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A loss‑based patch label 
denoising method for improving 
whole‑slide image analysis using 
a convolutional neural network
Murtaza Ashraf1, Willmer Rafell Quiñones Robles1, Mujin Kim1, Young Sin Ko2 & 
Mun Yong Yi1*

This paper proposes a deep learning‑based patch label denoising method (LossDiff) for improving 
the classification of whole‑slide images of cancer using a convolutional neural network (CNN). 
Automated whole‑slide image classification is often challenging, requiring a large amount of labeled 
data. Pathologists annotate the region of interest by marking malignant areas, which pose a high 
risk of introducing patch‑based label noise by involving benign regions that are typically small in size 
within the malignant annotations, resulting in low classification accuracy with many Type‑II errors. 
To overcome this critical problem, this paper presents a simple yet effective method for noisy patch 
classification. The proposed method, validated using stomach cancer images, provides a significant 
improvement compared to other existing methods in patch‑based cancer classification, with 
accuracies of 98.81%, 97.30% and 89.47% for binary, ternary, and quaternary classes, respectively. 
Moreover, we conduct several experiments at different noise levels using a publicly available dataset 
to further demonstrate the robustness of the proposed method. Given the high cost of producing 
explicit annotations for whole‑slide images and the unavoidable error‑prone nature of the human 
annotation of medical images, the proposed method has practical implications for whole‑slide image 
annotation and automated cancer diagnosis.

One challenging application of artificial intelligence (AI) is diagnosing heterogeneous diseases that can lead to 
death in humans. Cancer, for example, is such a disease and one of the leading causes of death worldwide, ranking 
2nd in deaths per year in the United  States1. The World Health Organization reported that the global burden of 
cancer is expected to grow by 29.4 million new cases by  20402. To diagnose the existence of cancer, whole-slide 
images are commonly processed by a pathologist. It has been reported that pathologists are often susceptible to 
errors based on different pathologists, specimen types, and diagnoses, and Type-I and Type-II errors occur in 
6% and 33% of cases,  respectively3.

The computer-aided analysis of whole-slide images is a complicated process due to the nature of a cell’s bio-
logical morphology, which conventional machine learning methods may fail to generalize, even when coupled 
with handcrafted feature  extraction4. With recent advancements in convolutional neural network (CNN)-based 
computer vision applications, it is believed that AI can enable automated diagnoses of whole-slide  images5. 
CNNs can extract features automatically, but their data-hungry nature requires the labeling of a large number of 
whole-slide images. Additionally, obtaining comprehensive annotations for whole-slide images can be difficult for 
various reasons, such as lack of prior experience, human bias, and technical issues, and the time and availability 
of professional pathologists are often limited. To produce training data for automated systems, pathologists anno-
tate abnormal regions in whole-slide images, and other regions are automatically considered benign (negative).

Malignant annotations can incorporate some of the small areas of benign cells or different kinds of patho-
logical findings, such as atypical cells and inflammation, as illustrated in Fig. 1. Hence, these annotations can 
introduce patch-based label noises (e.g., false positives); it is very difficult, if not impossible, for pathologists to 
precisely mark each abnormal region with a pixel-by-pixel approach. A frequently adopted practice is to col-
laborate with multiple medical experts and seek their inputs on unreliable annotations for improved accuracy 
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and consistency. Nevertheless, this additional measure does not guarantee 100% accuracy and can still lead to 
bias and time constraint issues.

A review of the literature has revealed that label noise modeling is generally based on distinguishable object 
datasets such as  MNIST6,  CIFAR7, and  ImageNet8. Medical data, such as digital pathology data, have rarely been 
used in this  context9. Pathologists mainly analyze whole-slide images to identify abnormal cells. A whole-slide 
image is a gigapixel image, and such images often cannot be processed with a CNN. Thus, researchers divide 
whole-slide images into small patches. Those small patches can easily incorporate some of the normal regions 
(false positives), adding label noise to the input data. Most of the time, digital pathology classification tasks have 
ignored patch-based label noise, resulting in low accuracy with many Type-II errors (additional details in the 
next section). To overcome this critical problem, this study presents a simple yet effective method for noisy patch 
classification to enhance the automated analysis of whole-slide images.

Motivated by the aforementiond research need, the objective of this study is to design and evaluate a patch-
based label noise abstaining method that allows CNNs to produce better classification results. The proposed 
method avoids the need for extra layers in the neural network and does not require a set of verified annotations, 
as is required in other  approaches9,10. The findings from the present study can serve as a basis for refining digital 
pathology training data. Specifically, the contributions of this study are threefold. First, this is one of the first 
studies to propose a CNN-based label denoising method for whole-slide images that requires neither additional 
learnable parameters nor a set of precise annotations for the training process. Second, we established a new mul-
ticlass dataset for stomach whole-slide images and rigorously evaluated a CNN for classification; the robustness 
of the proposed approach was also confirmed at different noise levels using a publicly available dataset. Third, to 
the best of our knowledge, our study is one of the first endeavors to evaluate and compare state-of-the-art label 
denoising methods based on pathological images.

Background
Computer vision has benefited from CNNs, which provide effective architectures for object  detection11, face 
 recognition12, autonomous  vehicles13, and medical  applications14. CNNs became popular after achieving state-
of-the-art accuracy in  201215 and winning the ImageNet  challenge8. Later, several popular CNN schemes, such 
as the Visual Geometry Group (VGG)  network16, Inception (GoogleNet)17,  ResNet16, and  DenseNet18, were 
introduced, and they have continuously outperformed existing methods in the ImageNet challenge. Recently, 
these schemes have been further enhanced and extended to address various practical  problems19–21.

CNNs have been applied in medical imaging diagnostic  systems22. In medical image analysis, CNNs have 
improved the detection, classification, and segmentation of manifold  abnormities14. In particular, CNNs play 
an important role in cancer analysis, including in  skin23,  breast24,  lung25, and endoscopy  classification26–30. The 
availability of big data in the medical domain has enabled researchers to apply deep learning methods, which 
often require huge amounts of data to properly learn the underlying mechanisms and provide promising results. 
Moreover, compared to other data types, clinical data require more labeling effort from medical practitioners, 
who are typically highly trained, expensive, and overworked. One potential solution to this problem is to employ 
a nonexpert labeling approach based on image  data31. However, this approach may exacerbate the label noise 
problem, thus limiting the practicality of deep learning-based diagnostic systems. Noisy data (or label noise) not 
only affect the performance of a machine learning model but also produce biased  results32–35. To mitigate such 
label noise, deep learning models need to be trained with large amounts of correctly labeled  data36; however, 
acquiring large amounts of precisely labeled data is  challenging37.

Figure 1.  The portion of the tissue circled in blue is a dysplasia annotation by a professional pathologist. The 
red zoomed-in regions are abnormal (true positive) regions within the annotation and the green zoomed-in 
regions are normal, benign (false positive) regions within the annotation.
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A review of the existing literature was performed to identify the different methods used to mitigate label noise 
in different domains using CNNs. Some studies, for example, introduced an extra layer before or after a softmax 
layer during modeling for the processing of noisy  labels38,39. These studies evaluated noise recognition layers 
based on the Google Street View house number  dataset40, the Tiny Image  dataset41, and  MNIST4. This method 
can learn the distribution of noisy labels, but computational efficiency is low because the model needs to learn 
several extra parameters. Goldberger and Ben-Reuven proposed a training method by adding a softmax layer with 
expectation  maximization42 to a CNN architecture; notably, the result of the final layer of the network is used to 
predict the probability that a label is incorrect or  correct43. However, expectation maximization has convergence 
issues, and adding an extra layer along with expectation maximization would further aggravate the convergence 
problem. Another method involves semi supervised learning with a small set of verified labels; these verified 
labels can be used to transfer knowledge to incorrect  labels44. The use of a small set of verified labels can enable a 
CNN to learn the relevant distribution from confirmed labels. However, verified labels, even small sets of them, 
can be difficult to arrange when the data are obtained from a public repository or released by an organization.

Deep learning models that can limit label noise in the medical domain are still in the early stages of develop-
ment, and only a few studies have focused on label noise in the medical field. For instance, Dgani et al.45 proposed 
an incorrect label correction method using deep learning for breast microcalcifications; they used a noisy chan-
nel as part of a deep learning model to learn the noisy label distribution and added an extra layer in addition 
to the softmax  layer39, which enabled their model to learn noise representations as a part of the CNN training 
process. Recently, using a small clean dataset of whole-slide images of pancreatic cancer, Le et al.46 predicted 
the distribution of noisy labels from imbalanced data; notably, few cleaned samples were available, and noisy 
data were abundant. Karimi et al.9 surveyed several methods for diagnosing diseases based on the detection and 
classification of abnormalities; they also evaluated interobserver label noise removal methods based on prostate 
cancer images. In their study, they focused on annotations from six different pathologists and aggregated their 
annotations. However, it is difficult to coordinate and afford large numbers of expert pathologists. Gehlot et al.47 
proposed an unsupervised approach for avoiding label noise and obtained encouraging results based on different 
datasets. Their method leverages a dual-branch architecture with a given threshold to predict label noise when 
the results of both branches differ. In this architecture, one branch uses project loss, as proposed by Gehlot et al., 
and the other uses cross-entropy. The benefit of such an approach is that it provides diverse predictions similar 
to those produced with ensemble modeling. Nevertheless, this method requires multiple loss functions, which 
reduces interpretability. Moreover, the final decision, which is based on a coupled classifier or an ensemble 
decision, is often complex.

In summary, there is a need to develop a method that can automatically detect and eliminate noisy patches 
from whole-slide image annotations to ultimately produce accurate classifications of cancer. Most previous 
research was based on benchmark datasets involving digits, objects, and places; however, methods for noisy 
medical image data are still in the initial development phase. Several researchers have proposed modeling tech-
niques by adding extra layers to CNNs, and the use of small sets of precise annotations has also been considered. 
Nevertheless, all these techniques are limited by time and computational constraints. To overcome these limita-
tions, our study proposes and evaluates a novel method for denoising the patches extracted from whole-slide 
images and produces improved classifications of cancer.

Methods
Stomach pathology patch dataset. Stomach cancer is one of the leading causes of death among many 
other types of cancers and ranks 5th in new cases globally each  year48. In 2021, the American Cancer Society 
estimated that 26,560 new cases of stomach cancer occurred in the United  States49. The World Cancer Research 
Fund reported that South Korea had the highest rate of stomach cancer worldwide in  201850. Given this preva-
lence, whole-slide images of stomach cancer were collected from one of the largest medical foundations in South 
Korea. The whole-slide images contain information about suspected regions obtained based on the extraction of 
gastric endoscopic biopsy specimens. The slides were stained with a hematoxylin and eosin staining process. All 
of the slides were reviewed and annotated by two pathologists who worked on separate sets of slides initially but 
examined each other’s work for verification.

The data were collected by the Seegene Medical Foundation in South Korea, and their use for research was 
approved by the Institutional Review Board (Approval # SMF-IRB-2020–007) of the organization as well as by the 
Institutional Review Board (Approval # KAIST-IRB-20–379) of Korea Advanced Institute of Science and Technol-
ogy (KAIST). Informed consent to use the tissue samples for clinical purposes was obtained from the medical 
foundation’s designated collection centers. All experiments were performed in accordance with the relevant 
guidelines and regulations provided by the two review boards. All patient records were completely anonymized, 
and all the images were kept and analyzed only on the company server. A sample set of an original slide and the 
corresponding annotated slide is presented in Fig. 2, and the details of data acquisition are presented in Table 1.

Details of the classes of stomach pathology patches
Four classes of pathologic findings, namely, malignant, dysplasia, uncategorized, and benign classes, were ana-
lyzed in this study, and corresponding samples are shown in Fig. 3.

Malignant. Diagnosed as malignant neoplasm, including adenocarcinoma, suspicious for (s/f) adenocarci-
noma, suggestive of (s/o) adenocarcinoma, (s/f, s/o) high-grade lymphoma, and any other (s/f, s/o) carcinoma 
or malignant neoplasm.

Dysplasia. Diagnosed as dysplasia, including (s/f, s/o) tubular adenoma with dysplasia of any grade.
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Uncategorized. The remaining lesions that do not fall under the aforementioned three classifications; for 
example, atypical glandular proliferation of undetermined significance, (s/f, s/o) neuroendocrine tumors, sub-
mucosal tumors, (s/f, s/o) low-grade lymphoma, and (s/f, s/o) stromal tumors, among others.

Benign. Diagnosis of a nonneoplastic benign gastric mucosal lesion, including gastritis and polyps.

Data preparation for stomach pathology patches
A whole-slide image can have a scale larger than 1 gigapixel. Due to computational resource limitations, CNNs 
cannot process such large inputs. Therefore, an open-source Python library ’OpenSlide’ was used to divide each 
whole-slide image into smaller patches. The patches were then processed to exclude the white areas of slides 
(i.e., parts without tissue). Each patch was then labeled with a slide number, patch position, and particular class. 
Considering the current direction of research regarding noisy label elimination, we divided the dataset into two 
parts: pilot data and baseline data. A small subset from the whole dataset was selected as the pilot dataset to 
determine the noisy patch data distribution. The baseline dataset was used for classification. The details of each 
dataset by class are shown in Table 2. Out of the total number of 905 baseline WSIs, we used 80% for training, 
10% for validation, and 10% for testing.

To ensure their independence, training, validation, and test data were separated at the patient level (i.e., whole 
slide). The number of patches, as shown in Table 3, varied based on different annotation sizes. There were more 
patches in the benign class than in the other classes because no annotation was required for benign tissue and 
we extracted patches from complete slides. In contrast, malignant, dysplastic, and uncategorized patches were 
smaller in number because they were extracted from annotated regions only.

PatchCamelyon. Given that the dataset described in the previous section cannot be shared for pub-
lic use and to ensure the reproducibility of the results, we additionally use a publicly available dataset called 
 PatchCamelyon51, which contains 327,680 pathological patches, in this study. Patches of size 96 × 96 were 
extracted from the histopathological scans of lymph node  sections52. As shown in Fig. 4, each patch was anno-
tated with a positive label (malignant) or negative label (benign), indicating the presence of metastatic tissue. 
Note that we ensured that there was no overlap in WSIs across the training, validation, and test splits to avoid any 
bias in model predictions. We also ensured that each split was equally balanced between positive and negative 
samples. Details on the number of patches by class are given in Table 4.

Model formulation
Deep learning models tend to overfit when trained for a long time because of their tendency to memorize the 
data distribution. Although most of the features of a class exhibit the same data distribution, if there are some 
noisy labels, then the model may learn the characteristics of the corresponding features. Forced learning without 

Figure 2.  Example of hematoxylin and eosin-stained raw (left) and annotated (right) whole-slide images.

Table 1.  Data acquisition details.

Parameter Details

Thickness of section 3–4 µm

Staining method Hematoxylin and eosin

WSI scanner model Panoramic Flash 250 III

Sensor resolution 200×

Number of pathologists for annotation 2
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Figure 3.  Four types of pathologic classes in whole-slide images of the stomach: red (1st row), navy blue (2nd 
row), yellow (3rd row) and green (4th row) annotated patches represent malignant, dysplasia, uncategorized, 
and benign classes, respectively.

Table 2.  Information about the number of stomach whole-slide images (WSIs) for each data split.

Classes

Malignant Dysplasia Uncategorized Benign

Pilot WSIs 24 30 10 35

Baseline WSIs

Training 174 220 75 254

Validation 22 27 10 32

Testing 22 27 10 32

Table 3.  Information about the number of patches for each data split based on stomach whole-slide images.

Classes

Malignant Dysplasia Uncategorized Benign

Pilot patches 2172 2435 423 4890

Baseline patches

Training 26,855 21,881 8376 49,564

Validation 2563 2324 1006 6476

Testing 3078 2772 247 4588
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noise can lead to overfitting. Images with label noise are associated with higher loss than are images with true 
labels, and based on this relation, our proposed method eliminates the patches with batch loss levels higher than 
the average loss. To compare the performance of the proposed method and the baseline method, Fig. 5 presents 
the training loss and validation loss of the models over the five initial epochs using both cleaned and noisy data. 
Notably, the model with noisy data (see Fig. 5a) experiences overfitting within the initial five epochs, and the 
proposed method (see Fig. 5b) avoids overfitting.

Given a whole-slide image X marked with unavoidable noise introduced by human annotators, our goal is to 
accurately predict the type of disease Y by extracting useful features from a set of patches P = {p1, p2, p3, . . . pm} 
using a CNN. To achieve this goal, we propose a new whole-slide image classification method called LossDiff, 
which consists of three phases: (1) selecting an optimal CNN architecture, (2) filtering labeled noisy patches, and 
(3) performing cancer classification. The first phase involves identifying the most suitable underlying architecture 
of a CNN. As shown in Fig. 6, we filter and remove the patches with label noise by considering the average batch 
loss for correctly classified instances in the second phase and perform the classification of diseases based on the 
cleaned data using the CNN architecture in the third phase. The baseline modeling approach, which was used 

Figure 4.  Two types of pathological findings for lymph node sections: red (1st row) and green (2nd row) 
annotated patches denote malignant and benign classes, respectively.

Table 4.  Information about the number of patches in each data split for PatchCamelyon.

Classes

Malignant Benign

Patches

Training 131,072 131,072

Validation 16,369 16,399

Testing 16,377 16,391

Figure 5.  Training and validation loss of models with (a) noisy data and (b) cleaned data; Train training; Val 
validation.



7

Vol.:(0123456789)

Scientific Reports |         (2022) 12:1392  | https://doi.org/10.1038/s41598-022-05001-8

www.nature.com/scientificreports/

for performance comparison, does not include the second phase and uses the baseline dataset (i.e., no noisy 
patches removed) for the third phase.

Selecting an optimal CNN architecture. We analyzed popular CNN models based on the baseline data 
to assess the performance of different types of architectures for whole-slide images. CNN architecture selection 
enables us to choose the best-suited CNN for pathological data. Various CNNs, namely, AlexNet, Inception, 
VGG, ResNet and DenseNet, were assessed in this study. These architectures have been trained on large sets 
of images from ImageNet (Deng et al., 2009) and training parameters are provided to help fine-tune the CNN 
models for other classification problems. We considered two approaches: fine-tuning the pretrained models and 
training the models from scratch on pilot data. The purpose of the performance comparison was to validate the 
use of a fine-tuning approach rather than training from scratch and selecting a baseline architecture. The benefits 
of fine-tuning based on limited data are generally acknowledged. However, some researchers, such as Raghu 
et al.53, have reported that there is little difference in fine-tuning and training from scratch. In our experiments 
based on stomach whole-slide images, there is a difference of approximately 3% between the results of these two 
approaches, as shown in Table 5. Due to time constraints, the stopping criterion of 30 epochs was the same for 
the two approaches.

Our preliminary results revealed that pretrained models perform better than models trained from scratch 
when whole-slide images are used. A brief summary of the comparison is presented in Table 5. We also found 
that the models that incorporate large numbers of layers with residual blocks perform better than other models. 
Table 5 shows that ResNet and DenseNet, which consist of residual blocks, outperform all the other archi-
tectures, and DenseNet is the best-performing architecture. Based on the preliminary results using stomach 

Figure 6.  The second and third phases of the proposed LossDiff method.

Table 5.  Preliminary study for selecting the final architecture (the accuracy of each architecture is reported as 
a percentage). 

Architecture

Method

Fine-tuning pretrained model Training from scratch

AlexNet 69.21 66.07

Inception 72.45 71.86

VGG 72.13 71.32

ResNet 73.09 70.09

DenseNet 73.38 70.78
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whole-slide images pilot data, we selected pretrained DenseNet (DenseNet-201) as the final architecture. The 
architecture selection was done on the stomach dataset only, and the same network type was then trained on 
the PatchCamelyon set.

Filtering noisy patches. We propose a fast and efficient patch label denoising method for handling label 
noise. In this approach, we distinguish between correctly labeled patches and noisy patches. We first extract the 
patches P from a whole-slide image using the OpenSlide library. These patches are then transformed into the 
input tensor of the model, and we optimize cross-entropy loss by training DenseNet for a specific number of 
epochs. After training the model for a specific number of epochs, we observe the loss ( bl ) based on the baseline 
dataset with label noise ( Db ). At this point, we keep a record of the loss results for correctly classified instances 
y = ŷ  for each patch type t  , where y is the ground truth, ŷ  is the model prediction, and t ∈ {D,M,N ,U} . Given 
a batch b of m instances, the loss for a number of correctly classified instances can be defined as 
bcl = {lc1, lc2, lc3, . . . lcm} , where lcm denotes the loss l  of m correctly classified instances c . In addition, the loss for 
correctly classified instances and each patch type t  is tracked within a batch, and we monitor the average loss in 

the same way with the following equation: bcl(avg) =
{(∑k

i=1lc1
k

)
,

(∑k
i=1lc2
k

)
,

(∑k
i=1lc3
k

)
, . . .

(∑k
i=1lcm
k

)}
 , 

where k is the total number of training iterations for the model. To avoid filtering difficult cases, we introduce a 
threshold α that can be adjusted with respect to the data distribution. Mathematically, the abstaining condition 
can be formulated as

Finally, we can formulate a function to produce the cleaned data Dc and eliminate label noise as  

If the batch loss bcl is greater than the average batch loss bcl(avg) and the ground truth labels y match the 
predicted labels ŷ  , then the model filters out the patches p . This process enables the model to generate cleaned 
data Dc by reducing the effect of overfitting.

Cancer classification. We selected the pretrained DenseNet for the classification of whole-slide images 
based on the preliminary results presented in Table 5. DenseNet uses residual connections so that each layer can 
receive additional inputs from all of the preceding layers in addition to the output of the previous layer. With this 
property, there are two main advantages of DenseNet: gradient flows are simple, and features are diverse. Mul-
tiple connections to the preceding layers enable the model to indirectly perform deep supervision and provide 

(1)bcl ≥ α ∗

(∑k
i=1lcm

k

)
.

(2)f (Db) =

{
Removep, bcl ≥ α × bcl(avg)andy = ŷ

Keepp, bcl < α × bcl(avg)
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diverse features as inputs to each layer (see the original  source18 for detailed information). The specific details of 
the DenseNet-201 model used in the experiments in this study are provided in Table 6.

Results
The proposed method was implemented in Python using ‘PyTorch’54, an open-source deep-learning library. The 
model was trained on a high-performance server equipped with an NVIDIA Titan XP GPU. The pretrained 
DenseNet-201 was used as the CNN architecture. Cross-entropy loss was optimized using the Adam  optimizer55 
with a learning rate of 0.001. The model was trained for 30 epochs with a batch size of 32. A data preprocessing 
pipeline was designed to enable the loading of whole-slide images and to filter and remove the patches without 
tissue regions. The data preprocessing pipeline uses the OpenSlide  library56 and generates patches of the required 
size, which is 256 × 256 in this study. The proposed method, LossDiff, filters and removes suspicious patches, leav-
ing fewer patches than in the baseline data. Therefore, to evenly compare the performance of different methods, 
we made the number of baseline and LossDiff test distribution patches equal using random sampling. Perfor-
mances of the proposed model were assessed using: (a) accuracy, (b) a confusion matrix, (c) the area under the 
ROC curve, (d) the feature space visualization result using t-SNE, and (e) the results of a noise handling analysis 
based on a publicly available dataset. We also conducted the  McNemar57 test to establish that the models trained 
on the cleaned data and on the baseline data are significantly different. All these analyses were performed in the 
‘scikit-learn’58 Python library.

Note that the uncategorized class contained fewer whole-slide images than other classes due to the nature 
of the diseases considered. Thus, the performance of the model was assessed separately for ternary (malignant, 
dysplasia, and benign) and quaternary (malignant, dysplasia, uncategorized, and benign) classes. Binary class 
experiments were carried out on malignant and benign class data only. In a similar fashion for ternary class 
experiments, we have excluded uncategorized class data.

Furthermore, in the noise handling ability analysis, we selected the PatchCamelyon dataset because it uses 
magnification downsampling to 10 × from whole-slide images of 40 × magnification to increase the field of view. 
Expanding the field of view (i.e., by zooming out) eliminates the noise in baseline data and enables us to add a 
specific ratio of synthetic noise.

Accuracy analysis. The accuracy of the proposed method, as reported in Table 7, can be obtained as fol-
lows:

The proposed method achieved state-of-the-art performance for stomach whole-slide images, with patch-
based accuracies of 98.81%, 97.30% and 89.47% for the binary, ternary and quaternary classes, respectively 

(3)Accuracy =
Number of correctly predicted labels for patches

Total number of patches
× 100

Table 6.  DenseNet-201 architecture details for the experiments. In the final layer, 2 refers to the malignant 
and benign classes; 3 refers to the malignant, dysplasia, and benign classes; and 4 refers to the malignant, 
dysplasia, uncategorized, and benign classes.

Layers Output Size DenseNet-201

Convolution 112 × 112 7 × 7 convolution, stride 2

Pooling 56 × 56 3 × 3 max pooling, stride 2

Dense block
(1) 56 × 56

[
1 × 1conv

3 × 3conv

]

 × 6

Transition layer
(1)

56 × 56 1 × 1 convolution

28 × 28 2 × 2 average pooling, stride 2

Dense block
(2) 28 × 28

[
1 × 1conv

3 × 3conv

]

 × 12

Transition layer
(2)

28 × 28 1 × 1 convolution

14 × 14 2 × 2 average pooling, stride 2

Dense block
(3) 14 × 14

[
1 × 1conv

3 × 3conv

]

 × 48

Transition layer
(3)

14 × 14 1 × 1 convolution

7 × 7 2 × 2 average pooling, stride 2

Dense block
(4) 7 × 7

[
1 × 1conv

3 × 3conv

]

 × 32

Classification layer
Final layer

1 × 1 7 × 7 global average pooling

Softmax (2 | 3 | 4)



10

Vol:.(1234567890)

Scientific Reports |         (2022) 12:1392  | https://doi.org/10.1038/s41598-022-05001-8

www.nature.com/scientificreports/

(Table 7). These results suggest that the LossDiff classification method yields significant improvements in pre-
dictive accuracy.

Confusion matrix analysis. For medical images, a confusion matrix highlights the key weak points of 
classification, such as false negatives (Type-II errors). For example, if a patient has a disease and the system 
generates a false report (i.e., the disease is predicted to be negative for that patient), then the patient may not 
be diagnosed until the disease reaches an advanced stage, potentially missing the critical window of time for 
treatment. A confusion matrix enables us to compare the performance of different classes individually. Three 
positive classes, namely, malignant, dysplasia, and uncategorized, are considered, and they encompass disease 
diagnoses (positive) that require further assessment; conversely, a benign (negative) diagnosis does not require 
further evaluation. In the context of this positive vs. negative class distinction, we reduce Type-II errors using 
the LossDiff method. The classification results obtained based on the cleaned data not only exhibit high accuracy 
but also reduce Type-I and Type-II errors (i.e., 7 → 2 (see Fig. 7a,b) and 5 → 1 (see Fig. 7c,d) false negative 
patches for ternary and quaternary classes, respectively), as shown in Fig. 7. From the confusion matrix analysis, 
an overall improvement in false positives and false negatives is found, whereby false negatives are of paramount 
importance because of its direct consequence on medical diagnostic and treatment. As such, they are also dis-
cussed in this study.

Table 7.  Accuracy comparison between the baseline and LossDiff results for ternary and quaternary classes. 
Significant values are in bold.

Classes Method
Malignant and benign 
(binary)

Malignant, 
dysplasia, 
and benign 
(ternary)

Malignant, dysplasia, uncategorized, and benign 
(quaternary)

Accuracy
Baseline ( Db) 94.73% 91.63% 73.38%

LossDiff (Dc) 98.81% 97.30% 89.47%

Samples discarded by LossDiff 6837 9387 10,100

Figure 7.  Confusion matrix for ternary classes in the first row (a,b) and quaternary classes in the second row 
(c,d).
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Statistical analysis. To further assess and validate our findings, we performed statistical analyses using 
a McNemar test. The results of the TEST characterized by p-values < 0.001 show that the predictions obtained 
from the LossDiff and baseline methods are highly significantly different.

Receiver operating characteristic (ROC) curve analysis. In addition to the confusion matrices used 
to compare the performance of the methods for different classes, an ROC analysis was performed as a critical 
evaluation used for medical diagnostic  systems59. We analyzed the ROC curves to determine the true-positive 
rate and false-positive rate of patches. Figure 8 shows that the model achieved a significant improvement in 
ROC when the cleaned data (obtained via LossDiff) were used. The micro-average ROC curve, computed from 
the sum of all true positives and false positives across all classes, shows improvement for the model trained on 
cleaned data (see Fig. 8b–d). The macro-average ROC curve, computed using an average of curves across all 
classes, also shows improvement for the model trained on cleaned data (see Fig. 8b–d). Figure 9 further shows 
the exact difference in the area under the ROC curve between the baseline (see Fig. 8a–c) and cleaned data (see 
Fig. 8b–d).

Feature space visualization analysis. It is often challenging to visualize a high-dimensional feature 
space. Thus, we used the t-SNE dimensionality reduction technique to validate model performance by visual-
izing the feature space. The model features are extracted using a model trained on both baseline and cleaned 
dataset patches. This analysis aimed to show the difference between the feature spaces of the two models. Hence, 
we have simply used the default parameters of the scikit-learn t-SNE method. Figure 10 shows that the feature 
space for the baseline is relatively scattered and classes overlap with each other; however, the feature space for 
the cleaned data is well confined, and classes are clearly separated, implying that the CNN model yields a well-
defined feature space for the cleaned data compared to that for the noisy data.

Figure 8.  ROC analysis. The first row (a,b) shows model performance for ternary classes, and the second row 
(c,d) shows the model performance for quaternary classes.
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Noise handling ability analysis. We validated the performance of the proposed method by adding syn-
thetic noise to a publicly available dataset. Synthetic noise is applied randomly by changing the labels to the 
opposite class in each distribution by various percentages (10%, 20%, 30%, and 40%). Our results for varying 
noise levels further underscore the robustness of the proposed method (LossDiff), even with high noise levels; 
notably, LossDiff exhibited 10% better accuracy than the baseline method for 40% synthetic noise, as shown in 
Table 8. Figure 11 also shows that LossDiff is more robust than the baseline model at different noise levels. To 
mitigate noise, two sets of configurations were adopted: sample discarding and label flipping. Sample discard-
ing yielded better results than label flipping. One of the main causes of the improved performance using sample 
discarding may be the removal of uncertain labels. If we perform label flipping, many misclassifications increase 
model complexity and negatively influence convergence. It is also worth noting that for extensive noise levels, 
label flipping occurs more than sample discarding because the model attempts to converge based on newly 
flipped data.

Comparison with the related work. To demonstrate the superiority of the proposed method, we have 
compared our method with the competing methods from the literature, which focus on label noise (see Table 9). 
To the best of our knowledge, this study is among the first to assess and report the results of different label 

Figure 9.  Difference in the area under the ROC curve for the baseline ( Db ) and cleaned data ( Dc).

Figure 10.  Feature space visualization for DenseNet-201 features using t-SNE dimensionality reduction 
based on baseline and cleaned data. The red, blue, yellow, and green colors denote the, malignant, dysplastic, 
uncategorized and benign classes, respectively.
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denoising methods for whole-slide images. Note that the details of competing methods can be found in their 
respective  studies60–64 and as such, their detailed descriptions are omitted from this study.

We first evaluated these methods using their default hyperparameters and then used settings similar to those 
in LossDiff. Note that all methods were tested on the same balanced data to avoid the bias associated with easy-
to-classify patches and certain distributions. Two methods, the deep abstain classifier and confidence learning 
methods, use a filtering approach; both these methods were tested on the cleaned data generated from these 
methods and the proposed method. Four methods, i.e., baseline, Mixup, co-teaching, and symmetric cross-
entropy loss, were tested based on the baseline test data and cleaned data generated by the proposed method. 
The training times for different methods are reported in Fig. 12, which shows that LossDiff is efficient in terms 
of time complexity.

As shown in Table 9, LossDiff outperforms all other methods, including the deep abstaining classifier, which 
is the second-best performer. Our proposed LossDiff method monitors the loss of correctly classified instances 
only in batches rather than considering all cases at once. This approach mitigates overfitting by eliminating the 
samples with loss values higher than the average loss in all iterations, even if they are correctly classified, thereby 
reducing the likelihood of overfitting.

Note that the each model could be improved by adjusting the values of hyperparameters, but due to space 
constraints, we report the best results for the two considered configurations. LossDiff requires the shortest train-
ing time for two reasons. First, decisions regarding noise predictions are simple, as described in the Methods 

Table 8.  Accuracy comparisons for different noise levels between the baseline method (with label noise) and 
LossDiff (without label noise) for sample discarding and label flipping approaches. Significant values are in 
bold.

Measure Configuration

Percentage of noise

10 20 30 40

Accuracy

Baseline 84.23 83.31 78.45 69.33

LossDiff (Sample discarding) 85.59 84.27 83.51 79.67

LossDiff (Label flipping) 85.75 84.09 81.31 77.13

Number of samples affected
Samples discarded by LossDiff 26,178 52,376 78,243 104,770

Samples flipped by LossDiff 21,271 53,779 85,253 113,565

Figure 11.  Accuracy comparison between baseline and LossDiff at different levels of noise.

Table 9.  Accuracy comparisons between extant label noising methods and LossDiff using the same set of 
stomach image data. Significant values are in bold.

Classes Malignant and benign (binary) Malignant, dysplasia, and benign (multiple ternary)
Malignant, dysplasia, uncategorized, and benign 
(multiple quaternary)

Mixup60 98.61 91.23 76.16

Co-teaching61 93.72 88.30 71.25

Deep abstaining  classifier62 98.59 95.14 77.18

Symmetric cross-entropy  loss63 95.74 91.90 72.57

Confidence  learning64 93.51 89.87 70.70

LossDiff 98.81 97.30 89.47



14

Vol:.(1234567890)

Scientific Reports |         (2022) 12:1392  | https://doi.org/10.1038/s41598-022-05001-8

www.nature.com/scientificreports/

section. Second, LossDiff uses a sample discarding approach that eliminates uncertain data, making the training 
dataset small but adequate.

Discussion
Whole-slide image analysis is the gold standard for diagnosing different types of cancers. The prevalence of 
stomach cancer is high among various types of  cancers48. As such, there is a need for automated diagnostic 
systems for assessing whole-slide images of stomach cancer. Notably, conventional machine learning algorithms 
are not suitable for identifying and predicting complicated patterns of digital pathology, which poses several 
 challenges4,37 for deep learning. Specifically, challenges such as the requirement of a large training dataset, the 
curse of dimensionality, and labeling a large amount of data hinder the practical applicability of CNNs to whole-
slide images of cancer in general and stomach cancer in particular.

Digital pathology aims to eliminate the requirement of large amounts of training data by providing ease of 
data access for different networks, thus enabling researchers to use data remotely and instantly share  information4. 
Whole-slide images contain gigapixels of data, whereas CNNs usually process images of small size because of 
computational limitations. Most researchers use a patch-based classification for whole slide  images5 using CNNs. 
One of the ignored problems with regard to whole-slide image analysis is weakly annotated data, which is practi-
cally unavoidable, as it is almost impossible for a human annotator to create a precise pixel-level segmentation 
result when labeling a problematic area. Most abnormal annotations include small benign regions, thus result-
ing in label noises (or false positives) in the training data. To resolve label noise issues in the training data, past 
research has focused on benchmark datasets related to distinguishable objects and medical images, whereas 
whole-slide images have largely been ignored.

To overcome patch-based label noise problems, this study presents a method called LossDiff for filtering and 
removing patch-based label noise. Initially, we consider the loss of correctly classified labels and compare the cor-
responding value with the average batch loss. In this way, a CNN can learn the general distribution of loss up to a 
specific number of epochs. The CNN then starts filtering samples if the minibatch loss surpasses the average batch 
loss. This method does not require any subset of cleaned samples for training, unlike mentor and co-teaching 
 approaches10,61. The proposed method also avoids the need for an extra layer of hidden units, additional classes, 
and multiple loss functions to learn the noise  distribution39,43,47. The targeted and straightforward nature of the 
proposed method enables it to mitigate patch-based label noise by providing an adequate and effective solution 
for leveraging data, time, and computational resources.

To validate the performance of the proposed approach, several evaluation methods were employed, and 
notable improvements were achieved with the cleaned data. LossDiff yielded an accuracy of 98.8%, with an 
approximately 4% improvement over the baseline, for the binary classification problem, 97.3% accuracy, with 
an approximately 6% improvement over the baseline, for the ternary-class problem, and 89.5% accuracy, with 
an approximately 15% improvement over the baseline, for the quaternary-class problem. Additionally, the con-
fusion matrix shows decreases in false negatives and false positives, which are critical for diagnostic systems; 
notably, false negative diagnoses can have significant adverse implications for patients’ proper treatment plans 
and survival chances. The results of the test characterized by p-values < 0.001 show that the predictions obtained 
from the LossDiff and baseline methods are highly significantly different.The area under the ROC curve for the 
clean data obtained via LossDiff also displays a substantial improvement in the true-positive rate versus the false-
positive rate compared to that for the original data. Feature space visualization using t-SNE further validates 
the performance of the proposed approach, and the CNN produces a much better confined feature space with 
the cleaned data than with the baseline data. One important thing to note from the feature space visualization 
results is the uncategorized class, which consists of abnormalities (specifically, atypical glandular proliferation, 
neuroendocrine tumors, submucosal tumors, low-grade lymphoma, and stromal tumors). These subgroups not 
only add intraclass complexity but also affect the model’s performance (see Fig. 13). Thus, we evaluated ternary 
and quaternary classes separately. We also checked the model robustness using several noise levels, and the 
results show that the model is robust, even at high noise levels, as reported in Table 8. To demonstrate the final 

Figure 12.  Training time comparison for different noise reduction methods.
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model output, we present the CNN results in Fig. 13, which shows the heatmaps of abnormal regions next to 
the input slides.

In the past, several studies employed different techniques to improve the classification of whole-slide images 
(see Table 10). Until 2015, researchers focused on handcrafted feature extraction techniques, which required 
additional human effort and were unreliable given varying environmental factors such as lighting conditions, 
different microscopes, and staining methods. CNNs, however, can automatically extract useful latent features 
and provide better generalization results for unseen  data65. Many of the studies of whole-slide images have 
considered different machine learning classification models and ignored the label noise problem. In this regard, 
the proposed method can improve the applicability of CNNs in whole-slide image analysis by systematically 
mitigating the label noise issue. In terms of performance improvement, the proposed method yields notable 
outcomes by explicitly considering the label noise issue (see Table 7).

We evaluated the performance of recently published methods of label noise removal based on whole-slide 
image data and found that LossDiff provides the best results (see Table 9).

One of the possible reasons for the higher accuracy of the proposed method compared to previous methods 
can be attributed to the focus on individual classes and the comparison of the overall loss distribution for cor-
rect predictions versus the loss distribution of correctly classified instances within a batch. Correctly classified 
instances with high loss can result in overfitting, as shown in Fig. 5, but LossDiff systematically eliminates such 
samples. Moreover, LossDiff continuously filters and removes noisy patches during the training phase, allowing 
the CNN to be retrained on a new version of data every epoch. Rather than inputting the corrupted labels into 
the CNN again, the network uses the data that have been filtered. Another advantage of this approach is that 
it does not rely on verified  data46 or co-teaching  approaches61. Our results indicate that reducing patch-based 
label noise before performing cancer classification based on whole-slide images can significantly enhance model 
performance. Enabling the model to learn the cell morphology instead of relying on the forced memorization 
of patches yields improved classification performance. Training based on cleaned data over time aids in model 
calibration compared to using data with noisy labels, as shown in Fig. 10.

In a future study, the threshold α , which was set empirically in this study to avoid the elimination of difficult 
cases (with true positives), can be learned by adding a layer of learnable parameters in parallel to the existing 
architecture. Another future research direction is to analyze filtered patches in detail, which can help avoid the 
possibility of filtering true positive patches and aid the system in saving training data by not filtering patches 
with correct labels and improve model performance by leveraging the most-useful training data.
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Figure 13.  The final output of the CNN trained based on the cleaned malignant, dysplasia, uncategorized, and 
benign data and the corresponding heatmaps of abnormal regions.

Table 10.  Methods and results for computer-aided analyses of whole-slide stomach images.

Study Objective Feature selection Technique

Sharma et al.66 Leukocytes, epithelial nuclei, fibrocytes/border cells, other nuclei classification Handcrafted AdaBoost classification

Sharma et al.67 Feature extraction and Nontumor, Her2/neu + tumor, Her2/neu-tumor classification Handcrafted Relational graphs

Sharma et al.68 HER2 + tumor, HER2 − tumor, and Nontumor classification Automated CNN

Qu et al.69 Epithelium, stroma, and tissue background classification Automated CNN fine tuning

Li et al.70 Malignant and benign classification Automated CNN

Kim et al.71 Malignant region, tubular adenoma (TA), and benign classification Automated CNN and random forest classifier

Wang et al.72 Malignant, dysplasia, and benign classification Automated Multi-instance learning using a CNN

Song et al.73 Malignant and benign classification Automated DeepLab v3 segmentation for slide-level classification
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In conclusion, the morphology of whole-slide images makes the labeling process vulnerable to human error, 
resulting in false-positive regions, which exacerbate the automated detection of cancer at the patch level. Noisy 
patches in whole-slide images can affect CNN performance, as the model may struggle to converge in the 
presence of label noise. In this study, we proposed a deep learning patch label denoising method (LossDiff) to 
eliminate noisy patches from whole-slide images. LossDiff eliminated the need for extra layers in capturing the 
noise distribution and reduced the reliance on predefined verified labels and curriculum-like approaches. The 
performance comparisons of the proposed method with competing methods using the same dataset of whole-
slide images showed that LossDiff yielded the best patch-level accuracy. A McNemar test further statistically 
validated and confirmed the difference between LossDiff and the baseline methods. With a publicly available 
dataset and various levels of induced synthetic noise, LossDiff also showed superior performance. Given the high 
cost of producing explicit annotations for whole-slide images and the unavoidable error-prone nature of human 
annotations of medical images, the proposed method has practical implications for whole-slide image annotations 
and automated cancer diagnosis. This approach can save time and money in generating clean sets of training data 
and provide improved classification results, ultimately enhancing patient treatment plans and survival chances.

Data availability
The stomach whole-slide images used in this study were collected by Seegene Medical Foundation, South Korea. 
Data are not available for public use, and restrictions apply. Detailed information about data collection and 
processing is provided in the Dataset subsection. The public dataset used in this study is  available51.
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