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Youjia Wen4 and Zhuoyue Tang1,2,3,4*
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Objectives: To investigate the potential value of a contrast enhanced

computed tomography (CECT)-based radiological-radiomics nomogram

combining a lymph node (LN) radiomics signature and LNs’ radiological

features for preoperative detection of LN metastasis in patients with

pancreatic ductal adenocarcinoma (PDAC).

Materials and methods: In this retrospective study, 196 LNs in 61 PDAC

patients were enrolled and divided into the training (137 LNs) and validation

(59 LNs) cohorts. Radiomic features were extracted from portal venous phase

images of LNs. The least absolute shrinkage and selection operator (LASSO)

regression algorithm with 10-fold cross-validation was used to select optimal

features to determine the radiomics score (Rad-score). The radiological-

radiomics nomogram was developed by using significant predictors of LN

metastasis by multivariate logistic regression (LR) analysis in the training cohort

and validated in the validation cohort independently. Its diagnostic

performance was assessed by receiver operating characteristic curve (ROC),

decision curve (DCA) and calibration curve analyses.

Results: The radiological model, including LN size, and margin and

enhancement pattern (three significant predictors), exhibited areas under the

curves (AUCs) of 0.831 and 0.756 in the training and validation cohorts,

respectively. Nine radiomic features were used to construct a radiomics

model, which showed AUCs of 0.879 and 0.804 in the training and validation

cohorts, respectively. The radiological-radiomics nomogram, which

incorporated the LN Rad-score and the three LNs’ radiological features,

performed better than the Rad-score and radiological models individually,

with AUCs of 0.937 and 0.851 in the training and validation cohorts,

respectively. Calibration curve analysis and DCA revealed that the

radiological-radiomics nomogram showed satisfactory consistency and the

highest net benefit for preoperative diagnosis of LN metastasis.
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Conclusions: The CT-based LN radiological-radiomics nomogram may serve

as a valid and convenient computer-aided tool for personalized risk

assessment of LN metastasis and help clinicians make appropriate clinical

decisions for PADC patients.
KEYWORDS

pancreatic ductal adenocarcinoma, lymph node metastasis, radiomics, nomogram,
computed tomography
Introduction

Pancreatic ductal adenocarcinoma (PDAC), an aggressive

malignancy, is expected to become the second leading cause of

cancer deaths worldwide by 2030, of which 5-year overall

survival rate is still as low as 9% (1). Despite advances

in therapeutic methods, radical resection with appropriate

lymphadenectomy remains the only curative method. Lymph

node (LN) metastasis, one of the strongest postoperative

prognostic indicators, is closely associated with poor prognosis

(2–5). In clinical practice, the extent of lymph node dissection in

pancreatic cancer remains controversial, including extended and

standard lymphadenectomies. Preoperative diagnosis of LN

metastasis plays a crucial role in selecting a reasonable LN

dissection method, which could not only avoid the omission of

metastatic LNs but also decrease postoperative complications

and prevent overtreatment. In addition, the National

Comprehensive Cancer Network guidelines recommend

preoperative neoadjuvant treatment in PDAC patients with

LN metastasis, which is associated with a survival benefit (6–

8). Therefore, accurate preoperative diagnosis of LN metastasis

plays an important role in providing individualized treatment

plans for PDAC patients.

Computed tomography (CT) is the primary examination

method for PDAC tumor staging in some clinical practice

guidelines (9, 10). Many studies (11, 12) proposed the short-

axis diameter of LN above 10 mm as a criterion to diagnose

metastatic LNs; however, its diagnostic accuracy is easily

influenced by enlarged LNs secondary to inflammatory

hyperplasia. Other CT image features (11, 13, 14), including

LN shape, border contour and heterogeneity, are utilized to

improve diagnostic performance for LN metastasis in PDAC. It

is worth noting that detecting these features relies on subjective

judgment and may be challenging for first-line radiologists with

no substantial diagnosis experience. Both qualitative and

semiquantitative analyses by visual evaluation on conventional

radiological features cannot accurately detect metastatic LNs, so
02
more studies are needed for exploring preoperative diagnostic

tools to detect LN metastasis in PDAC patients.

In recent years, computer-aided imaging analysis could be

applied in clinic because of the sustained and fast growth of

computer science. Radiomics is an emerging discipline that can

rapidly extract innumerable features frommedical images such as

CT, magnetic resonance and ultrasound images in an automated,

high-throughput manner. These features could reflect

tumor heterogeneity quantitatively and the underlying

pathophysiology, which are imperceptible to naked eyes

(15–17). This method has been used to evaluate the LN status

preoperatively in head and neck, colon, papillary thyroid, cervical

and prostate cancers, with ideal predictive accuracy (18–22). In

PDAC, current studies are mainly based on original tumor

radiomics to predict LN metastasis (23–25), and studies based

on LN radiomics to discriminate metastatic from non-metastatic

LNs are scarce. In this study, we hypothesized that LN radiomic

features may contribute to evaluating the LN status

preoperatively and attempted to develop a contrast-enhanced

CT (CECT)-based LN radiological-radiomics nomogram for

detecting LN metastasis in patients with PDAC.
Materials and methods

Patients and LNs

This retrospective study was approved by the ethics

committee of Chongqing general Hospital , and the

requirement for written informed consent was waived. From

January 2019 to October 2021, PDAC patients administered

surgical resection with lymph node dissection in Chongqing

General Hospital were retrospectively reviewed.

Inclusion criteria were (1): pathologically confirmed PDAC

and LN status; (2) thin-layer CECT examination within 2 weeks

before surgery. Exclusion criteria were: (1) a history of systemic

treatment before surgery; (2) other coexisting primary
frontiersin.org
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malignancies; (3) missed clinical appointment; (4) image quality

unsatisfactory for analysis.

The Japan Pancreas Society’s nodal classification of regional

lymph node stations of the pancreas was used throughout the

study to describe radiological and pathological LN groups (26).

The criteria for LN eligibility were: (1) when LNs in one group

were all pathologically confirmed to be metastatic or non-

metastatic, all the LNs of this group were included; (2) when

LNs in one group contained both metastatic and non-metastatic

LNs, all the LNs of this group were excluded; (3) LNs with a

short-axis diameter below 5 mm were excluded. The flowchart

for selecting the study population is shown in Figure 1.

A total of 196 LNs (113 non-metastatic and 83 metastatic)

with histological confirmation in 61 patients (31 males and 30

females; mean age, 62.3 ± 9.2 years; age range, 39–80 years) were

analyzed. The subjects were divided into the training (January

2020 to October 2021) and validation (January 2019 to

December 2019) cohorts at a ratio of 7:3 according to the time

of CT. The training cohort included 43 patients with 137 LNs,

and validation cohort included 18 patients with 59 LNs.
The CECT protocol

The CT images of 39 participants were acquired on a spectral

CT scanner (IQon Spectral CT, Philips Healthcare). Typical

imaging parameters were: tube voltage, 120 kV; smart mAs;

rotation time, 0.5 s; detector collimation, 64 × 0.625 mm; field of

view, 350 × 350 mm; matrix, 512 × 512; layer thickness, 5 mm;

reconstruction thickness, 1.25 mm. A nonionic contrast medium

(Iohexol, 350 mgI/ml, Schering, Berlin, Germany) was injected

with an automatic injector at a dose of 1.5 ml/kg at 3.5 ml/s,

followed by 30 ml of saline flashing at the same rate. Arterial

phase scans were started with a delay of 10s after passing the

predetermined threshold of 150 HU within the abdominal aorta
Frontiers in Oncology 03
(activated bolus tracking). Portal vein phase scans were started

20 s after the arterial phase.

The CT images of 22 participants were acquired on a 64-slice

CT scanner (Aquilion CX, Canon Medical Systems). The same

acquisition protocol was used: tube voltage, 120 kV; smart mAs;

rotation time, 0.5 s; detector collimation, 64 × 0.5 mm; field of

view, 350 × 350 mm; matrix 512 × 512; layer thickness, 5 mm;

reconstruction thickness, 1.25 mm. The nonionic contrast

medium Iohexol (350 mgI/ml) was injected with an automatic

injector at a dose of 1.5 ml/kg at 3.5 ml/s, followed by 30 ml of

saline flashing at the same rate. Arterial phase images were

obtained 28 s after contrast medium injection, while portal

venous phase scans were obtained 22 s after arterial phase

image acquisition.

All images were uploaded to the picture archiving and

communication system (PACS) for further examination.
Clinical and radiological characteristics

Preoperative demographic characteristics, laboratory findings

and CECT conventional features were obtained. The radiological

features of LNs, including size, shape, margin, and degree and

pattern of enhancement, were analyzed by two radiologists with 7

and 9 years of experience in abdominal imaging, respectively.

They were blinded to pathological data and research design. Inter-

reader agreement was investigated for evaluating the radiological

features by intraclass correlation coefficient (ICC). The sizes of

LNs were reflected by their maximal short-axis diameters. LN

shapes were categorized as regular (oval) and irregular (round,

spiculated or lobulated), and LN margin was blurred or clearly

delineated. The enhancement patterns of LNs were categorized as

homogenous or heterogeneous in the portal venous phase. The

degree of enhancement was estimated with reference to the soft

tissue (14, 27, 28).
FIGURE 1

Flowchart of patients’ selection.
frontiersin.org

https://doi.org/10.3389/fonc.2022.992906
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2022.992906
Image processing, VOI delineation, and
radiomic analysis

This study workflow is shown in Figure 2. The detailed steps

for Volume of Interest (VOI) segmentation and feature

extraction were as follows. ① The original portal venous phase

images were downloaded from the PACS (Carestream) and

saved as Digital Imaging and Communication in Medicine

(DICOM) files. ② The concrete steps for image normalization

were: (a) for image registration, every portal venous phase image

slice from the raw data was resampled to a standardized pixel

dimension size of 1.0 × 1.0 × 1.0 mm3; (b) for gray-level

discretization, the image intensity of every portal venous phase

image was normalized via the gray-level discretization method

with a fixed number of bins (256 bins); (c) portal venous phase

images were viewed in a fixed head window (level = 60

Hounsfield unit (HU); width = 400 HU). ③ VOIs were

acquired by sketching LN borders manually slice-by-slice

on axial sections, automatically merged into a 3D region using

an open source software (3D Slicer, version 4.13.0; Boston, MA,

USA), and adjusted on sagittal and coronal sections by a

radiologist with 7 years of abdominal diagnosis experience. ④

All VOIs were confirmed again by a senior radiologist with 20

years of abdominal diagnosis experience. ⑤ The radiomic

features were automatically extracted from the VOIs with

SlicerRadiomics (an extension for 3D-slicer).
Frontiers in Oncology 04
Finally, a total amount of 1037 radiomic features in eight

categories (first-order, shape-based histogram, gray-level

cooccurrence matrix (GLCM), grey level size zone matrix

(GLSZM), gray level run length matrix, gray level dependence

matrix, neighboring grey-tone difference matrix and wavelet-

based features) were extracted from each VOI automatically. A

two-step program was designed to reduce high-dimensional data

and avoid overfitting. First, features with ICC above 0.8 were

considered to be reproducible and stable. Secondly, the least

absolute shrinkage and selection operator (LASSO) algorithm

was used to select optimal features with nonzero coefficients,

with parameter tuning performed with 10-fold cross-validation

to screen optimal radiomic features.
Model building

The differences in CT radiological features between

metastatic and non-metastatic LNs were first compared by

univariate analysis. Subsequently, significant (P<0.05)

radiological features in the univariate analysis were entered

into multivariate analysis to determine independent predictors

of metastatic LNs and to develop a radiological model by

multivariate logistic regression (LR) analysis in the training

cohort. Odds ratio (OR) and 95% confidence interval (CI) for

each independent factor were calculated.
FIGURE 2

The workflow of the radiomics analysis of LNs in this study. Step 1: LNs were semi-automatically segmented slice by slice in portal venous phase
images. Step 2: Radiomics features were extracted from the identified VOIs. Step 3: The LASSO logistic regression with penalty parameter tuning
conducted by 10-fold cross-validation was used to select the optimal radiomics features. Step 4: The LN Rad-score and the nomogram
incorporating radiological features with Rad-score were established.
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A radiomics score (Rad-score) was calculated for each LN by

determining the linear combination of the optimal radiomic

features weighted by their respective LASSO coefficients in the

training cohort. The Rad-score model for assessing the metastatic

LNs of PDAC patients was first developed in the training cohort.

To provide a simple tool for clinicians to predict metastatic

LNs in PDAC, a radiological-radiomics nomogram, which

combined the LN Rad-score and independent LN ’s

radiological features, was built by multivariate LR analysis in

the training cohort.
Model evaluation

The diagnostic performances of the three models were

assessed in the validation cohort by receiver operating

characteristic (ROC) curve analysis. The area under the ROC

curve (AUC), sensitivity and specificity were all determined, and

the Delong test was performed to compare the AUCs of the three

models. The calibration ability of the radiological-radiomics

nomogram was assessed by calibration curve analysis in the

whole cohort, which could compare consistency between the

pathological findings of LNs and nomogram-evaluated

outcomes. The clinical values of the Rad-score model and the

radiological-radiomics nomogram were assessed using decision

curve analysis (DCA) by calculating the net benefits in the

training and validation cohorts for a range of threshold

probabilities (29).
Statistical analysis

Statistical analysis was performed with the R software

(http://www.R-project.org), MedCalc (version 18.2.1), SPSS
Frontiers in Oncology 05
(version 25.0) and empower (R) (www.empowerstats.com,

X&Y Solutions, Inc., Boston, MA). Baseline clinical

characteristics were expressed as mean ± standard deviation,

or number and percentage, as appropriate. The two-sample t

test was performed to compare continuous variables. The

chi-squared test was carried out to compare categorical

variables. A two-sided P value below 0.05 was considered

statistically significant. Inter-reader agreement was calculated

using ICC analysis.
Results

Patient characteristics and LNs’
radiological features

The clinical characteristics of the training and validation

cohorts are summarized in Table 1. There were no significant

differences between the training and validation cohorts in

clinical characteristics. The radiological features of metastatic

and non-metastatic LNs in the training cohort are summarized

in Table 2. Agreement for evaluating radiological features

between two radiologists was good to excellent overall. ICC of

LN margin, size, shape, density and pattern of enhancement

were 0.871, 0.906, 0.892, 0.963 and 0.906, respectively. After

univariate and multivariate analyses, LN size(odds ratio [OR],

5.025; 95% CI, 1.453 - 17.374; P = 0.011), LN margin(OR, 7.482;

95% CI, 2.705 - 20.696; P < 0.001)and enhancement pattern (OR,

7.039; 95% CI, 2.107 - 23.513; P = 0.002) showed statistically

significant differences, and were included as independent

predictors of LN metastasis to construct a radiological model.

The diagnostic performance of the radiological model was

moderate, with an AUC of 0.831(95% CI, 0.761 - 0.900), a

sensitivity of 0.632 and a specificity of 0.900 in the training
TABLE 1 Patients characteristics.

Characteristic Training Cohort (n = 43) Validation Cohort (n = 18) p

Gender, No. (%) 0.943

male 22 (51.2) 9 (50)

female 21 (48.8) 9 (50)

Age (Mean ± SD) 62.56 ± 8.797 62.11 ± 10.51 0.865

CA199 level, No. (%) 0.276

Abnormal 33 (76.7) 16 (88.9)

Normal 10 (23.3) 2 (11.1)

CA125 level, No. (%) 0.147

Abnormal 32 (74.4) 10 (55.6)

Normal 11 (25.6) 8 (44.4)

Location, No. (%) 0.924

Head and neck 12 (27.9) 5 (27.8)

body 21 (48.8) 8 (44.4)

tail 10 (23.3) 5 (27.8)
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cohort, and an AUC of 0.756(95% CI, 0.629 - 0.884), a sensitivity

of 0.615 and a specificity of 0.848 in the validation

cohort (Figure 4).
Rad-score and radiological-radiomics
nomogram construction and
performance evaluation

To identify PDAC patients with LN metastasis, a total of 9 most

predictive radiomic features with nonzero coefficients in

the LASSO algorithm were finally selected (Figure 3) and

incorporated into the Rad-score model. The formula was as

follows: Rad-score = 0.2098 × Original_glszm_ZonePercentage +

0.0366 × Original_shape_Maximum2DDiameterSlice

+ 0.0001Wavelet_LLL_firstorder_10Percentile + 0.029Wavelet_

HLH_firstorder_Mean + 0.2022 × Wavelet_LHH_glcm_Imc 1 +

(− 0.5354) × Wavelet_HLH_glszm_ZonePercentage + 0.0707 ×

Wavelet_LHL_glszm_ZonePercentage + 0.5903 × Wavelet_

LHH_glszm_ZonePercentage + 0.4772 × Wavelet_

LLH_glszm_SizeZoneNonUniformityNormalized. The Rad-score

model showed a better performance than the radiological model
Frontiers in Oncology 06
the radiological model, with an AUC of 0.879(95%CI, 0.824 - 0.934),

sensitivity of 0.684 specificity of 0.838 in the training cohort, and an

AUC of 0.804(95%CI, 0. 685 - 0.924), sensitivity of 0.654, specificity

of 0.818 in the validation cohort (Figure 4). The DeLong test

displayed that there was no significant differences between the

AUCs of the radiological model and Rad-score models in the

training cohort (P = 0.258, DeLong test) and validation cohort

(P = 0.543, DeLong test).

Three radiological features (LN size, LN margin and

enhancement pattern) combined with the LN Rad-score were

used to build a radiological-radiomics nomogram by multivariate

LR analysis. The radiological-radiomics nomogram for identifying

PDAC patients with LN metastasis risk in the training cohort is

shown in Figure 5A. This nomogram showed an AUC of 0.937

(95%CI, 0. 900 - 0.974), a sensitivity of 0.772 and a specificity of

0.863 in the training cohort, and an AUC of 0.851(95%CI, 0.741 -

0.961), a sensitivity of 0.692 and a specificity of 0.909 in the

validation cohort (Figure 4). The DeLong test revealed that the

radiological-radiomics nomogram had enhanced predictive

performance than the radiomics and radiological models in the

training cohort(P = 0.010, DeLong test; P < 0.0001, DeLong test),

with no significant differences in the validation cohort(P = 0.228,

DeLong test; P = 0.084, DeLong test).
TABLE 2 Univariate and multivariable analysis of CT radiological features for LN metastasis evaluation in the training cohort.

Factors Univariate analysis Multivariate analysis

Odds ratio (95% CI) p Odds ratio (95% CI) p

Size 11.943 3.827-37.272 < 0.001 5.025 1.453-17.374 0.011

Shape 1.700 0.773-3.741 0.187

Margin 10.000 4.080-24.512 < 0.001 7.482 2.705-20.696 < 0.001

Degree of enhancement

Mild ref.

Moderate 2.273 0.930-5.554 0.072

Strong 1.773 0.718-4.377 0.214

Patterns of enhancement 11.401 3.768-34.500 < 0.001 7.039 2.107-23.513 0.002
frontier
A B

FIGURE 3

The framework for radiomics features selection. (A) The LASSO logistic regression was used to select LN radiomics. A tuning parameter was
selected via 10-fold cross-validation and nine with nonzero coefficients were selected finally. (B) Histogram shows the role of nine selected
radiomics features used to calculate the Rad-score. The y-axis represents individual radiomics features, with their coefficients in the LASSO
regression analysis plotted on the x-axis.
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Calibration curve analysis of the nomogram demonstrated the

prediction results were in good agreement with the actual

observations both in the training and validation cohorts (Figure 5B).

DCA of the Rad-score model and radiological-radiomics

nomogram in the training and validation cohorts are presented

in Figure 6. The curves demonstrated that the Rad-score model

and radiological-radiomics nomogram provided more benefit

than the treat all or none principle in PDAC patients for all

threshold probabilities in the training cohort and all most

threshold probabilities in the validation cohort.
Discussion

In this retrospective study, we developed a radiological-

radiomics nomogram that incorporated the LN radiomics

signature with LNs’ radiological features to evaluate the status

of LNs in patients with PDAC. In addition, the radiological-
Frontiers in Oncology 07
radiomics nomogram performed better than the Rad-score and

radiological models. These findings indicated that LN radiomics

analysis could be effective for preoperative diagnosis of

metastatic LNs in patients with PDAC.

In the current study, we found LN size, LN margin and

enhancement pattern were the optimal radiological features to

detect LN metastasis. Heterogeneous enhancement, which may

reflect unevenly distributed tumor angiogenesis and internal

necrosis, is considered a reliable feature of LN metastasis (27,

28). Blurred margin may be caused by tumor cell infiltration into

peri-nodal adipose tissue. A short-axis diameter of LNs greater

than 10 mm is widely used to diagnose nodal involvement in

PDAC. In agreement, we also demonstrated that large LNs (>10

mm) are more prevalent in metastatic LNs compared with non-

metastatic LNs. Roche et al. also indicated this criterion could lead

to high diagnostic specificity in evaluating the LN status (30).

Based on these three predictors we constructed a radiological

model to identify metastatic LNs in patients with PDAC, which
A B

FIGURE 5

A radiological-radiomics nomogram was plotted combining independent radiological features with Rad-score in the training cohort (A).
Calibration curves for the radiological-radiomics nomogram in the training cohort and in the validation cohort (B). The 45° straight line indicates
the ideal performance of the radiological-radiomics nomogram. A closer distance between two curves indicates higher accuracy.
FIGURE 4

ROC curves of the radiological model, Rad-score model and radiological-radiomics nomogram for diagnosing metastatic LNs in the training
cohort and validation cohort.
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had a good diagnostic performance with AUCs of 0.831 and 0.756

in the training and validation cohorts. These results revealed that

the radiological model could be used for differential

diagnosis between metastatic and non-metastatic LNs. However,

texture heterogeneity as a fundamental feature of the LN itself

through naked-eye observation has not been applied (31, 32).

Radiomics can extract high-dimensional objective and

quantitative features from the segmented volumes and to

assess the spatial distribution of voxels that could profile

heterogeneity (17). The present study applied LN radiomics to

evaluate the LN status and found 9 radiomic features quantified

on portal-venous CT-image that could help diagnose metastatic

LNs in PDAC. Among these features, most were determined on

images preprocessed with wavelet filters (33), which indicated

that higher order statistics features are more valuable for

evaluating the LN status. Five GLSZM features could imply

the extent of the spatial correlation or uniformity of gray-levels.

GLCM Informational Measure of Correlation 1 was increased in

metastatic LNs, which indirectly indicated that metastatic LNs

have a higher degree of heterogeneity. First order features,

including mean and 10th percentile, significantly correlate with

the LN status, which provide statistical information on the

distribution and number of pixels with the same intensity in

the VOI (34). Furthermore, this study found that Maximum2D

Diameter Slice, which can express the largest pairwise Euclidean

distance between LN surface voxels in the slice plane, was larger

in the metastasis group. This was a reasonable evidence that

metastatic LNs are preferably larger.

The Rad-score model composed of the above radiomic

features showed better diagnostic performance compared with
Frontiers in Oncology 08
the radiological model, with AUCs of 0.879 and 0.804 in the

training and validation cohorts, respectively.

By incorporating the radiological model and the Rad-score,

we built a LN radiological-radiomics nomogram, which had the

highest AUC (training cohort, 0.937; validation cohort, 0.851)

and diagnostic sensitivity (training cohort, 0.772; validation

cohort, 0.692). This nomogram showed significantly better

diagnostic efficacy for metastatic LNs in patients with PDAC

compared with the Rad-score and radiological models in the

training cohort (all P<0.05, DeLong test). This finding revealed

that combining the internal texture heterogeneity and

radiological features of LNs could be a prospective approach

to enhance precision medicine. Furthermore, this nomogram

could conveniently and visually estimate the status of LNs in

PDAC patients. With the help of the radiological-radiomics

nomogram, individualized risk assessment in terms of detecting

LN metastasis could be implemented for PDAC patients. Finally,

the calibration curve of the nomogram showed good agreement

between nomogram-evaluated and pathological results in the

training and validation cohorts. In addition, we performed a

decision curve analysis demonstrating a clinical net benefit for

the radiological-radiomics nomogram. This curve showed the

nomogram could confer enhanced net benefits than treating all

or no patients for all threshold probabilities in the training

cohort and almost all in the validation cohort.

There were several limitations in this study. Firstly, because

this was a single-center retrospective study, further refinements

with multicenter studies are needed to confirm these findings.

Secondly, VOIs were segmented semi-automatically in this

research and errors were inevitable due to segmentation
A B

FIGURE 6

DCA for the Rad-score model and radiological-radiomics nomogram in the training cohort (A) and validation cohort (B). The y-axis measures
the net benefit and the x-axis represents the threshold probability. The grey line that all patients had LN metastasis and the black line indicate
no patients had LN metastasis. The red line and the green line indicate the net benefit of the Rad-score model and the radiological-radiomics
nomogram at different threshold probabilities, respectively. The radiomics nomogram had a higher overall net benefit in differentiating LN
metastasis than Rad-score model.
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uncertainty even though good agreement in inter-observer and

intra-observer reproducibility was achieved. Deep learning for

automatic segmentat ion to increase efficiency and

reproducibility still needs further exploration (35). Thirdly,

tumor radiomics was not included in this study, so the

diagnostic value of combining the radiomics and tumor

radiomic features of LNs requires further investigation.

Fourthly, we only performed LN radiomics analysis based on

the portal venous phase images and didn’t compare or combine

with other phase images to definite which may have the potential

to improve diagnostic efficiency. This owns the significance for

further exploration.

Conclusion

This study developed and validated a radiological-radiomics

nomogram that integrated the LN Rad-score and LNs’

radiological features for preoperatively evaluating the LN

status in PDAC patients. This nomogram could serve as an

easy-to-use, noninvasive and effective tool to assist radiologists

in diagnosing metastatic LNs and to guide the clinical decision-

making process for PDAC patients.
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