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OBJECTIVE

Identifying patients whomay experience decreased or increased mortality risk from
intensive glycemic therapy for type 2 diabetes remains an important clinical chal-
lenge. We sought to identify characteristics of patients at high cardiovascular risk
with decreased or increasedmortality risk from glycemic therapy for type 2 diabetes
using newmethods to identify complex combinations of treatment effect modifiers.

RESEARCH DESIGN AND METHODS

The machine learning method of gradient forest analysis was applied to understand
the variation in all-causemortality within theAction to Control Cardiovascular Risk in
Diabetes (ACCORD) trial (N = 10,251), whose participants were 40–79 years old with
type 2 diabetes, hemoglobin A1c (HbA1c) ‡7.5% (58 mmol/mol), cardiovascular dis-
ease (CVD) or multiple CVD risk factors, and randomized to target HbA1c <6.0%
(42 mmol/mol; intensive) or 7.0–7.9% (53–63 mmol/mol; standard). Covariates in-
cluded demographics, BMI, hemoglobin glycosylation index (HGI; observed minus
expected HbA1c derived from prerandomization fasting plasma glucose), other bio-
markers, history, and medications.

RESULTS

The analysis identified four groups defined by age, BMI, and HGI with varied risk for
mortality under intensive glycemic therapy. The lowest risk group (HGI <0.44,
BMI <30 kg/m2, age <61 years) had an absolute mortality risk decrease of 2.3%
attributable to intensive therapy (95% CI 0.2 to 4.5, P = 0.038; number needed to
treat: 43), whereas the highest risk group (HGI ‡0.44) had an absolute mortality risk
increase of 3.7% attributable to intensive therapy (95% CI 1.5 to 6.0; P < 0.001;
number needed to harm: 27).

CONCLUSIONS

Age, BMI, and HGI may help individualize prediction of the benefit and harm from
intensive glycemic therapy.
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Individualizing the glycemic target for
patients with type 2 diabetes is now the
guideline-recommended strategy (1), but
how best to individualize glycemic targets
remains unclear. A major reason for cau-
tion regarding intensive glycemic targets
is the Action to Control Cardiovascular
Risk in Diabetes (ACCORD) trial (N =
10,251, conducted 2001–2009) (2), which
was halted due to increased all-cause
mortality in the intensive therapy arm.
ACCORD targeted nearly normal glycemic
levels in the intensive glycemic therapy
arm, achieving a median hemoglobin A1c
(HbA1c) of 6.4% (46 mmol/mol), com-
pared with an achieved HbA1c of 7.5%
(58 mmol/mol) in the standard therapy
arm.Meta-analyses of data fromACCORD
and other trials find that microvascular
events are reduced with intensive glyce-
mic control (3), but the lack of overall
mortality benefit in trials as well as the
increased mortality observed in ACCORD
renders uncertain the risk-to-benefit cal-
culation in any given patient.
Although current guidelines donot rec-

ommend targets as low as those used in
ACCORD, real-world evidence suggests
many patients are treated with multidrug
regimens to levels achieved in the inten-
sive therapy armof ACCORD (4–6). There-
fore, understanding the heterogeneous
treatment effects (HTEs) of intensive gly-
cemic therapy with regard to mortality is
important. Specifically, which subgroup
of patients in ACCORD was most likely
to experience increased mortality? Con-
versely, because some patients do derive
cardiovascular benefit from glycemic
therapy (7), did any subgroups in ACCORD
experience benefit? Unfortunately, uni-
variable subgroup analyses of the trial
data have been unable to explain the ma-
jor variations inexcessmortality inACCORD
from intensive therapy (8,9), despite ex-
amining factors including hypoglyce-
mia and hypoglycemia unawareness
(which was actually less common among
those who died in the intensive therapy
arm) (10,11), age (12), cardiac autonomic
dysfunction (13), weight gain (9), and rate
of HbA1c reduction (14). Although sev-
eral factors in combination are thought
to account for mortality HTEs, univariable
subgroup analyses are not capable of
identifying them and are subject to
false-positive findings due to multiple
testing (15,16).
Recently, the advancement ofmachine

learning methodsdparticularly the

approach of gradient forest analysis
(17)dhas aided the search for HTEs (Fig.
1). Gradient forest analysis can partition
a trial population into subgroups char-
acterized by multiple simultaneous char-
acteristics (multivariable rather than
univariable analysis), using cross-validation
to reduce the likelihood of false-positive
results (17). The gradient forest approach
also inherently accounts for interactions
among multiple variables (e.g., be-
tween age and HbA1c) and is unbiased in
predicting the difference in treatment

effect between study arms, unlike older
machine learning methods that can be
biased and focus on the absolute rate of
events (e.g., risk of mortality) rather than
HTEs (e.g., how individual features affect
the treatment’s ability to reduce the risk
of mortality) (17).

The objective of this studywas to apply
gradient forest analysis to identify sub-
groups of ACCORD participants with de-
creased or increased risk of all-cause
mortality attributable to intensive

therapy.

Figure 1—Conceptualization of gradient forest analysis to detect HTEs from trial data. Our imple-
mentation of gradient forest analysis involved repeated randomsampling fromboth armsof the trial
data set to compute the treatment effectdthe difference in the probability of the primary outcome
between the intensive and standard glycemic therapy armsdamong subgroups of trial participants.
After selecting subsamples of the trial data, our approach selected combinations of explanatory
variables (X1, X2) from one subsection of data to divide the study population subsets with
lower vs. higher treatment effectsdin this case, all-cause mortalitydwhen comparing intensive
vs. standard therapy. We then used another subsection of data to update the preliminary values of
the explanatory variables used to subdivide the population into final values that maximized be-
tween-group differences and minimized within-group differences in treatment effects among each
subgroup. By using multiple subsections of data for the estimation of subgroups, the method
produces unbiased estimates of HTE that are robust to outliers (17). The overall process is then
repeated thousands of times to identify which variables and cut point values define consistent
subgroups across thousands of random samplings from the trial data. The final subgroups chosen at
the end of the decision tree are referred to as “leaves” of the tree.
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RESEARCH DESIGN AND METHODS

Source of Data
ACCORD was a randomized, controlled
trial of intensive versus standard glycemic
control (open-label target of HbA1c

,6.0% [42 mmol/mol] vs. 7.0–7.9% [53–
63 mmol/mol], respectively), with a mul-
tifactorial design in which participants
were additionally randomized to inten-
sive versus standard lipid treatment
(double-blinded assignment to fibrate
plus statin or placebo plus statin, respec-
tively), or intensive versus standard blood
pressure treatment (open-label target
of systolic blood pressure ,120 mmHg
or,140 mmHg, respectively) (2). The tri-
al was conducted at 77 clinical sites in
North America between January 2001
and June 2009. Participants in both arms
received glucose-lowering medications.
The glycemic control component of the
trial was terminated early due to higher
mortality in the intensive therapy arm,
with a median on-protocol follow-up
time of 3.7 years and a median on- plus
off-protocol follow-up time of 4.9 years.
The full duration of available data were
used in this project. This analysis was
approved by the Stanford University In-
stitutional Review Board (e-Protocol
#39321).

Participants
Participants (Supplementary Table 1)
were 40–79 years oldwith type 2 diabetes,
HbA1c $7.5% (58 mmol/mol), and prior
evidence of cardiovascular disease (CVD)
or risk factors for CVD (e.g., dyslipidemia,
hypertension, smoking, or obesity; those
without a prior cardiovascular event were
between the ages of 55 and 79) (2,18,19).
Exclusion criteria for ACCORD included
BMI .45 kg/m2, serum creatinine .1.5
mg/dL, or serious illnesses that might
limit trial participation or life expectancy.
Data from all study arms were included,
with variables identifying glycemic, blood
pressure, and lipid study arm to control
for randomized therapy selection (15).

Outcome
The primary outcome for the current
studywas the difference in all-causemor-
tality between therapy arms, assessed
from the point of enrollment to the
time of study termination in June 2009.
Mortality assessment in ACCORD was
masked to therapy arm. The secondary
outcomewas the difference in compos-
ite microvascular events (including

nephropathy, retinopathy, and neuropa-
thy) between study arms, defined in
ACCORD as renal failure, end-stage renal
disease (dialysis), serum creatinine .3.3
mg/dL, photocoagulation or vitrectomy, or
Michigan Neuropathy Screening Instru-
mentscore.2.0.Aswithmortality,assess-
ment of microvascular events in ACCORD
was masked to therapy arm. The second-
ary outcome was chosen to determine
whether subgroups of participants identi-
fiedbased onHTEs formortality exhibited
similar HTEs in diabetes-relatedmicrovas-
cular complications because the stron-
gest support for intensive therapy has
come from studies of reduced microvas-
cular events. To help find groups with
high mortality risk and low microvascular
benefit, and vice versa, the decision tree
based on the primary outcome was
tested on the secondary outcome to de-
termine whether the same features that
predicted a higher or lower effect of in-
tensive treatment on mortality would
also predict a higher or lower effect of
intensive treatment on microvascular
events.

Predictors
Potential predictor variables for HTEs
(itemized in Supplementary Table 1) in-
cluded the subset of characteristics pre-
viously hypothesized to be related to
cardiovascular or all-cause mortality
among persons with type 2 diabetes: de-
mographics (age, sex, race/ethnicity),
study arm, type and number of glucose-
lowering medications (including insulin
use and oral glucose-loweringmedication
by class, individually, and in combination),
diabetes history (years since diabetes
diagnosis, hypoglycemia in prior 7 days),
prior ulcer or amputation, history of eye
disease or surgery, loss of vibratory sen-
sation or monofilament sensation, bio-
markers (HbA1c, fasting blood glucose,
hemoglobin glycosylation index [HGI]
[20] [defined as observed 2 predicted
HbA1c [%], where predicted HbA1c =
0.009 3 fasting plasma glucose [mg/dL] +
6.8, using the single baseline fasting
plasma glucose], lipid profile, serum cre-
atinine, estimated glomerular filtration
rate by the Modification of Diet in Renal
Disease (MDRD) Study equation, serum
potassium, urine microalbumin, urine cre-
atinine,alanineaminotransferase, creatinine
phosphokinase, systolic and diastolic blood
pressure, heart rate, and BMI), and CVD co-
variates (tobacco smoking; atrial fibrillation

or other arrhythmia by electrocardiogram;
left ventricular hypertrophy by electrocar-
diogram; prior myocardial infarction, stroke,
angina, bypass surgery, percutaneous coro-
nary intervention, or other vascular proce-
dure; and blood pressure medications,
cholesterol medications, and anticoagu-
lant/antiplatelet medications). HGI was in-
cluded among the covariates because it
was previously suggested as a potentially
useful indicator of diabetes severity as well
as a predictor of HTEs in mortality among
personswith type2diabetes (20–22). Treat-
ment arm (intensive vs. standard) is inher-
ently part of the gradient forest analysis
because the outcome is defined as differ-
ence in mortality between the two arms.

All predictor variables were taken from
the baseline (prerandomization) study
visit because our goal was to identify
factors clinicians could use before the
decision to set more, or less, intensive
glycemic targets. Therefore, time-varying
covariates were not incorporated into the
analysis.

Sample Size
A total of 10,251participantswere included
from the ACCORD trial, which includes the
complete sample of participants enrolled.

Missing Data
Missing data were not imputed be-
cause,1% of data for any predictor vari-
able were missing from the trial data set.

Statistical Analysis Method
To ensure transparency and reproducibil-
ity of the analysis, statistical code is linked
at https://sdr.stanford.edu concurrent
with publication. Our implementation of
gradient forest analysis proceeded in four
steps (Fig. 1). First, ACCORD trial data
were divided in half randomly, with an
equal number of intensive and standard
glycemic control arm participants in each
of the twodata subsets. Second, variables
were chosen by randomly sampling sub-
sets of potential predictors to construct a
decision tree made of those predictors
that could split the first of the two sub-
samples of data into subgroups with
higher and lower treatment effect (see
Fig. 1). Treatment effect was defined as
the absolute difference in the all-cause
mortality rate between the intensive
and standard therapy arms. Subgroups
were required to be .5% of the overall
study sample; we tested the consistency
of the approach to ensure the same result
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if we used limits of .1% to .8%. Third,
once the initial decision tree was con-
structed from the first subsample of
data, the values of each predictor that
would define branches in the decision
tree were refined using the second sub-
sample of data so that the final subgroups
at the bottom of the tree (“leaves” of the
tree) had maximum between-group dif-
ferences and minimum within-group dif-
ferences in treatment effect. Refinement
in the second data subset reduces the in-
fluence of outliers and helps produce un-
biased HTE estimates (17). The overall
approach was repeated 4,000 times
from the first step to produce a “forest”
of trees by repeated random resampling
of the data (cross-validation). No change
in estimated variable importance was ob-
served beyond 4,000 trees. Variable im-
portance was defined as the frequency
with which a given variable was incorpo-
rated into a tree at the first, second, and
further split points (i.e., a variable can
change positions between trees, but vari-
able selection for each position is tracked
to monitor its importance). After the for-
est was constructed and cross-validated,
the summary (average) decision tree was
selected that separated participants into
the subgroups that were most consistent
across all trees in the forest (23).
To assess performance of the summary

decision tree, the absolute risk difference
in mortality was calculated between the
intensive and standard glycemic control
arms within each subgroup (leaf) of the
trial population and compared across the
subgroups (Q test for heterogeneity
among subgroups and stratified log-rank
test for trend in Kaplan-Meier all-cause
mortality rates across subgroups). Abso-
lute risk difference is the guideline-
recommended outcome variable because
it provides a clinically meaningful abso-
lute, as opposed to relative, measure of
effect (24–26). In addition, we estimated
the Cox proportional hazards model for
the outcome of mortality by treatment
arm within each leaf, the hazard ratio of
treatment, and the C statistic (area under
the receiver operating characteristic
curve) for discrimination of higher from
lower overall mortality by leaf.
HTEmodels should not be confused for

riskmodels (e.g., Coxmodels of the risk of
mortality). An HTE model seeks to deter-
mine characteristics that are associated
with treatment effectiveness. Hence, it
models the difference in event rates

between treatment arms (the treatment
effect) and tries tofind the covariates that
are associated with the treatment being
more effective or less effective. A risk
model, by contrast, finds correlates asso-
ciated with a given outcome, such as
identifying characteristics associated
with the risk for mortality. Hence, it mod-
els the absolute event rate and tries to
find the covariates (e.g., such as sex,
blood pressure, etc.) that make overall
mortality higher or lower; treatment
may ormaynot bea covariate. A standard
risk model does not specifically look for
those factors that modify the treatment
effect (i.e., interaction terms between
study arm and covariates), whereas our
gradient forest approach focuses exclu-
sively on finding influential interaction
terms, indicating those factors that mod-
ify the treatment effect. Furthermore, se-
lection of an interaction term between
treatment and effect modifiers may be
reduced in significance by the larger ef-
fect on model fit and C statistic by the
noninteracted terms and reveal only mod-
ification on a relative scale versus the abso-
lute scale of the gradient forest approach.

Sensitivity Analyses
In sensitivity analyses, the summary de-
cision treewas testedwith the alternative
outcome of difference in CVD mortality
between study arms, defined in ACCORD
as mortality suspected to be attributable
to myocardial infarction, other acute cor-
onary event, cardiovascular procedure,
congestive heart failure, arrhythmia, or
stroke. The effect of intensive therapy
was notably larger (more adverse) for
CVDmortality than for all-cause mortality
in the ACCORD trial (2).

Analyses were performed in R 3.3.3
software (The R Project for Statistical Com-
puting, Vienna, Austria).

RESULTS

Participants
Of the 10,251 study participants included
in the analysis, 718 died during study
follow-up from all causes, including 327
participants (6.4%) in the standard therapy
arm and 391 participants (7.6%)in the in-
tensive therapy arm. CVD was attributed
as the cause of death for 331 participants
(3.2% of participants, 46.1% of deaths), in-
cluding 144 (2.8% of participants) in the
standard glycemic therapy arm and 187
(3.6% of participants) in the intensive glyce-
mic therapy arm. As in the original ACCORD

publication (2), the hazard ratio of treat-
ment was 1.17 (95% CI 0.98, 1.40) for all-
cause mortality in the intensive versus
standard glycemic group overall, after in-
cluding all predictor covariates in a stan-
dard Cox regressionmodel, and1.20 (95%
CI1.04, 1.39)without predictor covariates
included.

Model Specification
The summary decision tree (Fig. 2) sepa-
rated the ACCORDpopulation by variation
in all-cause mortality rate differences be-
tween the standard and intensive therapy
arms. Thefirst split of the treewas defined
by the HGI, which was selected as the key
splitting variable in 2,390 of 4,000 trees
(59.8%). For participants with low HGI
(,0.44, or 75% of the study sample),
the next split was defined by BMI, which
was selected as a subsequent splitting
variable in 2,322 of 4,000 trees (58.1%).
The group with a low BMI (,30 kg/m2, a
derived value rounded to the nearest
kg/m2) was further split by age (,61
years), which was selected in 1,814 of the
4,000 trees (45.4%). The three variables de-
fining the decision tree were available for
9,801 of the 10,251 ACCORD trial partici-
pants (95.6%).

Model Performance
The summary decision tree split the study
sample into groups with significantly dif-
ferent risk for all-cause mortality from in-
tensive glycemic therapy, as reported in
Table 1 (P , 0.001 by the Q test for het-
erogeneity in absolute mortality risk dif-
ference between intensive vs. standard
therapy among the four groups, and
P , 0.001 by the stratified log-rank test
for a trend in absolute mortality differ-
ence from subgroup 1 through sub-
group 4).

Subgroup (leaf) 1 had 877 participants
(8.6% of the 10,251-participant total
sample) and was defined by HGI ,0.44,
BMI ,30 kg/m2, and age ,61 years old.
Subgroup 1 had an absolute mortality
rate reduction (benefit) of 2.3% from in-
tensive glycemic therapy (95% CI 0.2 to
4.5 decrease; hazard ratio 0.41; 95% CI
0.17, 0.98; P = 0.038 by the log-rank test
adjusting for censoring). Participants in
subgroup 1 had a number needed to treat
(NNT) of 43 over 5 years to observe 1 less
deathwith intensive rather than standard
glycemic therapy.

Subgroup (leaf) 2 had 1,717 partici-
pants (16.7% of sample) and was defined
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by HGI ,0.44, BMI ,30 kg/m2, and
age $61 years old. Subgroup 2 had no
significant absolute mortality rate reduc-
tion or increase, with an absolute risk in-
crease of 0.7% from intensive glycemic
therapy (95% CI 1.6 decrease to 3.1 in-
crease; hazard ratio 1.11, 95% CI 0.77,
1.60; P = 0.560).
Subgroup (leaf) 3 had 4,678 partici-

pants (45.6% of sample) and was defined
by HGI ,0.44 and BMI $30 kg/m2. Sub-
group 3 had no significant absolute mor-
tality rate reduction or increase, with an
absolute risk increase of 0.9% from inten-
sive glycemic therapy (95%CI 0.4 decrease
to 2.1 increase) and a hazard ratio of 1.12
(95% CI 0.91, 1.50; P = 0.220).
Subgroup (leaf) 4 had 2,529 partici-

pants (24.7% of sample) and was defined
by HGI $0.44. Subgroup 4 had an abso-
lute mortality rate increase of 3.7% from
intensive glycemic therapy (95% CI 1.5 to
6.0 increase) and a hazard ratio of 1.57
(95% CI 1.20, 2.04; P , 0.001). Partici-
pants in subgroup 4 had a number needed
to harm of 27 over 5 years associated with
1 additional death in the intensive than
standard glycemic therapy arm.
Figure 3 illustrates the survival curves

among the intensive and standard

glycemic therapy arms of ACCORD, strat-
ified by the subgroups. Supplementary
Table 2 lists the other clinical features
among the subgroups by arm, revealing
that covariates were balanced across the
therapy arms within each subgroup.
Hence, imbalance in important covariates
between arms did not result from the
stratification into subgroups, meaning
that the gradient forest analysis did not
produce confounding by measured cova-
riates. Critically, Supplementary Table 2
also reveals that because no single pre-
dictor variable could explain the sub-
groups, the decision tree did not
capture features that would be otherwise
obvious from a univariable subgroup
analysis; rather, themultivariate machine
learning analysis had the power to reveal
variations in mortality that would not be
detectable to univariable subgroup anal-
yses along any of the measured variables
in the study. Overall, the out-of-the-bag
error rate of the model, a measure of the
prediction error during out-of-sample
cross-validation, was low, with a value
of 5.6%.

We evaluated whether the secondary
outcome of composite microvascular
events varied among the subgroups

(Supplementary Table 3 and Supplemen-
tary Fig. 1). The average decrease in mi-
crovascular outcomes was nonsignificant
for all four subgroups, consistent with
the overall results of the ACCORD trial
(24). However, the average outcomes
were better for subgroup 1 (absolute
risk decrease of 4.2%, 95% CI 10.6 de-
crease to 2.1 increase, P = 0.15) than for
subgroup 4 (absolute risk decrease of
2.3%, 95% CI 6.1 decrease to 1.5 increase,
P = 0.60).

In sensitivity analyses, we evaluated
the summary decision tree with the out-
come of CVD mortality (Supplementary
Table 4 and Supplementary Fig. 2). As
with absolute risk differences in all-cause
mortality, absolute risk differences in
CVD mortality between intensive and
standard glycemic therapy differed signif-
icantly between the four subgroups (P,
0.001 for heterogeneity and for trend).
Subgroup 1 had an absolute cardiovascu-
lar mortality risk decrease of 1.7% in the
intensive therapy arm (95% CI 0.2 to 3.2
decrease, P = 0.027), and subgroup 4 had
an absolute cardiovascular mortality risk
increase of 2.3% in the intensive ther-
apy arm (95% CI 0.6 to 3.9 increase,
P = 0.004).

Figure 2—Summary risk stratification decision tree developed to identify the absolute change in risk of all-cause mortality among persons with type 2
diabetes subject to intensive therapy, based on baseline characteristics of individual participants in the ACCORD trial (2001–2009, N = 10,251). Negative
values indicate reduced absolutemortality (benefit from intensive glycemic control), whereas positive values indicate increased absolutemortality (harm
from intensive glycemic control).

608 Mortality Risk From Glycemic Therapy Diabetes Care Volume 41, March 2018

http://care.diabetesjournals.org/lookup/suppl/doi:10.2337/dc17-2252/-/DC1
http://care.diabetesjournals.org/lookup/suppl/doi:10.2337/dc17-2252/-/DC1
http://care.diabetesjournals.org/lookup/suppl/doi:10.2337/dc17-2252/-/DC1
http://care.diabetesjournals.org/lookup/suppl/doi:10.2337/dc17-2252/-/DC1
http://care.diabetesjournals.org/lookup/suppl/doi:10.2337/dc17-2252/-/DC1
http://care.diabetesjournals.org/lookup/suppl/doi:10.2337/dc17-2252/-/DC1
http://care.diabetesjournals.org/lookup/suppl/doi:10.2337/dc17-2252/-/DC1
http://care.diabetesjournals.org/lookup/suppl/doi:10.2337/dc17-2252/-/DC1
http://care.diabetesjournals.org/lookup/suppl/doi:10.2337/dc17-2252/-/DC1


CONCLUSIONS

We sought to inform clinical decisions re-
garding the safety of intensive glycemic
therapy among patients with type 2 dia-
betes and elevated CVD risk by identify-
ing HTE in all-cause mortality within the
ACCORD trial. We found that by using
the covariates of HGI, age, and BMI, we
could classify participants in the ACCORD
trial into subgroups with clinically mean-
ingful differences in mortality attribut-
able to intensive glycemic therapy. The
mean all-cause mortality rate among in-
dividuals with diabetes in the U.S. is;6%
over 5 years, so an absolute risk increase
of 4% or an absolute risk reduction of 2%
is clinically meaningful (25). Approxi-
mately 25% (n = 2,529) of participants
belonged to a subgroup experiencing
increasedmortality attributable to intensive
glycemic therapy, whereas 9% (n = 877)
belonged to a subgroup that experienced
reduced mortality attributable to inten-
sive glycemic therapy. We did not find
that hypoglycemia, medication classes,
number of medications, combinations of
medications, baseline diabetes complica-
tions, or cardiovascular risk factors could
explain the HTEs from intensive glycemic
therapy. We also did not find a trade-off
between microvascular and mortality
risk, because the patientswith the highest
mortality risk from intensive therapy also
had the least evidence of microvascular
benefit, and vice versa.

Our findings support and extend prior
studies of glycemic control in diabetes
management. We found that despite
the average treatment effect of higher
mortality, there were some groups that
may have benefited from, along with
some that were likely harmed by, inten-
sive glycemic therapy; nearly two-thirds
(n = 6,395) experienced neither benefit
nor harm. Because the risk of benefit
and of harm varies among individuals
with type 2 diabetes, our results support
current guidelines that advocate for indi-
vidualized treatment decisions and also
help such guidelines to be made opera-
tional in clinical practice (1). Clinically, the
decision tree we developed through a
data-drivenmultivariate subgroup analysis
uses readily available clinical data andmay
assist clinician-patient discussions about
glycemic therapy. Although the ACCORD
HbA1c target of ,6.0% (42 mmol/mol) is
not guideline recommended, many pa-
tients are currently treated to ,6.5%
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(48 mmol/mol, the achieved mean in the
intensive therapy arm) with regimens
other than metformin alone (5,19). Be-
cause ;25% of ACCORD-eligible patients
were observed to have high risk of harm
from intensive therapy, deescalation of
glycemic therapy may be warranted for
some patients. Our study also adds to a
growing body of literature, including
a prior study using ACCORD data, that a
highHGImay bean important indicator of
diabetes severity as well as a predictor of

HTEs in mortality among persons with
type 2 diabetes (20–22). A higher HGI
may indicate higher postprandial glucose
levels and increased glycemic variability.
Notably, the HGI in this report does not
require that mean glucose levels be de-
termined by continuous glucose monitor-
ing, as is common in studies of type 1
diabetes. Rather HGI was calculated
using a single HbA1c and fasting plasma
glucose measurement, offering poten-
tial convenience for clinical use.

More broadly, these results point to-
ward the application of innovative meth-
ods for the detection of HTEs from clinical
trial data. Our findings highlight the point
that trial summary statistics, which are
averages, may obscure clinically important
heterogeneities and that the rigorous ap-
plication of machine learning methods
with conservative cross-validation ap-
proaches may aid in finding consistent
subgroups that experience substan-
tial differences in treatment effects.

Figure 3—Survival curves for all-cause mortality among subsets identified by each subgroup in the decision tree (see Fig. 2 for subgroups). P values are
from the stratified log-rank test adjusted for censorship of Kaplan-Meier all-causemortality rates among the intensive vs. standard glycemic therapy arm.
A: Leaf 1 (leftmost in Fig. 2) (HGI ,0.44, BMI ,30 kg/m2, and age ,61 years). B: Leaf 2 (HGI ,0.44, BMI ,30 kg/m2, and age $61 years). C: Leaf
3 (HGI,0.44 and BMI$30 kg/m2). D: Leaf 4 (rightmost in Fig. 2) (HGI$0.44).
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Extensive theoretical and empirical re-
search suggests that the ability of conven-
tional univariable subgroup analyses
to detect clinically important heterogene-
ity in treatment effects is very limited
(26–28). Previous studies of HTEs in
ACCORD data have considered single var-
iables, finding that hypoglycemia and car-
diac autonomic dysfunction did not
explain the harm of intensive therapy
(10,11,13). The machine learning method
accounting for multiple simultaneous co-
variates and interactions between them
was therefore able to explain the varia-
tion inmortality better than previous uni-
variable analyses. We in fact found in our
sensitivity analyses that no single covari-
ate would be able to distinguish the sub-
groups, and therefore, our multivariable
machine learning analysis had the power
to explain variations that were not possi-
ble to find with traditional univariable
subgroup analyses.
A prior analysis of age as a source of

HTEs found that younger age was associ-
ated with increased harm (12). Our find-
ing that younger age, in combinationwith
lower BMI and HGI, is instead associated
with benefit may represent the interac-
tion of factors not considered in univari-
able analyses. In general, considering
several factors in combination may be re-
quired to explain clinically important var-
iations in benefit and harm seen in clinical
trials. Consequently, multivariate HTE
modeling has been increasingly recom-
mended (15,16,29). Our data-driven ap-
proach also adjusts for type I error due
to multiple hypothesis testing, a major
disadvantage of traditional subgroup
analysis methods. We used rigorous
cross-validation to reduce the chance of
false-positive findings.
Our analysis nevertheless has im-

portant limitations. As a result of the
ACCORD trial being stopped early, we
could assess only shorter-term outcomes.
Further, the ACCORD trial was conducted
before the widespread availability of
sodium–glucose cotransporter 2 and
glucagon-like peptide 1 agents, which
have cardiovascular benefits that affect
the risk of mortality with glycemic ther-
apy (30–33). In addition, because we
wanted a clinical decision tree that was
useful in practice, we focused on pre-
treatment characteristics rather than
time-varying covariates, which may be
more useful in predicting outcomes over
time but are also more complex for

clinicians to use. Next, although we used
methods to minimize the risk of type I
error and did not observe imbalance in
covariates within subgroups, our study is
nevertheless a post hoc analysis of a sin-
gle trial. With machine learning methods,
as with correlative statistical methods in
general, variable selection does not prove
causality, and the variables selected may
only be surrogates for more complex
physiological processes. HGI is a summary
measure that may not have a definitive
physiological meaning and can be calcu-
lated in alternative ways; here, it serves
as a useful and readily calculable marker
of complex physiological processes and
was found to separate the variation in
mortality better than alternative covari-
ates. HGI thus likely reflects a complex
underlying heterogeneity in treatment ef-
fect. Explaining mechanistically the phys-
iological relationships that underlie the
HTEs observed is not possible from the
available data, although they are broadly
consistent with clinical observation and
point to areas for further study (34). In
addition, the number of deaths among
the standard and intensive therapies in
leaf 1 were too small (7 and 18 subjects).
Finally, it is important to note that these
results naturally apply to the population
that met inclusion criteria for ACCORD,
which includes people with type 2 diabe-
tes with HbA1c of $7.5%, who were be-
tween the ages of 40 and 79 years and
had CVD or were between the ages of
55 and 79 years and had anatomical evi-
dence of significant atherosclerosis, albu-
minuria, left ventricular hypertrophy, or
at least two additional risk factors for
CVD, such as dyslipidemia, hypertension,
tobacco smoking, or obesity.

Our study suggests several directions
for futurework. Because only internal val-
idation was done in this report, pro-
spectively validating the decision tree on
an independent trial data set and on
population-based observational data
would help assess the generalizability of
our findings. Ultimately, it will be impor-
tant to evaluate the effect of using the
decision tree on clinical practice and pa-
tient outcomes. More generally, HTEs are
likely to be the norm, rather than the ex-
ception, in many areas of investigation.
Therefore, it may be advantageous to de-
sign trials that can identify HTEs up front,
rather than relying on post hoc analysis
as we have done here. A prior simulation
study revealed that alternative trial

designs, which randomize persons in a
stepwise fashion to incrementally higher
levels of therapy intensification, could in-
crease statistical power to detect HTEs and
provide more granular estimates of treat-
ment benefit or harm (28). Finally, the
analysis suggests that HGImay be a useful
clinical indicator of risk and advanced di-
abetes, necessitating future prospective
study as a useful clinical biomarker.

Cliniciansmay use HGI, age, and BMI to
help individualize decisions about glyce-
mic control among people with type 2
diabetes. This may lead to deescalation
of therapy for many patients while also
identifying patients who do not face in-
creased all-causemortality risk from their
current glycemic therapy. Further, the
methods used in this study offer a princi-
pled way to help inform individualized
care using data from randomized trials.
The application of similar methods may
enable us to learn more from the contri-
bution that clinical trial participants
make, bringing us closer to the goal of
personalized medicine.
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