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Cortical slow oscillations (.1 Hz) are an emergent property of the cortical network that

integrate connectivity and physiological features. This rhythm, highly revealing of the

characteristics of the underlying dynamics, is a hallmark of low complexity brain states

like sleep, and represents a default activity pattern. Here, we present a methodological

approach for quantifying the spatial and temporal properties of this emergent activity. We

improved and enriched a robust analysis procedure that has already been successfully

applied to both in vitro and in vivo data acquisitions. We tested the new tools of

the methodology by analyzing the electrocorticography (ECoG) traces recorded from

a custom 32-channel multi-electrode array in wild-type isoflurane-anesthetized mice.

The enhanced analysis pipeline, named SWAP (Slow Wave Analysis Pipeline), detects

Up and Down states, enables the characterization of the spatial dependency of their

statistical properties, and supports the comparison of different subjects. The SWAP

is implemented in a data-independent way, allowing its application to other data sets

(acquired from different subjects, or with different recording tools), as well as to the

outcome of numerical simulations. By using the SWAP, we report statistically significant

differences in the observed slow oscillations (SO) across cortical areas and cortical

sites. Computing cortical maps by interpolating the features of SO acquired at the

electrode positions, we give evidence of gradients at the global scale along an oblique

axis directed from fronto-lateral toward occipito-medial regions, further highlighting some

heterogeneity within cortical areas. The results obtained using the SWAP will be essential

for producing data-driven brain simulations. A spatial characterization of slow oscillations

will also trigger a discussion on the role of, and the interplay between, the different

regions in the cortex, improving our understanding of the mechanisms of generation

and propagation of delta rhythms and, more generally, of cortical properties.

Keywords: slow-wave activity, slow oscillations, analysis pipeline, software tools, cortical areas, multi-electrode

arrays (MEAs), multi-unit activity (MUA), anesthetized mice

1. INTRODUCTION

In a brain manifesting slow-wave activity (SWA), expressed in the cerebral cortex under NREM
sleep and deep anesthesia (Steriade et al., 1993), the spiking activity—both single and multi-unit
(SUA and MUA), respectively—appears as a regular sequence of Up (high-rate) and Down (almost
quiescent) states. Detecting the Up and Down periods and the times of transitions between these
states is a long-standing issue for those studies investigating the phenomenon. Depending on the
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FIGURE 1 | Representation of the multi-electrode array (MEA) used for the data acquisition (Pazzini et al., 2018), with the numbering introduced in the SWAP. On the

top left, a scheme that indicates the scale of the experiment; the reported dimensions have been adopted to define the reference frame in the pipeline. On the bottom

left, the color legend that identifies the cortical areas on the array surface. On the right, an illustration of the grid of electrodes positioned on the mouse cortex (image

credit: Allen Institute); the inspected surface is of the order of 10mm2.

available experimental data, different solutions have been
developed in the past. At the microscale, threshold-based
detection algorithms, leveraging the alternating polarization of
the membrane potential in intracellular recordings, have been
proposed (Volgushev et al., 2006; Seamari et al., 2007). At the
mesoscale, a similar approach has been proposed that focuses
on extracellular field potentials by extracting the power of
the signal at specific frequency bands (Mukovski et al., 2006).
Besides, multi-unit activity sampled from multi-site recordings
at the macroscale led to the development of a relatively more
sophisticated algorithm detecting Up and Down state transitions
by fitting a Hidden Markov Model (Jercog et al., 2017).
Here, we improved an approach that relies on the mesoscale
signal provided by the MUA extracted as the high-frequency
component of the unfiltered field potential. The analysis pipeline,
implemented in MATLAB1, has already been applied to several
experimental data sets, acquired with different setups both in
vitro and in vivo from rodents, ferrets, and monkeys (Ruiz-
Mejias et al., 2011, 2016; Mattia et al., 2013; Capone et al., 2019).
In this work, we describe an extensive revision of the above
referenced procedure, including some new features implemented
in Python2. The novel components focus on labor-saving
automatic adjustment of steering parameters, on automated
comparison of data coming from different experiments, and on
the evaluation of statistical significance, offering a set of software
tools that allow going from raw-data to statistical assessment
of results, with consequent advantages in terms of reliability,
flexibility, and usability. The current stage of development is the
starting point for a cooperative effort aiming at the release to the
community of an engineered pipeline3.

1MATLAB R©, The MathWorks, Inc., Natick, Massachusetts, United States.
2Python Software Foundation. Python Language Reference, version 2.7.5.

Available online at: http://www.python.org
3A preliminary version of the SWAP, released in the framework of the Human

Brain Project, is Available online at: https://github.com/INM-6/wavescalephant

The enhanced analysis pipeline has been validated on a new
set of data collected in vivo using micro-ECoG electrodes (Wang
et al., 2009). In particular, the system for brain activity recording
employed in this work consists of a 32-electrode array and the
test-bench data has been acquired from the cerebral cortex of 11
deeply isoflurane-anesthetized wild-type mice.

The data used in this study was obtained in accordance with
the Spanish regulatory laws (BOE-A-2013-6271) which comply
with the European Union guidelines on protection of vertebrates
used for experimentation (Directive 2010/63/EU of the European
Parliament and the Council of 22 September 2010), and the
protocol was approved by the Animal Ethics Committee of the
University of Barcelona.

The multi-electrode array (MEA) employed for acquiring the
data is described in Figure 1 and covers several cortical areas
ranging from sensory (V1, S1), motor (M1), and association
(PtA) cortices (Pazzini et al., 2018). The unfiltered field potential
(UFP) is sampled from each electrode at a frequency of 5 kHz
and each acquisition session lasts at least 300 s (see Table 1), thus
ensuring a fine inspection of the signal in both space and time.
The 11 recording sessions are each from a different animal; that
is, 11 independent experiments that collectively represent an
extensive data sample covering a wide range of biological and
unavoidable physiological variability.

The accurate time-and-space sampling together with the
richness of the experimental data have driven the development
of new analytical tools that aim to characterize the differences
between cortical areas when expressing SWA. In addition, given
the unavoidable and physiological variability of the data set,
particular attention has been also given to the best strategies to
adopt in order to perform a thorough comparison of recordings
obtained from the 11 different subjects. The guiding principle
when combining data was to keep and use the largest amount
of signal, avoiding arbitrary removal of noisy channels or the
creation of a subset of “golden” cases. Descriptive statements are
accompanied by the assessment of statistical significance of the
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TABLE 1 | Summary of the data acquisition (DAQ) sessions.

Data

file

Hemisphere Duration of the

DAQ session [s]

Notes

01 R 304.102 • Excluded: ch. 8 (SD-outlier)

02 R 300.912 • Weak Bimodality: ch. 1, 2, 3, 4, 7,

9, 10, 11, 12, 14, 15, 16, 17, 18,

19, 20, 22, 23, 24, 25, 26, 27, 28,

29

• Excluded: ch. 30, 31, 32 (failure

in the DAQ)

03 L 427.223 • Discontinuity in ch. 2, 4, 8, 12, 15,

19, 20, 23, 28, 31, 32

• Excluded: ch. 3, 13 (SD-outlier)

07 L 351.701 –

09 L 321.942 • Discontinuity in ch. 23

• Weak Bimodality: ch. 2, 3, 17, 20

• Excluded: ch. 3, 9 (SD-outlier)

10 L 309.19 • Discontinuity in ch. 12

• Excluded: ch. 12 (failure in the

DAQ)

14 R 313.714 –

15 R 329.605 • Excluded: ch. 25 (SD-outlier)

16 R 312.157 • Discontinuity in ch. 14

• Excluded: ch. 4 (SD-outlier); 31

(failure in the DAQ)

17 R 305.967 –

20 R 319.942 • Excluded: ch. 1 (negative

asymmetry); 12, 25 (SD-outlier)

The name of the data file reflects the date of acquisition. R for right hemisphere, L for

left hemisphere. In general, discontinuities are not critical, since the failure corresponds

to an interruption of the DAQ for a limited time interval (usually, a couple of discontinuities

per channel, lasting from a few hundreds of millisecond to a few seconds); therefore,

discontinuities in the DAQ are managed in the SWAP by identifying, for each problematic

channel, the time interval at which the data acquisition fails, and removing it from the time

sequence of the signal. By contrast, excluded channels are those for which the signal

presents several irregularities, usually resulting in a number of identified upward transitions

well below the median computed over the full channel set (tagged as “failure in the

DAQ”); in addition, SD-outlier channels are also excluded; the tag “negative asymmetry”

corresponds to the case of having a strong negative skew.

results, taking into account the multiplicity of the hypotheses
under testing; the obtained claims can give hints as to the
mechanisms underlying SWA in mammals.

Furthermore, the outcome of the data analysis can be
employed to feed the input of a dedicated spiking neural network
simulation (as Paolucci et al., 2013; Pastorelli et al., 2018, 2019),
in a data-driven approach of in silico studies of the brain, aimed at
computing a less stereotypical and a more accurate reproduction
of cerebral rhythms, as well as constraining simulations of the
cognitive effects of sleep (Capone et al., 2019). The analysis
pipeline itself, hereafter named Slow Wave Analysis Pipeline, or
SWAP, can be adopted to study the output of the simulation, and
to define a set of benchmark observables for confronting models
and experiments, with the goal of having a reliable and flexible set
of tools available for the characterization of the slow-wave signal
in a wide set of cases.

The material in this paper is structured as follows. Section
2 offers an overview of the SWAP, with a collection of results
obtained from test-bench data used for illustrating the steps

of the procedure; the focus is on the methods implemented
for the identification of the Up/Down state alternation in the
ECoG traces, on the techniques for “stacking” and comparing
different subjects, and on the statistical treatment of data with
hypothesis testing. Section 3 is dedicated to the discussion of
methods and results, with concluding remarks and suggestions
for future research.

2. THE SLOW OSCILLATION ANALYSIS
PIPELINE

The study of SWA expressed by the cortex can be tackled starting
from a description of the bimodality (i.e., the alternation of Up
and Down states), by defining a comprehensive set of observables
suited to illustrating the phenomenon of SO. Once this local
information is acquired, the second step (not illustrated here) is
the characterization of the activity propagation across the brain
surface as a wave with delta rhythm. Focusing on the features
of Up and Down states, differences between cortical sites can
be emphasized.

The analysis procedure consists of two phases. First, each data
file is examined separately (Single Experiment), yielding a detailed
inspection of the single subject. The results from the different
experiments are then combined (inter-session data) to produce
Summary Results. Finally, conclusive claims are given with the
assessment of statistical significance of the results, taking into
account the numerousness of the sample and the multiplicity of
the hypotheses under testing.

Three different levels of description can be enabled: (I) the
channel level, providing information at each recording site; (II)
the area level, stacking up the information of all the electrodes
located in the same cortical area; and (III) the full-set level,
computing average properties and summary statements for the
entire cortex portion under study. The levels of description
can be applied at the single experiment, or at the inter-session
data; outcomes obtained at the different levels of description
are complementary and not strictly separated, and can be
superimposed on graphical representations. Figure 2 details, in
terms of phases of action and levels of description, the logic of
the SWAP when facing the issue of investigating the features of
Up and Down states.

2.1. The Channel-Level Description of the
Single Experiment: From the Raw Data to
the Estimates of MUA and of Transition
Times
The channel-level description of the single experiment is
obtained with a set of scripts, coded in MATLAB, carrying out
a loop over the electrodes in the array to extract the MUA from
recordings of the raw signal (UFP). For each channel, the Power
Spectral Density (PSD) of the signal is computed and the MUA
is used as an estimate of the firing rate of the neurons around
the electrode tip (Mattia et al., 2010; Ruiz-Mejias et al., 2011).
The logarithm of the MUA is evaluated, and the shape of the
log(MUA) distribution can be described as a peak, at low-MUA
values corresponding to Down states, and a tail, at high-MUA
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FIGURE 2 | The logic of the SWAP when facing the issue of investigating the features of Up and Down states, in terms of phases of action (the sequence of 3 actions

listed on the left) and levels of description (in the upper box). The lower box contains information on the statistical treatment presently implemented.

values corresponding to the Up states. The log(MUA) peak is
fitted with a Gaussian function, and the parameters of the fit are
used to single out Down-state periods from Up-state periods in
theMUA time series. Once theMUA time series is tagged as “Up”
and “Down” (binary MUA), a detailed study of the features of
such states and of the transitions among them—upward (Down-
to-Up) and downward (Up-to-Down)—can be achieved. The
workflow is illustrated in Figure 3.

In more detail, the initialization phase is carried out
with the steering file setParamsAndOptions, which takes into
account the specificity of the data acquisition (DAQ) sessions,
accommodating the frame of reference (the positions of the
electrodes in the array) and loading information about the
recordings. Some of the settings concern the capability of the
algorithm to identify the state transitions, and are fine-tuned
following a heuristic approach. The steering file informs what to
check in order to perform the analysis pipeline on the given input
data. Once the initialization phase is completed, the main loop
starts and the flow in the pipeline is as follows (see Figure 4):

1. Read the analog data (raw signal). For the ECoG data used as
a benchmark in this study, input-related actions (open/close
the input file and read the input data) are performed by the
SONLibrary (Lidierth, 2009), whose functions provide the
access to the stored neurophysiological data.

2. Analyze the raw signal in the frequency domain. A moving
window of samples is defined for the calculation of the
spectrogram; that is, the spectral content of the raw signal as
a function of time; the extent of the moving widow, together
with the sampling frequency, determines the frequency band
to be examined. Since the frequency band of interest for the
estimate of the MUA is 200–1,500 Hz4, a moving window
of 5 ms is adopted5. FFT (Fast Fourier Transform) and

4The experience suggests that frequencies in the raw signal outside this range

cannot be associated with the electro-physiological signal of the MUA; in

particular, the highest frequency components reflect the presence of electrical noise

introduced by the acquisition system.
5For the benchmark data acquired at 5 kHz, the time window contains 25 samples.

PSD (Power Spectral Density) are computed using MATLAB
functions. Then, for each frequency in the band, the median of
the PSD is computed, considering the full set of spectrograms;
that is, the collection of moving windows (time steps) that
constitute the entire acquisition session. The obtained vector
of medians, one value for each frequency, is used as a baseline
to normalize the PSD.

3. Evaluate theMUA for each time step as the mean amplitude of
the normalized PSD. The MUA is intended as an estimate of
the collective firing rate r(t) of neurons located at the electrode
position. The natural logarithm of the MUA is computed,
since logarithmic mapping is adopted to emphasize the
bimodality of the distribution; because of the normalization
to the median of the PSD, negative values and positive values
of log(MUA) identify a spectral content smaller or larger than
the median, respectively (Mattia et al., 2010; Ruiz-Mejias et al.,
2011).

4. Fit the distribution of log(MUA), isolating with a Gaussian
function the peak corresponding to the (dominant) regime
of low-rate states (Figure 4A). A simplified description of the
bimodality of the SWA in the cortex would require a bimodal
fit, and initially the sum of two Gaussian profiles was adopted
to describe the shape of the distribution. Conversely, what was
discovered after a thorough inspection of a huge number of
channels from several different animals (both physiological
and pathological subjects at different anesthesia levels) is
that, while the Down-state peak is highly stable despite the
large variability in the subjects, the content of the log(MUA)
histogram corresponding to the high-rate regime (obtained
from the total distribution after subtracting the Down-state
peak) expresses over a large span of “shapes,” and rather than
as a “second peak” (with a definite Gaussian profile) it can be
generically appointed as a “tail” (Figure 4A, inset).

5. Set the UD_THRESHOLD; that is, the level of log(MUA) that
defines the separation of the two regimes of the bimodality,
Up and Down (UD). This is a crucial step in the pipeline, and
several options can be adopted to find the optimal criterion,
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FIGURE 3 | The channel-level description of the single experiment. Purple boxes point out the initial data format and the intermediate outcomes of the workflow (as

successive elaborations of the raw data). The black box encompasses the key steps of the process. The procedure is coded in MATLAB®, the sequence of actions is

illustrated in Figure 4. The figure illustrates the main loop (as discussed in section 2.1), at the end of which further checks are carried out on average and median

values (full-set level description), in order to identify further anomalies or outliers.

which can depend on the specificity of the data set and on the
scope of the analysis. In general, the choice takes into account
general settings of the DAQ, the log(MUA) distribution, and
the results of the Gaussian fit on the Down-state peak (of
the given channel, or considering average properties of the
recording session). At the channel level in the main loop,
checks are introduced to monitor the convergence of the
Gaussian fit, the content of the histogram of log(MUA) values,
and the shape of the distribution (Figure 4A); alerts are
activated to signalize: Weak Bimodality (if the area of the
tail is smaller than a given threshold—currently set at 10%
of the total); Positive Skewness (if gamma—the coefficient of
skewness—of the tail is above 1, γ > 1); Negative Skewness
(if γ < −1); Right Peak (if the peak, i.e., the dominant
component of log(MUA), is centered at large values, on the
right segment of the range, with a tail on the left); Large
Threshold (if the selected threshold is larger than the mean
of the tail); Few Transitions (if the number of transitions
obtained with the selected threshold is below 3, the minimum
requisite to isolate at least an Up state and a Down state).
Some of these alerts may help in defining the threshold level,
others provide an indication of “problematic” channels to be
inspected (that may or may not be tagged as outliers and
excluded from further processing at the end of the main loop).
Finally, some conditions are “blocking,” in the sense they
require a break in the workflow, as is the case with noisy

acquisition channels or spoiled recordings. If no blocking
conditions are encountered, meaning that a threshold can be
set and Down states and Up states are distinguishable, the
following operations are performed:

(a) Convert the MUA into a binary sequence (BinaryMUA)
that is 1 or 0 depending on the value of log(MUA)
above or below the threshold, resulting in the MUA time
sequence being tagged as “Up” or “Down” (Figure 4B).
Aiming at illustrating the sequence of Up and Down
states on different signals, the panel includes log(MUA)
and BinaryMUA together with unfiltered and filtered field
potential; the latter is obtained applying the MATLAB
bandpass function with fpass = [200,1,500] Hz and default
settings. The horizontal axis corresponds to 10 s of
recordings; the vertical axis is in arbitrary units (the raw
signal is measured in µV , while MUA is dimensionless
since obtained from a ratio of homogeneous quantities),
signals values are scaled in order to make all the traces fit
on the same plot.

(b) Label the transitions as upward or downward, and
assign the time of transition (Trigger Time) with a
cubic interpolation of the waveform to locate the time
at which the level of MUA crosses the threshold that
separates the two regimes of low and high firing
rate activity.
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FIGURE 4 | (A) Distribution of log(MUA) as normalized histogram of values shifted at the position of the first peak, The blue curve is the Gaussian fit of the first peak,

the µ position is marked by the blue vertical dashed line. The red dotted line is the “tail,” obtained after subtracting the Gaussian fit from the total distribution (see

inset; vertical dashed lines: mode in magenta, median in cyan, mean in black). In this example (Ch. 1, file 01), the tail distribution is far from being Gaussian; the area of

the tail is ∼ 27%, therefore expressing a clear bimodality, coherently with the value of the skewness of the distribution, γ = 1.97. (B) 10 s of recordings of log(MUA) (in

black), BinaryMUA (in red), unfiltered raw signal (in blue) and filtered raw signal (in green). (C) Histograms of the duration of Up states (red), of Down states (blue) and

of the full cycles (UD cycle, in green); dashed lines, mean values. (D,E) Raster plot of upward (Down-to-Up) and downward (Up-to-Down) transitions, sorted by state

duration. (F,G) Waveforms (WFs) of upward and downward transitions, respectively. For each plot, the first 5 transitions are shown, centered around the transition time

(Trigger Time); the average transition, computed considering the full set of n waveforms, is superimposed (black); the shaded area identifies the profile of the waveform

at ±1 standard deviation (SD) off the mean. The inset shows the average transition front; the shaded area identifies the profile of the waveform at ±1 standard error

(SEM) of the mean (H,I) As (A,B), for a channel rejected by the pipeline and excluded from further analysis. The channel presents a monomodal log(MUA) with

negative asymmetry; as a consequence, no UD_THRESHOLD can be set, and no transitions can be identified, evidenced by the filtered field potential (in green) with

no signs of state transition and by the BinaryMUA (in red) that appears constant at low level. Additional details are included in the Supplementary Material.
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(c) Study the features of states and transitions, to check the
robustness of the algorithm and the stability of the outcome
for the different channels. In particular:

i. Histograms of the duration of Down states dDOWN ,
Up states dUP, UD-cycles dUD. The study of these
observables is one of the focuses of the analysis; at the
channel-level description of the SWAP, the distributions
are superimposed for comparison (Figure 4C).

ii. Raster plots of states and transitions; each transition
(Trigger Event) is centered at the trigger time; events
can be sorted by their time of occurrence, or by their
duration (Figures 4D,E).

iii. Waveform plots, for comparing states and transitions,
and plots of the average waveform, obtained considering
the full set of transitions. A refined algorithm isolates
the transition front, to better investigate the transition
dynamics (Figures 4F,G).

As anticipated above, once the main loop execution has yielded
a full description at the channel level, a key parameter to be
monitored for the validation of the procedure is the stability
of the conditions used for the identification of the two states
(low-MUA and high-MUA). More precisely, since a requirement
for the separability of Up and Down states is the successful
fit of the Down-state peak of the log(MUA) with a Gaussian
function (Figure 4A), a similar value for the standard deviation
(SD or σ ) of the peak across channels is requested, ensuring
comparable SO dynamics of the probed cell assemblies. Indeed,
Down states are almost quiescent, and the variability of the MUA
is mainly due to the acquisition chain, which has to be the same
across channels.

A stable σ allows the application of the same MUA threshold
at each recording channel, meaning a unique definition of the
Up states, and thus more reliable profiles of traveling wave-
fronts and a more sound description of the SWA as a collective
phenomenon. Therefore, the choice of a fixed UD_THRESHOLD
is a valid option when the goal of the analysis is to study the
dynamics of the propagation of the activity as a slow wave
across the cortex. On the other end, this means to decide a
key parameter a priori, with the burden to be too conservative
(increasing the false negative rate) or too tolerant (admitting
a larger number of false positives)6. Conversely, the option
of linking the choice of threshold to “internal agents” (e.g.,
parameters evaluated during the workflow of the pipeline) can
be convenient, for reducing the number of free variables, or for
anchoring the false positive rate per channel. A dedicated study
of the standard deviation σ has been carried out (section 2.2) on
the test-bench data.

Finally, channels not fulfilling the stability requirements are
excluded from the analysis and marked as outliers. Here again,
the decision on the stability requirements (which parameters
to focus on, which threshold levels, which weight to assign

6In general, less conservative settings are preferable, since the control of false

positives can be addressed by checking the spatio-temporal correlations of the

propagating signal across the electrodes grid.

at the different instances, how to define the outliers) is a key
element of the pipeline and may largely depend on specific
features of the recording sessions and on the goals of the data
analysis. As discussed above, the SWAP has set in place alerts,
warnings and counters based on parameters considered relevant
for the test-bench data, but the elements to be monitored can
change if conditions vary. Also configurable are the criteria that
define outliers; for results presented here (Table 1), excluded
channels are those with the Right Peak and with Few Transitions,
together with the requirement related to the stability of the
Gaussian peak, that leaves out channels with σ above Q3 +

1.5 × IQR (IQR is inter-quartile range Q3 − Q1, with Q1 first
quartile and Q3 third quartile). As indicated in the caption
of Table 1, the presence of discontinuity in the recording
sequence—corresponding to a failure in the data acquisition
and a drop in the log(MUA)—is not a blocking element,
since once the discontinuity is removed, the log(MUA) can
fulfill the stability requirements. An illustration of a rejected
channel is given in Figures 4H,I; further details are included in
the Supplementary Material.

2.2. Stability of the Data Sample and
Channel Selection/Rejection
A key assumption for comparing acquisitions taken at different
sites and with different electrodes (or from different animals)
is the comparability of the log(MUA) profile in the low firing
rate regime. A quantitative evaluation of such a requirement
is obtained by monitoring the width of the peak fitted with
a Gaussian function; that is, the σ parameter of the Gaussian
(Figure 4A). The purpose of this analysis step is to evaluate the
selection strategy of the UD_THRESHOLD, which can be fixed
or channel-dependent.

A dedicated routine has been set in place, operating on
a given collection of data (inter-session data from different
subjects), aiming at stacking the full set of σ parameters estimated
from fitting procedures. In Figure 5 we report the statistical
distribution of σ values, and we observe large stability across
channels and experiments.

In more detail, the plot offers an overview of the range
of variability, showing that the behavior of the parameter is
pretty stable inside each experiment, and stable in the entire
collection as well7. Therefore, we adopted a channel-dependent
UD_THRESHOLD set at 2σ , corresponding to a fixed false
positive rate per channel of about 2.25%.

In addition, the results of the Stability Study enable channel
selection or rejection based on the entire data sample, giving rise
to a further list of outliers, to be added to the one already filled out
for each DAQ session at the end of the main loop. Considering
both lists, a total of 27 outliers were identified and removed from
the analysis when inter-session data were taken into account for
producing summary results.

7Experimental outliers, discussed in section 2.1 and listed in Table 1, are excluded

from the representation.
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FIGURE 5 | Stability of the MUA estimate across channels and animals. (A) Stem plot of the SD values obtained as the σ parameter of the Gaussian fit to the Down

peak in the log(MUA) distribution (the blue curve in Figure 4A); marker colors identify the different experiments. The distribution of the SD values is presented as

histogram (B) and as box plot (C), the presence of outliers is evident; descriptive parameters are reported in the box; the vertical lines in the histograms indicate the

positions displaced 2 or 3 standard deviations of the mean. Outlier values are removed, obtaining the symmetric distribution represented in the histogram in (E);

descriptive parameters are listed in the box, the sample of channels is reduced by 12 units. The grid in (D) is a synthetic representation of the outlier channels for the

test bench data: in red, the experiment outliers; in blue, the ones excluded after the SD Stability Study.

2.3. Description at the Cortical Area-Level
2.3.1. A Thumbnail for the Single Experiment
Once the raw signals have been analyzed for each channel, area-
related statistics can be obtained as in Ruiz-Mejias et al. (2011).
More specifically, the SWAP provides the following observables:

1. Durations of the Down states, dDown[s];
2. Durations of the Up states, dUp[s];
3. Durations of the UD-cycles (i.e., a pair of consecutive Down

and Up states), dUD[s]. The duration of the UD-cycle is an
estimate of the SO period;

4. Upward transition slope, sUp[s
−1];

5. Downward transition slope sDown[s
−1];

6. MaximumMUA in the Up state (“peak”), p[a.u.]

7. Frequency, f [Hz], defined as 1
dUD

;

Concerning dDown, dUp and dUD, as already evident from the
histograms (Figure 4C) and in agreement with the box plots
represented in Figure 6A, the distributions at the channel
level are skewed and far from being Gaussian. Therefore,
for each channel, the median (and not the mean) has been
selected as the representative parameter for the observables.
The skewness of the distribution is also noticeable at the area
level (Figure 6B), where the statistics for each distribution are
increased since values of electrodes belonging to the same
cortical area are grouped together. Therefore, the median
is assumed as the representative parameter also at the
area level.
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FIGURE 6 | Statistics of the measured UD-cycle (dUD) for an example recording (file 01). (A) Channel-level description; channels are grouped by area, channel

numbering is as illustrated in Figure 1; channel 8 is missing because it is tagged as an outlier (Table 1). (B) Area-level description, represented with notches indicating

the confidence interval for the median (Q2 = 50%, orange line). The box plot is delimited by quartiles Q1 = 25% and Q3 = 75%; IQR = Q3−Q1 is the Inter Quartile

Range; the lower whisker is at Q1− 1.5× IQR; the upper whisker is at Q3+ 1.5× IQR; values outside the whiskers are marked as outliers; the blue marker indicates

the mean of the distribution.

Interestingly, significant differences are apparent when
comparing median values of different channels and areas.
Differences among areas are consistently observed in all animals,
despite the large span of values that each observable expresses
considering the total of 11 experiments. Indeed, evaluating each
observable for each experiment at the full-set level of description,
the large variability of the data sample is clearly seen. This
is in agreement with the expected biological variability of the
subjects, regardless of the identical surgical treatment they have
undergone, the comparable drug delivery, and the uniform
monitoring conditions during the data taking. In other words,
each data session is characterized by its own central values for
all the observables of interest, with no clear correlation with
the animal’s phenotype, or with any other parameter measurable
during the data acquisition (Brown et al., 2010; Akeju and
Brown, 2017). The spanning of the frequency values across
the experiments (Figure 7) is in particular revealing, because
frequency is a property immediately linkable with the onset of
the bimodality and with the propagation of slow waves along the
cerebral cortex.

2.3.2. Assessment of Statistical Significance at the

Area-Level Description for Inter-session Normalized

Data
The statistical significance of the effect of differentiation by
area, visible for all the observables in the list of interest and
for each experiment in the data set, is quantitatively assessed
for summary results; that is, when the outcome of the single
experiments are combined to drive comprehensive claims on
the phenomena. However, the first obstacle met when trying to
compare and aggregate results is the large variability exhibited
by the different DAQ sessions, which dominates over any other
effect and disguises any similarity or common footprint among
subjects. Therefore, to confront the area-level descriptions, the
median values of the observables for each area are normalized for

FIGURE 7 | Mean frequency across channels for each experiment; error bars,

SEM (standard error of the mean). For each channel, the frequency f [Hz] is

computed as 1
<dUD>

, with <> denoting the arithmetic mean of the dUD[s]

values in the channel (< dUD[s] > is an estimate of the SO period). The text

box gives information on the distribution of the observable across the 11

experiments.

each experiment, computing for each observable the arithmetic
mean across the cortical areas, and using the obtained mean
as a normalization factor for that observable. This procedure
highlights any trend expressed at different cortical areas, enabling
us to check if different experiments express the same trend.
Figure 8A shows the summary result at the area-level description
obtained with normalized data.

The outcome of the hypothesis tests executed to assess the
statistical significance of the differences observed between each
couple of cortical areas is represented through a matrix of p-
values, with a graded scale in a given range of confidence
(Figure 8B). Since no assumptions are made on the model, and
because of the already-discussed evidence of non-Gaussianity
of the distributions, non-parametric approaches are followed
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FIGURE 8 | (A) Box plot representation of the summary results for the observable dUD at the area-level description, obtained with normalized data. Having 11

subjects, for each cortical area 11 median values are available (the orange line in Figure 6); the arithmetic mean of the 5 medians is the normalization factor for the

given experiment. (B) Outcome of the Wilcoxon hypothesis tests on the same data; the test results are represented via a matrix of p-values (with Benjamini-Hochberg

correction enabled).

when analyzing the test bench data, so the Wilcoxon rank-
sum test is applied8. To take into account multiple comparisons
(the so-called “look-elsewhere effect”9) and reduce the likelihood
of incorrectly rejecting a null hypothesis (type I error) when
evaluating a family of simultaneous tests, the robustness of
the analysis and the control of the false discovery rate (FDR)
is obtained by correcting the p-values with the Benjamini-
Hochberg (BH) procedure (Seabold and Perktold, 2010).

Analogously to what was done for state duration, the study of
a possible differentiation at the area-level has also been carried
out for slopes and maximum MUA (sUp, sDown, p). Slopes are
computed considering the average transition (Figures 4F,G),
obtained by pooling together the detected Up-to-Down and
Down-to-Up transitions. The transition front of the average
transition is isolated, considering a 35 ms interval around
the transition time t0 ([t0 − 0.025, t0 + 0.010] for downward
transitions; [t0 − 0.010, t0 + 0.025] for upward transitions);
the profile is fitted with a cubic and the slope is obtained as
the derivative of the polynomial at t0. The average upward
transition is also used for the estimation of the maximum
MUA of the average waveform in the first 250 ms after the
transition. Since slopes and maxima are calculated from the
average waveform, for each experiment the observables are
represented at the channel level by a single value (and not by a
distribution). The area-level description for the single experiment

8The computation of the Wilcoxon rank-sum statistics is carried out with the

statistical function scipy.stats.ranksums of the scipy Python module

(Jones et al., 2001)
9https://xkcd.com/882/

is given by the mean and median of values obtained from
all the channels belonging to the specific area. In coherence
with the analysis carried out on states duration and in order
to apply the same non-parametric Wilcoxon tests, the median
is taken as the representative parameter. Summary results
are produced after the same normalization adopted for states
duration, yielding a similar illustration. A similar approach is
followed for frequency f .

2.4. Interpolation of the Array Map
The results obtained with the high spatial resolution probe used
for the acquisition of the test bench data can still be improved by
interpolating the spaces between the electrodes; the accuracy of
the interpolation is assured by the large surface density of sensors
offered by the employedMEA. For each experiment and channel,
the median (dDown, dUp, dUD) or the mean (sUp, sDown, p, f ) of
the observable is taken. This set of values is used to compute
an interpolator10 that is applied to points (xy coordinates) on
a mesh-grid, made of 50 steps along x and 90 steps along y,
with a Grid Step ∼ 0.05 mm, i.e., 1/10 of the Array Step =

0.550 mm (Figure 9A for the single experiment and for a given
observable). The same illustration is applied when representing
inter-session normalized data (Figure 9B); here, the size of the
marker is inversely proportional to the standard deviation of
the distribution of values at the given electrode position, thus

10The interpolation is carried out with the scipy Python module (Jones

et al., 2001) using the scipy.interpolate.Rbf class for radial basis

function (Rbf) interpolation. More on https://docs.scipy.org/doc/scipy/reference/

generated/scipy.interpolate.Rbf.html
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FIGURE 9 | (A) Contour plot for the single experiment (here, file 01) illustrating the observable dUD (UDcycleLen) interpolated on the mesh-grid, based on values

recorded with the MEA. The array map reflects the DAQ schema of Figure 1, with black dots marking the electrode positions and black lines identifying cortical areas;

the white circle identifies the outlier channel as resulting from Figure 5 and Table 1. The color bar gives the range of the interpolated variable across the array. (B)

Summary results for the observable dUD, represented as a contour plot obtained from normalized data. The interpolation is based on the mean values computed

across the experiments, the marker size is inversely proportional to the standard deviation of the distribution of values at each position (the smaller the marker, the less

variability measured across the experiments). Since normalized data are used for the plot, the color bar gives indications of trends with respect to the average: for

instance, regions colored in blue are characterized by having a duration of the oscillation cycle that is up to 30% less than the average. Comparing (A) (single

experiment) and (B) (inter-session data), a similar tendency is visible for the observable: in particular, the contours evidence gradients along the same dominant

antero-posterior direction, from fronto-lateral toward occipito-medial regions. These gradients prevail over the borders of cortical areas, suggesting further

differentiation within areas and connections among areas.

measuring the amount of variability registered at that position
across the experiments.

2.5. From the Array Map to the Assessment
of Statistical Significance at the Channel
Level for the Normalized Inter-session Data
The contour plots traced on the interpolated array maps give
qualitative hints on differentiation among inspected cortical
sites, enlightening further details within cortical areas. A more
quantitative evaluation can be obtained by performing the
statistical analysis of the normalized values resulting from inter-
session data, considering each pair of electrodes in the MEA
and inspecting if there is a statistically significant difference
between the distribution of values measured therein. The idea
is to compare the normalized values located at two different
electrode positions in the map and to test the validity of the
null hypothesis, that is the samples are extracted from the
same statistical distribution11. We use the Wilcoxon rank-sum

11The number of samples at each location depends on how many experiments

have channels rejected as outliers at that location. For the test bench data set, a

statistics with BH correction on p-values; in this case, the FDR
correction has a larger impact, since forMEAs the number of tests
in the family is of the order of hundreds12.

Given the large number of hypotheses, electrodes are sorted
to emphasize those expressing a significant difference with the
others. More specifically, the top-three electrodes in this sorted
list are highlighted as “core nodes,” indicating the positions in the
cortex displaying the largest significant difference with respect to
other positions in the cortex (Figure 10A).

As a result, the somatosensory cortex emerges as the one
having the shortest mean Up/Down cycle, in agreement with
what is shown in Figure 8A. In Figure 10B, the differences
in the cycle duration at the channel level show a rather
homogeneous rhythm within single areas. It is also apparent
that the other primary sensory area; that is, the visual cortex, is
markedly different from frontal and parietal regions, displaying a
significantly longer oscillation period. Inspecting the changes in

maximum of 11 samples can be present at each electrode position, details for each

electrode position can be extracted from Figure 5D.
12If the number of electrodes in the MEA is n = 32, the number of hypotheses to

be checked is N =
n(n−1)

2 = 496.
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FIGURE 10 | Excitability maps of the probed cortices. (A) Normalized dUD (as in Figure 9B) with the “core-nodes” (i.e., the three electrodes with the largest number

of significant differences with the other channels). Lines are traced to connect the “core nodes” with their partners in the electrode pair being significantly different

(p < 0.05). (B) Matrix of p-values of the statistical test on the dUD differences between channels. The matrix construction is analogous to what is described for

Figure 8. The numeric sequence of electrodes in the matrix is as in Figure 6, i.e., channels are grouped by area (M, motor, S, somatosensory, P, parietal, R,

retrosplenial, V, visual). (C,D) Normalized Down state duration dDown (DownStateLen) and Down-to-Up transition slope sUp (SlopeUp), averaged across experiments,

as in (A).

the Up and Down state duration, we found that the modulation
of the oscillation cycle is mainly due to a reduction of the dDown,
as shown in Figure 10C. Indeed, only a few channels display a

significant difference in dUp (not shown) and the p-value matrix
for the dDown mirrors the one shown in Figure 10B. If the local
excitability of the cell assemblies underneath the MEA contacts
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is well represented by the ratio dUp/dDown (Ruiz-Mejias et al.,
2011; Mattia and Sanchez-Vives, 2012), here the leading role of
somatosensory cortex is apparent. Such enhanced excitability is
further confirmed by inspecting the slope of the Down-to-Up
transition in the MUA (Sanchez-Vives et al., 2010), which is
significantly steeper in the same cortical locations (Figure 10D).

3. DISCUSSION

Biological data are characterized by richness in detail and
large variability. The efforts of the data analysis should aim
at extracting tendencies and regularities, producing a concise
description without hiding or neglecting complexity and details
that could convey informative content. This is the guideline
followed when developing the SWAP, starting from a solid
backbone that has been deeply revised and enriched with
new features. In particular, the opportunity of using the MEA
data as a test bench has allowed us to focus on the spatial
differentiation of the observables, with the aim of uncovering
hints as to the local excitability of the cortical assemblies. The
developed methodology is robust and easily re-configurable,
flexible and adaptable at different acquisition conditions, and
also suitable to be applied to the output of simulations. In
this framework, the SWAP can be employed in bridge theory,
simulations and experiments, providing a set of general tools
that allow an effective comparison between heterogeneous data
sets. The adoption of a unique analysis procedure is also useful
for comparing different simulation engines; the SWAP can be
applied to define benchmarks and evaluate the performance
of numerical models and implementations. Several studies are
ongoing for the application of the SWAP to a large variety
of data sets (knock-out mice, subjects in different brain states,
data collected with optical techniques), and the stability and
reliability of the analysis procedure has so far been confirmed.
Moreover, several improvements are ongoing, focusing on the
reliability and robustness of the analysis algorithms when
increasing the number of channels (electrodes or pixels), as
in recently developed multi-electrode arrays and in optical
imaging data. The latter in particular is a case where we
have already successfully applied our protocol (see Celotto
et al., 2018, calcium-imaging data, GCaMP6f model, submitted
for publication). In general, the approach we follow can be
extended provided that single-channel records allow the reliable
disentanglement of Up and Down states of the underlying
cortical assemblies. The introduced new features in the analysis
pipeline have been coded in Python with the aim of realizing
open software tools for the scientific community. The complete
transition toward open software is in the list of objectives to fulfill
in the near future.

Concerning the interpretation of the results, the analysis of
the large set of data collected from 11 wild-type anesthetized
mice with the 32-channel MEA allows us to claim a statistically
significant differentiation of cortical areas for several parameters
that characterize the onset of SWA along the cerebral cortex.
Starting from these observables, the excitability of the cortical
tissue expressing SWA can be investigated. Indeed, larger

excitability is expected to be associated with faster transition
fronts (in particular, upward slopes), shorter duty-cycles (i.e.,
smaller dUD, dominated by the duration of the Down states) and
accordingly larger frequencies (Sanchez-Vives et al., 2010). For
instance, a smaller dDown reveals the case in which excitability
translates to faster Down-to-Up transitions. These features are
particularly apparent in the somatosensory area, likely the most
excitable cortical region we observed; conversely, the occipital
lobe (retrosplenial and visual areas) acts as the least excitable.
Activation waves traveling across the cortex during SWA are
expected to be sensitive to the diverse cortical excitability,
as more reactive (i.e., more excitable) areas are expected to
display a smaller “inertia” in recruiting neurons involved in
the collective phenomena associated with the high-firing Up
states. As a consequence, waves might be originating from
highly excitable regions such that preferential propagation
pathways are expected, as previously highlighted both in humans
(Massimini et al., 2004) and rodents (Ruiz-Mejias et al., 2011;
Mohajerani et al., 2013; Stroh et al., 2013). In turn, heterogeneous
excitability might also underlie the non-global nature of the
SWA phenomenon observed when wakefulness is approaching
(Nir et al., 2011; Vyazovskiy et al., 2011) or under pathological
conditions (Sanchez-Vives et al., 2017).

It must be pointed out that the study here presented is “static,”
in the sense that the absolute time sequence of the events is not
taken into account: states and transitions are time-squashed and
stacked regardless of their time of occurrence in the DAQ session,
and thus any time-dependent effect, like fatigue and recovery
intervals of the neurons, that could affect the excitability and
alter the responsiveness of cortical regions, is excluded from this
analysis. In other words, the figures presented in this paper can
be seen as the average photography of the phenomena investing
the monitored cortex during the acquisition period. Related
to this, excitability and responsiveness can also be altered by
wave propagation dynamics, in particular if different propagation
patterns coexist and overlap in the same time interval, for
instance when two slow waves originating at distinct sites travel
along the cortex at different speeds and each one follows its
own path (Sancristóbal et al., 2016; Capone et al., 2019). Again,
not using the information on the absolute timing of the events
at the electrode positions and intending the results presented
here to be the average photography of the SWA in the cortex,
the included results reflect the dominant propagation pattern,
namely the antero-posterior direction (Massimini et al., 2004;
Ruiz-Mejias et al., 2011; Stroh et al., 2013; Chan et al., 2015),
in particular along an oblique axis directed from fronto-lateral
toward occipito-medial regions, as suggested by values depicted
in the contour plots. As in this step of the SWAP we have
not focused on time-dependent effects, and their impact on the
area-differentiation of the bistability modes will be evaluated in
further studies.

Finally, although in all the animals involved in this study
the level of administered anesthesia was the same, the observed
inter-subject variability (Figure 7) could in principle be explained
by animals being in different brain states. This suggests the
possibility of exploiting the characterization of slow oscillations
in the cerebral cortex as a new tool for effective classification
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of the brain states. Several techniques are currently under
study, based for instance on using the principal components
analysis (PCA) to identify and single out the different sources of
variability in the experimental data set. Indeed, a more reliable
classification of brain states (i.e., of the DAQ sessions that
constitute the statistical sample) would provide a more robust
comparison of the experiments, allowing us to overcome the
limits derived from the need to use normalized data.
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