ESTRO) from the European Association
of Radiology. However, modern management of cancer
patients, including RT, needs multidisciplinary colla-
boration between both the radiological and radiotherapy
specialties, as well as the many other specialties that are
involved.
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