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Pegylated interferon-𝛼 and ribavirin (PEG-IFN/RBV) is widely used to treat chronic hepatitis C virus infection with notorious
adverse reactions since the broad expression of IFN-𝛼 receptors on all nucleated cells. Accordingly, a Type III IFN with restricted
receptors distribution is much safer as an alternative for HCV therapy. In addition, single nucleotide polymorphisms (SNPs) near
the human IFN-𝜆3 gene, IL-28B, correlate strongly with the ability to achieve a sustained virological response (SVR) to therapy
with pegylated IFN-𝛼 plus ribavirin in patients infected with chronic hepatitis C. Furthermore, we also discuss the most recent
findings: IFN-𝜆4 predicts treatment outcomes of HCV infection. In consideration of the apparent limitations of current HCV
therapy, especially high failure rate and universal side effects, prediction of treatment outcomes prior to the initiation of treatment
and developing new alternative drugs are two important goals in HCV research.

1. Introduction
More than 30 years ago, a blood-borne non-A, non-B
hepatitis was discovered and the virus was subsequently
named as hepatitis C virus (HCV) (Figure 1). Currently, an
estimation of 130–170 million people are chronically infected
with HCV worldwide, which is a growing global pandemic
and financial burden to the society [1]. Current standard of
care (SOC) is the combination therapy with pegylated IFN-𝛼
and ribavirin (PEG-IFN/RBV) in developing countries, while
DAAs in combination with PEG-IFN/RBV (triple therapy)
significantly improve the SVR to some extent in developed
districts [2]. Nevertheless, in consideration of morbid side
effects, variable cure rates, and high costs, it is very important
to predict treatment response and identify critical insights
into mechanism of viral resistance. In this review, we will
discuss biology and signaling pathway of the IFN-𝜆s, as well
as their utility in clinic trial of anti-HCV therapy and link
with treatment-induced clearance of HCV for prediction of
treatment outcome.

2. A Brief History of IFN-𝜆
2.1. Classification. In 2003, the first 3 members of the IFN-
𝜆 family (IFN-𝜆1, IFN-𝜆2, and IFN-𝜆3) were uncovered by

2 independent groups based on genomic sequence [3, 4].
With the development of genome-wide association studies
(GWAS), Prokunina-Olsson and his colleagues discovered a
novel IFN-𝜆 gene, IFN-𝜆4, which is located in between IFN-
𝜆2 and IFN-𝜆3 [5]. IFN-𝜆4 is a low-level-expression protein
in a small fraction of the human population which is different
from other IFNs. Its expression depends on polymorphism
ss469415590, which is in linkage disequilibrium (LD) with
rs12979860. IFN-𝜆4 protein can only be produced by individ-
uals who carry the ΔG allele of the ss469415590 variant (IFN-
𝜆4-ΔG), while the major TT allele disrupts the IFN-𝜆4 ORF
due to a frame shift [6].While being structurally related to IL-
10-related cytokines, IFN-𝜆s have been functionally classified
as a distinct type of IFN because they signal through binding
to IFN𝜆 receptor to exert the antiviral activity [7].

2.2. IFN-𝜆 Receptor Distribution. IFN-𝜆s bind and signal
through a heterodimer receptor composed of a short IL-
10R2 chain (also called IL-10Ra) and a long chain IL-28R1
(also called IL-28Ra) [3, 4]. Although the short chain is
ubiquitously expressed and is a primary part of the receptor
complexes for IL-10, IL-22, and IL-26, the long chain is
utilized only by IFN𝜆 and has a limited tissue distribution
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Figure 1: Timeline | Key discoveries in the basic science of HCV.

[8]. Broadly speaking, Type III IFNs are similar to Type I
IFNs (IFN-𝛼/IFN-𝛽) in that they both have antiviral and
immunomodulatory properties. On the other hand, they are
quite different.While Type I IFNs (IFN-𝛼/IFN-𝛽) are ubiqui-
tously expressed bymost somatic cells, Type III IFNs can only
be expressed by some cell types, such as epidermal, bronchial,
and gastrointestinal epithelial cells [9]. In addition, IFN-𝜆
receptors are not found on fibroblasts [10], microvascular
endothelial cells, adipocytes [8], or primary CNS cells [11].
IL-28R1 was shown to be expressed on the surface of some
circulating immune cells including B cells, T cells, DCs [12,
13], andmacrophages [14]. Nevertheless, these cells expressed
a short IFN-𝜆 receptor splice variant (sIFN-𝜆R1/sIL-28R1)
to reveal a secreted, glycosylated protein to inhibit IFN-𝜆
signaling through binding IFN-𝜆1 with a moderate affinity
(𝐾
𝐷
73 nM) [8]. Therefore, there is no consensus conclusion

about receptor levels on the surface of immune cells, which
are an influential target of IFNs in general [15].

2.3. IFN-𝜆-Mediated Signaling Pathway. Although they sig-
nal through distinct receptors, Type I and Type III IFNs
trigger remarkably similar responses in cells through activa-
tion of the Jak/STAT pathway (Figure 2). Viral nucleic acids
are sensed by transmembrane Toll-like receptors (TLRs),
cytoplasmic DNA sensors, and RNA helicases, resulting in
the activation of kinases to initiate signaling cascade [16].
The kinases activate NF-𝜅B, IRF3 and IRF7 transcription
factors to induce their subsequent translocation into the
nucleus where they promote IFN gene transcription [17].
The complex of IRF3 and NF-𝜅B stimulates expression of
IFN-𝛽 and IFN-𝜆1, while the complex of IRF7 and NF-𝜅B
stimulates the expression of IFN-𝛼 and IFN-𝜆2 and IFN-𝜆3
[18]. Once produced, Types I and III IFNs translocate from
the nucleus to the cytomembrane to bind their receptors,

respectively, to activate the overlapping Jak/STAT signaling
pathway. Type I IFNs use a dimeric receptor (IFNAR) com-
posed of subunits IFNAR1 and IFNAR2c, whereas Type III
IFNs signal through a different receptor, which is composed
of IL-28Ra and IL10Ra. After IFNs bind to their specific
receptors, the receptor-associated tyrosine kinases, JAK1,
TYK2, are activated to further simulate phosphorylation of
STAT proteins. On the one hand, activated STAT1, STAT2,
and IRF-9 form a heterotrimeric transcription factor complex
called IFN-stimulated gene factor 3 (ISGF3). ISGF3 is then
translocated into the nucleus where it binds to sequences
of IFN-stimulated response elements (ISRE) present in the
promoter region of numerous interferon stimulated genes
(ISGs) [19]. On the other hand, a homodimer STAT1 (gamma
interferon activation factor, GAF) is formed and translocated
into the nucleus where it binds to GAS (gamma interferon
activation site) to induce ISGs expression [20, 21]. The
proteins encoded by these ISGs have different biological
functions. Some mediate a myriad of antiviral activities, such
as ISG15, MxA, and OAS. Several ISG-encode proteins like
IRF7, IRF3 amplify IFNs production through a positive feed-
back [22]. Nevertheless, ISG-encoded proteins like USP18
and SOCS1 act as negative regulators for IFN signal pathway
[23, 24].

3. Clinical Applications of IFNs for
HCV Treatment

3.1. Current Treatment Regime for HCV Infection. With the
development of recombinant IFNs, IFN-𝛼-based treatment
has formed the cornerstone for the treatment of HCV
infection for the past two decades [25]. Until now the
standard of care (SOC) for HCV in most developing coun-
tries is weekly subcutaneous injection of pegylated IFN-𝛼
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Figure 2: Types I and III IFNs canonical signaling pathways. Viruses, including HCV, are recognized by pattern recognition receptor (PRR),
TLR3, and/or RIG-I-like receptor, leading to the activation of kinases.This in turn results in phosphorylation of IRF3 and IRF7 and activation
of NF-𝜅B.They translocate to nucleus to form heterodimers, respectively, which can catalyze transcription of IFN-𝛼, IFN-𝛽, and IFN-𝜆 genes
by binding to specific DNA sequences.Then, Types I and III IFNsmove out of nucleus to bind to their specific receptors on the cell membrane
and trigger an overlap pathway, Jak/STAT signaling pathway. Upon binding to their cognate receptors, Type I can phosphorylate both STAT1
and STAT2 to form ISGF3 that binds to ISRE in the promoter region of ISGs to upregulate their transcription and Type III IFN also can
phosphorylate STAT1 to form a homodimer GAF and induce ISGs expression with GAS in the promoter region. A myriad of ISG products is
not only antiviral factors but also participation in the signaling pathway in virtue of positive/negative feedback.

(PEG-IFN-𝛼) combined with daily ribavirin [26]. However,
the traditional success of IFN-𝛼-based treatment has been
challenged by suboptimal SVR rates in treatment resistant
patients, cumbersome treatment regime, and deleterious side
effects [4].The recently successful developments of numerous
well-tolerated oral agents that target viral proteins to interfere
with viral replication and direct antiviral agents (DAAs)
increase SVR in patients infected with HCV [27]. There are
four major groups of DAAs: NS3/4A protease inhibitor (PIs),
NS5Bnucleoside polymerase inhibitors (NPIs),NS5Bnonnu-
cleoside polymerase inhibitors (NNPIs), andNS5A inhibitors
[28]. In 2011, the first DAAs telaprevir and boceprevir
were approved by FDA. Combined with PEG-IFN/ribavirin
treatment, these DAAs significantly increased the SVR up to
80% for the most prevalent HCV genotype 1 infected patients
although they had marginal improvement of SVR in other

genotypes [29, 30]. Currently, several promising DAAs are
already in clinical trials as a monotherapy to translate the
dream of a pill to cure HCV into reality (reviewed in [31]).
FDA approved first the monopill, Harvoni (ledipasvir and
sofosbuvir), without combination of interferon or ribavirin to
treatHCVgenotype 1 infection inOctober 2014. Indeed, IFN-
free regimen is beneficial for patients with poor tolerance to
IFN and/or who have suffered from extensive side effects.
Nevertheless, the apparent limitations of DAAs include low
genetic barrier to resistance and high cost. As such, interferon
will still be used to treat HCV infection in the immediate
future, especially in most developing countries.

3.2. Potential Clinical Application of IFN𝜆 for HCV. Despite
the availability of newDAAs, IFN-a-based treatment remains
an effective therapy for HCV infection in most developing



4 Gastroenterology Research and Practice

countries. However, in consideration of increasing viral
resistance and undesirable systemic side effects due to the
fact that virtually all cell types express IFNAR [32], other
alternatives with better efficacy and less toxicity should
be explored. As a consequence, IFN-𝜆s, which trigger the
overlapping Jak/STAT signaling pathway with IFN𝛼 through
distinct IFN-𝜆R1 expressed only in restricted tissues [33],
seem an ideal therapeutic candidate forHCV therapy. Amore
limited target cell range would be of great importance for
the possible regimen applications of IFN-𝜆s. Refractory state
occurs commonly in cultured cells and in the liver through
repeated stimulation with IFN-𝛼 [34], which is believed to
be one of the reasons for nonresponse to the treatment
with IFN-𝛼-based therapy in HCV-infected patients [35].
Surprisingly, IFN-𝜆 did not induce such a refractory state
in liver cells [36]. That might be because tolerance of IFN-
𝛼-based therapy correlated with refractoriness of NK cells
[37] where no expression of IFN-𝜆R1 was detected [38].
Although selective distribution of the IFN-𝜆 receptors would
reduce the number of potential medical indications, fewer
side effects would represent a big advantage over type I IFNs
[39]. Preclinical studies showed that weekly PEG-IFN-𝜆with
or without daily RBV inhibited HCV replication in human
hepatocytes with minimal adverse events and hematologic
effects in patients with chronic HCV [40]. Furthermore,
Muir and his group demonstrated that antiviral effects of
recombinant IFN-𝜆1 is comparable to recombinant IFN-𝛼
in clinical trial [41]. In recent phase 3 clinical trials, IFN-
𝜆1a was recommended as 180mg doses in combination with
ribavirin and a direct-acting antiviral for 24–48 weeks in
HCV genotype 1 or genotype 4 or 12–24 weeks in genotype
2 or genotype 3 [42, 43]. Alternative treatment like IFN-𝜆s
that target the host immune response with fewer side effects
due to limited receptor distribution becomes a promising
strategy.

4. Prediction of Treatment Response in
Patients Infected with Hepatitis C Virus

Although some viral and host factors that are associated
with viral clearance were identified, predication of response
to therapy was suboptimal. It has been shown that host
gene polymorphism plays an essential role in determining
treatment outcomes of IFN-𝛼-based therapy. Ge and col-
leagues in 2009 discovered that single nucleotide polymor-
phisms (SNPs) linked to the IFN-𝜆3 (also known as IL28B)
was associated with the spontaneous and treatment-induced
clearance of HCV infection [44]. Interestingly, patients with
upregulation of ISGs in liver cells prior to receiving interferon
treatment respond less well to interferon and are much
more likely to have the unfavorable IL-28B genotype [45,
46]. Furthermore, the polymorphism of new gene IFN-
𝜆4 is strongly associated with impaired spontaneous HCV
clearance, which serves as an important predictive biomarker
for treatment outcomes [47, 48].Therefore, it is not surprising
that IFN-𝜆 opened a new era for HCV therapy as well as for
the prediction of treatment outcomes.

5. Viral Factors to Predict IFN-based
Treatment Response

5.1. HCV Genotype. HCV contains six major genotypes (1–6)
that differ from each other by 30–35% of nucleotide sequence
[49]. Among the factors identified to influence treatment
outcomes, viral genotype was recognized to be of major
importance. Numerous studies indicated that the SVR of 80%
for those infected with genotype 2 or genotype 3 are achieved,
but 40–50% for patients infected with HCV genotype 1 or
genotype 4 [50–52]. Thus, HCV-1 and HCV-4 are defined
as difficult to treat genotypes. While with recent high-speed
development of DAAs, the SVR of genotype 1 has been
significantly increased [53]. Therefore, genotype 4 was the
final piece of the puzzle to solve the problem. Although the
key to the puzzle is unclear, it is indicated that dynamics of
HCV genotype 4 are rather tardive, which are equal to those
of HCV genotype 1 and slower than those of HCV genotype 2
[54]. In conclusion, genotype is one of the most significant
viral factors in determining treatment outcomes of IFN-𝛼-
based therapy.

5.2. Viral Load and GeneMutations. This is paradoxical since
a higher pretreatment viral load has been associated with a
poor response to subsequent IFN-𝛼 treatment. Besides, it is
well-known that the viral load reflects the intricate virus-
host interaction which can be affected by HCV genotypes.
Thus, the pretreatment baseline and on-treatment viral load
can be utilized to predict SVR. Currently, a rapid virological
response (RVR) at week 4 of therapy has been identified as an
important predictor of SVR in patients infected with HCV
genotype 1 [55] or genotype 2 [56]. Meanwhile, more studies
are looking for much earlier viral response after initiation of
therapy to predict SVR [57], and even a predictionmodel was
used [58].

In addition, HCV gene mutations also contribute to
treatment response, of which the hot spot of mutation was
focused on viral nonstructural protein 5A (NS5A). At least 3
functional domains of NS5Awere involved in IFN resistance:
ISDR (Interferon Sensitivity-Determining Region), PKRBD
(PKR Binding Domain), and V3 (Variable region 3) at the
C terminus [59]. Enomoto et al. further demonstrated that
4 or more mutations in the NS5A region (known as “mutant
type”)were associatedwith high SVR rate in Japanese patients
chronically infected with HCV genotype 1b [60].There is still
a subject of long controversy among different research groups
[61, 62]. Although the core region of HCV is conserved,
mutations of amino acid (aa) 70 and aa 91 affected SVR
rate [63, 64]. However, the predictive effect of mutations in
the HCV core region was only observed in HCV genotype
1b and this prediction ability still remained elusive in other
genotypes and subtypes.

6. Host Factors to Predict IFN-Based
Treatment Response

6.1. Pretreatment ISG Expression Levels in the Liver and
Blood. IFN𝛼 and IFN𝜆 ultimately play their roles through
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the upregulation of ISGs. It has been shown that cultured
cells enter an IFN-desensitized state that can last up to several
days shortly after IFN exposure because ISGs expression is
already maximally stimulated and is therefore unresponsive
to further exogenous IFN-𝛼 treatment [65]. Therefore, the
expression level of ISGs in pretreatment liver or blood seems
to be useful for prediction of treatment outcomes in patients
with HCV. Indeed, it has been repeatedly demonstrated that
a poor response to exogenous IFN-𝛼 treatment is associated
with a higher intrahepatic ISGs expression before treatment
[66–68]. Furthermore, with the development of microarray
gene-expression profiling, a high throughput method that
allows simultaneously examine gene expression at the tran-
script (mRNA) level, it is much easier to assess the host
response to HCV infection at the whole genomic scale [68].
By comparing the pretreatment hepatic gene expression levels
between treatment responders and nonresponders of patients
chronically infected with HCV, Chen et al. [46, 69] identified
18 genes (out of 19,000 host genes or transcripts), whose
differential expression levels are associated with treatment
outcomes.More interestingly, they further demonstrated that
the cell-type specific expression of ISGs was correlated well
with treatment outcomes, with prediction accuracy higher
than that predicted by the polymorphism of IL-28B [70, 71].

Although correlation between increased pretreatment
ISGs expression in liver and failure of anti-HCV therapy was
identified, it is necessary to develop an easier noninvasive
predictive test. In addition to the liver tissue, numerous
researches revealed that blood samples might be a perfect
alternative [72, 73]. Rallon et al. demonstrated that assess-
ment of HCV/HIV coinfected patients with PEG-IFN/RBV
therapy in that PBMC specimens can reliably be used for
evaluating ISGs expression in clinical regardless of IL-28B
genotypes [74]. In addition, wide application of DAAs urges
us to develop a predictive biomarker to predict treatment
outcomes in order to save expensive cost of DAAs therapy.
Meissner et al. [75] conducted a clinical trial using the DAA
sofosbuvir plus ribavirin (SOF/RBV) and performed detailed
mRNA expression analysis in liver and peripheral blood
from 60 patients who achieved either a sustained virologic
response (SVR) or relapsed. They found that viral clearance
was associated with rapid downregulation of IFN-stimulated
genes (ISGs) in liver and blood, whereas the exact association
between the expression level of ISGs in pretreatment and
response to DAAs therapy would not be identified without
more clinic trails.

6.2. Host Interleukin-28B (IL-28B) Genotype and SVR. Over
the last decade, a myriad of host factors have been shown to
play an important role in predicting the clinical outcomes of
HCV by virtue of in-depth understanding of human genome
and technology progress such as microarray and genome-
wide association studies (GWAS). These studies accessed
common SNPs among the host genome bymeans of a disease
library, such as patients and healthy volunteers, without
hypothesis based on background knowledge. Therefore, they
independently uncovered the influence of IL-28B SNP on
treatment-induced and spontaneousHCVclearance.Thefirst
landmark research facilitated by GWAS was published in

2009 [44]. Ge’s group assessed the treatment outcome in a
group of 1671 HCV genotype 1 patients with treatment of
injecting PEG-IFN/RBV. There was a significant association
between SVRand IL-28B, rs12979860 SNP. Patientswith allele
(C/C) had rather higher SVR rate (78%) than those with
allele (T/T) (28%) as well as heterozygote gene (T/C) (38%).
In addition, they further compared the efficacy of PEG-
IFN/RBV treatment in association with IL-28B genotype in
different ethnicity. They concluded that more favorable IL-
28B genotype was found in European than African popula-
tions, which explain higher SVR in European-Americans to
some extent. However, comparedwith factors associated with
viral clearance, host IFN-𝜆3 genotype was more important
than baseline viral load, the degree of liver fibrosis, or ethnic-
ity. In subsequent years, different researches drew consistent
conclusion that SNPs of IL-28B is strongly associated with
HCV treatment outcomes [76, 77]. In addition, the verdict
was extended to both HCV monoinfected and HCV/HIV
coinfected populations. They revealed that the minor allele
of Rs8099917 was identified in 58% of patients who did not
respond to treatment and defined as a risk factor related
to progression to chronic HCV infection, regardless of the
coinfection with HIV or not [78].

6.3. IFN-𝜆4 Genetic Variation and Response to Treatment.
Recently, a new variant of IFN-𝜆4, denoted as ss469415590
(TT/ΔG) has been discovered, whose ΔG allele is strongly
associated with impaired spontaneous HCV clearance as a
result of high expression of IL-28B [47]. Interestingly, ΔG
allele of ss469415590 expressed a novel IFN-𝜆4, which could
block the activity of Types I and III IFNs, decreasing the
capacity of HCV clearance [79]. However, the mechanism
of its negative regulation of IFNs signaling pathway was
elusive. Considering poorly expression and antiviral activity
of IFN-𝜆4, impeding receptor binding of other members
of the IFN-𝜆 family is a possible explanation [80]. In any
event, ss469415590 sounds like a better predictor of SVR
than the traditional rs12979860. However, the predictive
effect of ss469415590 is still controversial (Table 1).Therefore,
although the sensitivity, specificity, and predictive value
of them currently identified are too low to be clinically
useful alone, these studies confirmed a significant association
between IFN-𝜆4 genetic variation and response to treatment.
Further studies should be done to explore the mechanism
underlying this close association.

7. Prospective

Currently, there is no vaccine for HCV infection and the
SOC is PEG-IFN/RBV in most developing countries. With
the ever-increasing number of DAAs in development and
the amazing rate of SVR reported, the era of interferon as
a hallmark therapy for HCV is apparently nearing its end
in developed districts regardless of the astounding cost. In
contrast, despite morbid side effects and variable cure rates,
IFN-𝛼 based treatment is still a dominant therapy in most
developing countries due to cost containment. In addition,
it is necessary to understandmolecular mechanisms of virus-
host interactions and to predict treatment outcomes before
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Table 1: Genetic association studies of IFN-𝜆4 and treatment outcomes.

Single nucleotide Subjects Conclusions Reference

ss469415590 and
rs12979860

169 African-American
patients HCV-1

Compared to rs12979860, ss469415590 is more strongly
associated with HCV clearance in individuals of
African ancestry rather than in Europeans and Asians

[5]

ss469415590 and
rs12979860

272 Caucasian patients
HCV-1/HCV-4

The ss469415590 variant shows an equivalent
performance to predict SVR to pegIFN/RBV with
rs12979860

[81]

ss469415590 80 HCV patients and 78
liver donors

lower expression of IFN-𝜆4 mRNA was associated with
a higher rate of SVR in response to pegIFN-𝛼 and
ribavirin therapy

[82]

rs12979860
362 HCV-1 patients in a

phase 2b trial of faldaprevir
and deleobuvir

SVR in response to faldaprevir and deleobuvir was
lower in the patients with the CT or TT genotypes for
IFN-𝜆4 rs12979860

[83]

ss469415590 and
rs12979860

207 HCV/HIV-1 coinfected
patients treated with

PEG-IFN/RBV therapy

ss469415590 genotype was a better predictor of
treatment failure than rs12979860 [84]

ss469415590, rs8099917,
rs12979860 and rs12980275

280 HCV patients treated
with PEG-IFN/RBV

ss469415590 is superior to other IL-28B variants
especially in patients with advanced fibrosis [85]

ss469415590 and
rs12979860

225Thai
HCV-1/HCV-3/HCV-6
patients treated with

PEG-IFN/RBV

IFN-𝜆3 (IL28B) and IFN-𝜆4 polymorphisms are
associated with treatment response inThai patients
infected with HCV genotype 1, but not with genotypes 3
and 6

[86]

rs12979860 115 HCV-1 patients treated
with sofosbuvir

The IFN-𝜆4-ΔG allele was associated with slower early
viral decay [75]

initiating therapy. Further studies need to be focused on an
overall pattern taking both viral and host factors into account,
which may be more reliable to predict HCV treatment
response rather than one or two independent predictors. As
a consequence, it is not surprising that IFN-𝜆s opened a new
era as an ideal alternative for IFN-𝛼 with less side effects
and viral resistance as well as for prediction of treatment
outcomes.
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