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Introduction
Next-generation sequencing and microarray technologies 
have generated massive amounts of data that can be mined 
for disease–gene expression correlates in search for molecular 
mechanisms, biomarkers, or drug targets. As of August 15, 
2015, there were a bit less than 4,000 publicly available Gene 
Expression Omnibus (GEO) data sets (GDSs) that may be 
retrieved from GEO alone (the NIH gene expression data set 
repository at the National Center for Biotechnology Informa-
tion; http://www.ncbi.nlm.nih.gov/gds/), several hundreds 
of which being dedicated to human cancers. Current gene 
expression arrays encompass some 45k and 22k probesets 
for protein-encoding and noncoding genes, respectively (eg, 
Affymetrix’s GeneChip® Human Transcriptome Array 2.0; 
Illumina’s HumanHT-12 v4 Expression BeadChip), allow-
ing to probe gene expression variation in clinical samples or 
cell lines at an unprecedented depth. The analytical power 
of whole-genome analyses, however, remains limited mostly 
owing to two practical parameters: (i) most cancers are rela-
tively low-incidence diseases (eg, Ewing’s sarcoma affects 1–2 
children/year/million1 and subcutaneous panniculitis-like 
T-cell lymphoma afflicts about 1 person/year/10 million2,3), 
and most laboratories or even institutions have therefore access 
to only a limited number of tumor samples and (ii) the cost of 
the technology remains too high for most low- to mid-budget 
laboratories, thus forcing investigators to limit the number of 
tested samples and biological replicates, which in turn yields 
mostly underpowered studies.

In 2010, McClellan and King highlighted the complex 
interplay, linking genetic diversity to disease heterogeneity.4 
Accordingly, discovery of many disease-associated genetic risk 
variants requires exceedingly large cohorts in genome-wide 
association studies, as recently exemplified in a large-size cohort 
analysis of lung adenocarcinoma, wherein 26 research depart-
ments from several countries pulled their resources together to 
conduct the study.5 The problem posed by the high interindi-
vidual allelic variability can be further exacerbated by that of 
epigenetic diversity (eg, in follicular lymphoma and diffuse large 
B-cell lymphomas),6 whereby stochastic and/or environmental 
factors can lead to different epigenetic (and gene expression) 
landscapes, even in presumably otherwise genetically identical 
monozygotic twins.7 It is now becoming increasingly appre-
ciated that several cancers exhibit high intratumor variability, 
including those of the breast,8–10 colon,11,12 head and neck,13 
ovary,14 prostate15 and stomach,16 and glioblastoma.17–19 In 
fact, somatic mutation frequency analysis of more than 3,000 
tumor samples encompassing 27 cancer types showed up to 
three or more orders of magnitude mutation rate variability 
between tumors (eg, in lung adenocarcinoma and melanoma),20 
underscoring the scale of heterogeneity. Furthermore, tumor 
heterogeneity can be driven in response to chemotherapeu-
tic intervention adding to the complexity of the analysis.21,22 
Since heterogeneity can increase through time and/or in cases 
wherein tumors are exposed to different microenvironments, 
heterogeneity can be high when comparing metastases to pri-
mary tumors, particularly in cases whereby metastases take 
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up to several decades to evolve allowing time for stochastic 
genotypic or epigenetic changes.23 Thus, for instance, 3%–24% 
of breast cancer metastases display a different estrogen, pro-
gesterone, or HER2 erb-b2 receptor tyrosine kinase 2 recep-
tor status from the primary tumors,24 either due to a receptor 
switch or due to the fact that the tested metastases arose from 
sections of the primary tumor not included in the analyses. 
These intra- and interindividual differences notwithstanding, 
recurrent alterations in key biological processes often underlie 
a given disease,4 and for example, only a dozen or so of core 
signaling pathways appear to drive the tumorigenic pheno type 
of most cancers.25–27 Whereas cancer genetic and epigenetic 
diversities offer opportunities for biomarker discovery and 
risk stratification,28 uncovering genes and pathways associated 
with specific disease states remains challenging, owing to the 
sample-size requirements. Fortunately, bioinformatic methods 
have begun to address this problem, and we briefly summarize 
subsequently those that proved to be useful in the analysis of 
small-size cohorts.

How small are small-size cohorts?
It is common knowledge that most childhood cancer cohorts 
are relatively small in size. This is not only due to the fact that 
these diseases are relatively rare in nature but also because less 
funding is devoted to research on these neoplasms as compared 
to their adult counterparts. Thus, for example, the combined 
NIH budget for all types of pediatric sarcomas is only about 
1/15th of the budget allocated to breast cancer alone.29 But 
what about the cohort size of gene data sets of more frequent 
childhood cancers (eg, leukemia with 88 cases/year/million in 
1–4-year-old children30) or adults cancers (80–690 cancers/
year/million in men and 73–724 cases/year/million in women 
for the top 10 cancer types; based on our estimates taking into 
account the current US population projection31 and cancer fre-
quencies in adults in the US population in 201532)? To address 
this question, we ran a meta-analysis of all cancer gene data sets 
deposited to date in GEO. As shown in Figure 1, the major-
ity of data sets contained 50 or less samples and qualified as 
small-size cohorts (median x = 16; range: 4–192). As may be 
expected, the largest size data sets were mostly those of can-
cers with high-incidence and research funding and constituted 
seven of the 10 largest size data sets (not shown). Interestingly, 
however, probability density distribution analyses of individ-
ual cancers with the highest incidences and research fund-
ing, such as those of the breast (representing 29% of all new 
annual cases in women32; GDS x = 12; range: 4–116), prostate 
(26% new cases in men32; GDS x = 12; range: 4–171), lung 
(13%–14% new cases in both genders32; GDS x = 20; range: 
4–192), and colorectum (8% new cases in both genders32; 
GDS x = 18; range: 4–104), show that these too are mostly 
made up of small-size cohorts (Fig. 2). The problem posed by 
small-size cohorts affects, therefore, the majority of data sets 
across the board in both childhood and adult cancers. Larger 
size data sets can of course be found in the collections of The  

Cancer Genome Atlas of the National Cancer Institute (NCI)/ 
National Human Genome Research Institute (NHGRI) and 
of the Wellcome Trust Sanger Institute. These are, however, 
also subject to two overriding limitations. The first one relates 
to the aforementioned frequently observed tumor heterogene-
ity from which one can presume that many large-size cohort 
data sets are essentially a heterogeneous collection of varying 
numbers of relatively homogenous smaller size cohorts. Sec-
ond, although these initiatives have made significant strides 
at increasing sample size in high-incidence diseases, they still 
somewhat lag behind in low incidence or so-called orphan dis-
eases, to which many cancers belong.

To illustrate some of the limitations imposed by small-size 
cohorts, we ran two simple tests comparing gene expression in 
two publicly available Ewing’s sarcoma gene data sets.33,34 In 
the first test, we looked at two genes that encode epigenetic 
modifiers with important roles in tumorigenesis. The first gene, 
lysine-specific demethylase 1 (to avoid gene and species ambi-
guity,35,36 NCBI gene IDs are given herein along with the gene 
symbol; LSD1; GeneID: 23028) was shown to be overexpressed 
and to serve as a drug target in Ewing’s sarcoma in vitro37 as 
well as in other neoplasms, such as breast cancer.38 The second 
gene, enhancer of zeste homolog 2 (EZH2; GeneID: 2146) 
was also shown to be overexpressed in Ewing’s sarcoma and to 
be a drug target both in vitro and in vivo.39,40 As proposed by 
others,41 we computed the bivariate kernel density estimates and 
run regression analyses in the R environment and compared 
the probability density distributions for either gene in two equal 
small-size Ewing’s sarcoma cohorts. As shown in Figure 3A, 
although LSD1 shows consistently high gene expression in 
both cohorts, there are a few outliers for EZH2 (Fig. 3B), 
indicating that the sample size and number of cohorts utilized, 
while sufficient to analyze LSD1, were borderline in the case 
of EZH2.
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Figure 1. Probability density distribution of all cancer gene data sets in 
Gene expression omnibus (Geo). all cancer data sets were retrieved from 
Geo (query performed on august 15, 2015) and plotted against sample 
size (x axis). Gene data sets size refers to the number of tumor samples 
per data set. the analysis included 368 data sets and 9,845 tumor 
samples. only data sets limited to tumor samples were retrieved; those 
solely listing data on tumor stroma or normal peripheral blood lymphocytes 
in cancer patients or those that combined several cancer types were 
omitted from the analysis. there were no other exclusion criteria.
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We next ran a test, this time looking at chemokine (C-X-C 
motif ) receptor 4 (CXCR4; GeneID: 7852), a gene encoding 
a chemokine receptor previously shown to mark metastatic 
Ewing’s sarcoma and as such associates with about a one-third 
of all samples, representing the fraction of metastatic tumors.42 
Contrary to the tests earlier, here we find the size and number 
of cohorts to be limiting, as the bivariate kernel density esti-
mates did not fully reproduce the predicted distribution for this 
gene (Fig. 3C). Although these examples show that analyses in 
two small-size cohorts may be sufficient for some genes, it is 
important to note that these were tests for which we already 
knew the answers. For hypothesis generation through bioinfor-
matics, which is usually one of the main applications of gene 
data set mining analyses, one would need a method to infer 
meaningfulness with a much higher degree of confidence.

In statistics, one way of boosting confidence is to increase 
sample size. One example is that of the so-called sequential 
analysis, particularly in prospective studies, whereby one adds 
samples (or recruits patients) until statistical significance is 
reached or until indications are present that significance is 
unlikely to be achieved.43 Although the sample size in sequen-
tial analysis is unknown prior to the end of the investigation, it 
tends to be smaller than in other methods wherein the sample 
size is predetermined, making it particularly suitable for can-
cers with particularly low incidences. Such a method, how-
ever, is impractical in the analysis of publicly available gene 
data sets, as the size of these is already fixed. In this case, an 
alternative would be to increase the number of cohorts. Two 
bioinformatic methods have taken advantage of this option to 
infer meaningful correlates from small-size cohorts.

Ican and Affiliated cancer Informatics Methods to 
Probe small-size cohorts
To address the problem posed by the small size of cancer 
cohorts, one of the authors developed the first method to reli-
ably infer gene expression significance, and its association 
to specific patient subsets, from publicly available small-size 
cohort data sets irrespective of the expression profiling plat-
form.37,42,44 This method, named Intercohort Co-ANalysis or 
Ican, relies on several innovative tools. First, it utilizes pub-
lished gene expression levels known to be biologically active 
in experimentally validated tissues as a benchmark for gene 
expression significance, thus extracting biological significance 
from gene expression profiles. This eliminates variability 
across studies that results from the customary usage by differ-
ent investigators of different arbitrary cutoffs for gene expres-
sion significance. Second, instead of combining small-size 
cohorts into a larger meta-cohort, each small-size cohort is 
analyzed individually. This helps avoid conormalization and 
the averaging out of sample quantiles across cohorts of differ-
ent variances and distribution functions. The cohort-specific 
distribution probabilities are in fact used to highlight the high 
intercohort variability inherent to small-size cohorts. Next, 
quantile fitting of sample size to specific disease states, say 
chemoresistant or metastatic tumors, are mined for consistent 
molecular correlates within individual cohorts. Finally, a sub-
tractive overlay of cohort-restricted associations is carried out 
to uncover genes whose expression is consistently associated 
with select sample subsets in all cohorts. In our case, four small-
size publicly available data sets, in addition to a fifth nonpub-
licly available cohort that served for wet laboratory validation,  
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Figure 2. Probability density distribution of cancer gene data sets of high-incidence adult cancers. all cancer data sets were retrieved from Geo (query 
performed on august 15, 2015) and plotted against sample size (x axis). these included (a) breast cancer (number of data sets n = 110), (B) prostate 
cancer (n = 43), (C) lung cancer (n = 25), and (D) colorectal cancer (n = 37).
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were sufficient to infer gene expression significance. As a case 
in point, an Ican investigation of Ewing’s sarcoma (a cancer 
wherein metastasis is the major poor prognosis indicator) 
yielded several cosegregated chemokine ligand/receptor pairs 
in Ewing’s sarcoma patient subsets and helped uncover the first 
two chemokine receptors associated with either metastases or 
poor prognosis in Ewing’s sarcoma.42 To increase stringency, 

one may filter the patient-derived data sets through cell line-
derived data sets. This can help eliminate genes not necessar-
ily associated with the tumor cells but rather with the tumor 
stroma or tumor-infiltrating lymphocytes.42 Using such a strat-
egy, we could, for example, zero in on two drugable receptors 
that represent viable therapeutic strategies for the correspond-
ing Ican patient subsets. Using Ican, another study uncovered 
a micro-RNA, miR-34a, as a major molecular determinant of 
chemosensitivity and patient survival.45 The analytical power 
of Ican can therefore help uncover genes and pathways with 
clinical significance from underpowered small-size cohorts, as 
well as from larger cohorts of highly heterogeneous diseases, 
which represent most diseases.4,28 We surmise that the grow-
ing number of gene expression profiling investigations, com-
pounded by the mandatory submission of gene expression data 
sets to public repositories requested now by most journals, will 
lead to a large field of Ican applications, and ensuing prognos-
tic factor and biomarker discoveries.

A similar bioinformatics methodology dubbed Integra-
tive Transcriptome Analysis (Itan) was independently developed 
by research groups at Harvard University and Massachusetts 
Institute of Technology (MIT).46 In this case, a coanalysis of 
nine hepatocellular carcinoma (HCC) gene data sets derived 
from different populations and micro array platforms was suffi-
cient to uncover a novel mechanism of TGF-dependent WNT 
signaling activation in a subset of HCC patients.46 Contrary 
to Ican which uses publicly available gene data sets for hypoth-
esis formulation and an additional cohort to experimentally 
test the hypothesis, Itan uses the larger publicly available 
gene data sets for training purposes (to avoid data overfitting 
to any given cohort) and uses the smaller publicly available 
data sets for testing. The latter was accomplished by subclass 
mapping, which utilizes hier archical clustering, k-means clus-
tering, and nonnegative matrix factorization as unsupervised 
clustering methods to identify tumor subclasses.47 As in Ican, 
the overriding principle here relies on molecular events consis-
tently associated with particular tumor populations across all 
tested data sets. Based on this principle, the accuracy of both 
methods is dependent on the quality and number of data sets 
included in the analysis.

Limitations of small-size cohort bioinformatic 
Methods
Although Ican and Itan can be useful in inferring meaning ful ness 
for any given gene (and corresponding pathway), they remain of 
limited value when assessing covariance of two or more genes 
across data sets, for example, to uncover gene networks associ-
ated with particular tumor subsets. This is because such analy-
ses rely on Bayesian networks, Boolean networks, or on the 
mathematics of product moment correlations, and assuming all 
samples were added to the data set randomly (ie, patients were 
recruited consecutively without any prior knowledge of their 
clustering into one or another tumor subset, and no patients 
were removed from the cohort based on criteria that relate to 
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the query at hand), these analyses are highly dependent on 
sample size.48 Thus, despite the constraints imposed by data set 
conormalization procedures, analysis of meta-genes remains 
here the method of choice. For example, using the same data 
sets analyzed by Ican, product moment correlation analyses of 
meta-genes can determine whether a signaling pathway is on 
or off directly in tumor samples or whether signaling mol-
ecules are active within specific pathways.49

Similarly, these methods would be ineffectual in infer-
ring significance of tumor drivers harboring activating muta-
tions and whose gene expression remained unchanged. In 
these cases, however, Ican and affiliated methods can be used 
in the analysis of the associated transcriptomes, given that the 
gene in question impervious to Ican analysis imparts a charac-
teristic downstream gene expression signature, as shown, for 
instance, for several tumors drivers.50–53 While future stud-
ies should give us a better feel about the usefulness of Ican 
in such cases, this and affiliated methods will certainly find 
ample application in the field of biomarker discovery in search 
of markers of diagnosis, prognosis, patient risk stratification, 
and treatment response.37,42

Finally, though Ican is useful in the analysis of small-size 
cohorts, it requires multiple cohort data sets to infer differen-
tial gene expression significance. Unfortunately, many child-
hood cancers have very few (if any) gene expression data sets 
deposited in the public repositories, thus critically limiting the 
scope of Ican for these cancers. In this regard, an NCI’s Office 
of Cancer Genomics and Cancer Therapy Evaluation Program 
initiative, dubbed Therapeutically Applicable Research to Generate 
Effective Treatments (or TARGET) and which aims at char-
acterizing the transcriptomes and genomes of hard-to-treat 
childhood cancers, is most welcome. TARGET has already 
generated data sets for childhood acute lymphoblastic leuke-
mia and for neuroblastoma, and efforts are underway to gener-
ate genomic and expression profiling data sets for childhood 
acute myeloid leukemia, osteosarcoma, and renal tumors.

conclusions
The majority of gene data sets, including those of high-inci-
dence adult cancers, are represented by small-size cohorts. 
Bioinformatic methods, such as Ican or Itan, can help analyze 
underpowered studies, given that several data sets of the same 
disease type are available.

Although it may still be necessary to experimentally 
validate findings in additional data sets, particularly in case 
novel or little-known pathways are uncovered, these methods 
have proven to be sufficient to uncover with high confidence 
genes meaningful for a particular biological or pathological 
state from small-size cohorts. As most cancers are genetically 
and epigenetically heterogeneous and/or of low incidence, the 
cancer informatics of small-size cohorts will remain a tool 
of choice to enable the grasping for the brass ring of mean-
ingful cancer-associated events in genomic and epigenomic 
data sets.
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Appendix
The following source code was used for the kernel density estimate statistical analyses implemented in R1:

if (par1 == “0”) bw <- “nrd0”

if (par1!= “0”) bw <- as.numeric(par1)

par3 <- as.numeric(par3)

mydensity <- array(NA, dim=c(par3,8))

bitmap(file=“density1.png”)

mydensity1<-density(x,bw=bw,kernel=“gaussian”,na.rm=TRUE)

mydensity[,8] = signif(mydensity1$x,3)

mydensity[,1] = signif(mydensity1$y,3)

plot(mydensity1,main=“Gaussian Kernel”,xlab=xlab,ylab=ylab)

grid()

dev.off()

mydensity1

bitmap(file=“density2.png”)

mydensity2<-density(x,bw=bw,kernel=“epanechnikov”,na.rm=TRUE)

mydensity[,2] = signif(mydensity2$y,3)

plot(mydensity2,main=“Epanechnikov Kernel”,xlab=xlab,ylab=ylab)

grid()

dev.off()

bitmap(file=“density3.png”)

mydensity3<-density(x,bw=bw,kernel=“rectangular”,na.rm=TRUE)

mydensity[,3] = signif(mydensity3$y,3)

plot(mydensity3,main=“Rectangular Kernel”,xlab=xlab,ylab=ylab)

grid()

dev.off()

bitmap(file=“density4.png”)

mydensity4<-density(x,bw=bw,kernel=“triangular”,na.rm=TRUE)

mydensity[,4] = signif(mydensity4$y,3)

plot(mydensity4,main=“Triangular Kernel”,xlab=xlab,ylab=ylab)

grid()

dev.off()

bitmap(file=“density5.png”)

mydensity5<-density(x,bw=bw,kernel=“biweight”,na.rm=TRUE)

mydensity[,5] = signif(mydensity5$y,3)

plot(mydensity5,main=“Biweight Kernel”,xlab=xlab,ylab=ylab)

grid()

dev.off()

bitmap(file=“density6.png”)

mydensity6<-density(x,bw=bw,kernel=“cosine”,na.rm=TRUE)

mydensity[,6] = signif(mydensity6$y,3)

plot(mydensity6,main=“Cosine Kernel”,xlab=xlab,ylab=ylab)

grid()

dev.off()

bitmap(file=“density7.png”)

mydensity7<-density(x,bw=bw,kernel=“optcosine”,na.rm=TRUE)

mydensity[,7] = signif(mydensity7$y,3)

plot(mydensity7,main = “Optcosine Kernel”,xlab=xlab,ylab=ylab)

grid()

dev.off()

load(file=“createtable”)

ab<-table.start()

ab<-table.row.start(ab)

ab<-table.element(ab,”Properties of Density Trace”,2,TRUE)
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ab<-table.row.end(ab)

ab<-table.row.start(ab)

ab<-table.element(ab,”Bandwidth”,header=TRUE)

ab<-table.element(ab,mydensity1$bw)

ab<-table.row.end(ab)

ab<-table.row.start(ab)

ab<-table.element(ab,”#Observations”,header=TRUE)

ab<-table.element(ab,mydensity1$n)

ab<-table.row.end(ab)

ab<-table.end(ab)

a <- ab

table.save(ab,file=“mytable123.tab”)

b<-table.start()

b<-table.row.start(b)

b<-table.element(b,”Maximum Density Values”,3,TRUE)

b<-table.row.end(b)

b<-table.row.start(b)

b<-table.element(b,”Kernel”,1,TRUE)

b<-table.element(b,”x-value”,1,TRUE)

b<-table.element(b,”max. density”,1,TRUE)

b<-table.row.end(b)

b<-table.row.start(b)

b<-table.element(b,”Gaussian”,1,TRUE)

b<-table.element(b,mydensity1$x[mydensity1$y==max(mydensity1$y)],1)

b<-table.element(b,mydensity1$y[mydensity1$y==max(mydensity1$y)],1)

b<-table.row.end(b)

b<-table.row.start(b)

b<-table.element(b,”Epanechnikov”,1,TRUE)

b<-table.element(b,mydensity2$x[mydensity2$y==max(mydensity2$y)],1)

b<-table.element(b,mydensity2$y[mydensity2$y==max(mydensity2$y)],1)

b<-table.row.end(b)

b<-table.row.start(b)

b<-table.element(b,”Rectangular”,1,TRUE)

b<-table.element(b,mydensity3$x[mydensity3$y==max(mydensity3$y)],1)

b<-table.element(b,mydensity3$y[mydensity3$y==max(mydensity3$y)],1)

b<-table.row.end(b)

b<-table.row.start(b)

b<-table.element(b,”Triangular”,1,TRUE)

b<-table.element(b,mydensity4$x[mydensity4$y==max(mydensity4$y)],1)

b<-table.element(b,mydensity4$y[mydensity4$y==max(mydensity4$y)],1)

b<-table.row.end(b)

b<-table.row.start(b)

b<-table.element(b,”Biweight”,1,TRUE)

b<-table.element(b,mydensity5$x[mydensity5$y==max(mydensity5$y)],1)

b<-table.element(b,mydensity5$y[mydensity5$y==max(mydensity5$y)],1)

b<-table.row.end(b)

b<-table.row.start(b)

b<-table.element(b,”Cosine”,1,TRUE)

b<-table.element(b,mydensity6$x[mydensity6$y==max(mydensity6$y)],1)

b<-table.element(b,mydensity6$y[mydensity6$y==max(mydensity6$y)],1)

b<-table.row.end(b)

b<-table.row.start(b)

b<-table.element(b,”Optcosine”,1,TRUE)
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b<-table.element(b,mydensity7$x[mydensity7$y==max(mydensity7$y)],1)

b<-table.element(b,mydensity7$y[mydensity7$y==max(mydensity7$y)],1)

b<-table.row.end(b)

b<-table.end(b)

a <- b[1]

table.save(b,file=“mytable2a.tab”)

a<-table.start()

a<-table.row.start(a)

a<-table.element(a,”Kernel Density Values”,8,TRUE)

a<-table.row.end(a)

a<-table.row.start(a)

a<-table.element(a,”x-value”,1,TRUE)

a<-table.element(a,”Gaussian”,1,TRUE)

a<-table.element(a,”Epanechnikov”,1,TRUE)

a<-table.element(a,”Rectangular”,1,TRUE)

a<-table.element(a,”Triangular”,1,TRUE)

a<-table.element(a,”Biweight”,1,TRUE)

a<-table.element(a,”Cosine”,1,TRUE)

a<-table.element(a,”Optcosine”,1,TRUE)

a<-table.row.end(a)

if (par2==“yes”) {

for(i in 1:par3) {

a<-table.row.start(a)

a<-table.element(a,mydensity[i,8],1,TRUE)

for(j in 1:7) {

a<-table.element(a,mydensity[i,j],1)

}

a<-table.row.end(a)

}

} else {

a<-table.row.start(a)

a<-table.element(a,”Kernel Density Values are not shown”,8)

a<-table.row.end(a)

}

a<-table.end(a)

table.save(a,file=“mytable1.tab”)
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