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Abstract: Gastrointestinal (GI) cancer is one of the common causes of cancer-related death worldwide.
Chemotherapy and/or immunotherapy are the current treatments, but some patients do not derive
clinical benefits. Recently, studies from cancer molecular subtyping have revealed that tumor
molecular biomarkers may predict the immunotherapeutic response of GI cancer patients. However,
the therapeutic response of patients selected by the predictive biomarkers is suboptimal. The tumor
immune-microenvironment apparently plays a key role in modulating these molecular-determinant
predictive biomarkers. Therefore, an understanding of the development and recent advances in
immunotherapeutic pharmacological intervention targeting tumor immune-microenvironments
and their potential predictive biomarkers will be helpful to strengthen patient immunotherapeutic
efficacy. The current review focuses on an understanding of how the host-microenvironment
interactions and the predictive biomarkers can determine the efficacy of immune checkpoint inhibitors.
The contribution of environmental pathogens and host immunity to GI cancer is summarized.
A discussion regarding the clinical evidence of predictive biomarkers for clinical trial therapy
design, current immunotherapeutic strategies, and the outcomes to GI cancer patients are highlighted.
An understanding of the underlying mechanism can predict the immunotherapeutic efficacy and
facilitate the future development of personalized therapeutic strategies targeting GI cancers.

Keywords: gastrointestinal cancer; predictive biomarker; immunotherapy; immune system;
tumor microenvironment

1. Introduction

Gastrointestinal cancer (GI) is one of the deadliest malignancies, accounting for 3.3 million deaths
worldwide according to the 2018 Globocan report. Patients are often diagnosed at a late and advanced
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stage and thus have limited treatment options. Approximately 20–25% of patients develop metastasis
during the course of the disease [1]. Despite a meaningful prognosis and targeted chemotherapies, the
overall survival rate in these patients still remains low [2]. Immunotherapeutic strategies have been
successfully used in the treatment of melanoma, non-small cell lung cancer (NSCLC), and hematological
malignancies [3,4]. However, these treatments have yielded an undesirable objective response rate (ORR)
between 10% and 25% in GI cancers [5]. Understanding the tumor immune-microenvironment and
potential predictive biomarkers will be helpful in strengthening patients’ immunotherapeutic responses [6].

This review focuses on the common GI cancers, specifically pancreatic cancer (PC), colorectal
cancer (CRC), and hepatocellular carcinoma (HCC). Four points are discussed here: (1) The influence
of pathogen-specific microbes and viral infections on GI cancers in light of chronic inflammation in
pathogenesis. (2) The paracrine effect of fibroblasts and how a tumor modulates innate and adaptive
immunity. (3) The emerging predictive biomarkers from molecular subtyping that contribute to the
tumor immune landscape. (4) The existing and ongoing clinical trials on immunotherapy and their
outcomes in GI cancers.

2. Crosstalk between the Immune System and Microbiomes on Homeostatic Regulation in GI Cancer

Gut microbiota are comprised of approximately 100 trillion diverse micro-organisms encompassing
a varied taxonomy of 2000 distinct species. The microbes contain approximately 5,000,000 genes, which
is 100–150 times higher than the genes in the human genome [6]. In healthy humans, the dominant
bacterial phyla are Firmicutes (30–50%), Bacteroidetes (20–40%), and Actinobacteria (1–10%) [7].
Gut microbiota play a protective role against disease and a modulatory effect on immune cells [8].
They are also required to stimulate the proper development of gut-associated lymphoid tissues,
including the Peyer’s patches, crypt, and other structures, while regulating helper T cell-mediated
immunity [9]. Commensal bacteria colonize the host at birth and are essential to host development
by priming the metabolic, immune, and nervous systems [10,11]. The mucosa of both the small
and large intestine contain many scattered lymphocytes and lymphatic nodules, each of which are
covered by columnar epithelial cells and mucus secreting goblet cells [12]. Homeostasis within the
colon is largely maintained by the interaction between intestinal microbes and the immune system,
mediated by intestinal epithelial cells. The relationships between microbiome dysbiosis and CRC
have been discussed [13,14]. The interaction between the liver–pancreas and gut microbiota is indirect.
In instances where a certain assault compromises the intestinal barrier, gut-derived bacteria produce
lipopolysaccharides (LPS) and other metabolites, which translocate through the portal vein and
pancreatic duct, respectively (see Figure 1) [15].
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Figure 1. Intestinal homeostasis and dysbiosis of gut microbiomes in gastrointestinal cancer 
development. (A) Gut homeostasis. The gut homeostasis is maintained by an intricate network of 
factors such as regenerating islet-derived III-gamma (RegIIIγ), interleukin-22 (IL-22) and interleukin-
17 (IL-17) secreted by innate lymphoid cells (ILC). These factors regulate the diverse gut microbiome, 
aid tissue repair, and barrier protection. Inhibition of immune activation by regulatory T cells (Treg) 
is aided by interleukin-10 (IL-10), retinoic acid and granulocyte macrophage-colony stimulating factor 
(GM-CSF) secreted by macrophage and innate lymphoid cells (ILC) respectively. In addition, secreted 
TGF-β and IL-18 preserve the intestinal barrier integrity and also promotes early development of 
regulatory T cells (Tregs). (B) Dysbiosis. On the other hand, an altered gut barrier due to a 
dysregulated microbiome disrupts the intestinal barrier resulting to leakage of microorganism 
associated molecular patterns (MAMPs), pathogens associated molecular patterns (PAMPs) and 
death associated molecular patterns (DAMPs) into the lamina propria. In addition, T helper-1 and T 
helper-17 produce interferon-gamma (IFN-γ), interleukin-17 (IL-17), interleukin -22 (IL-22) and excess 
nitric oxide, which induce loss of barrier integrity. Macrophages secretes inflammatory factors such 
as tumor necrosis factor (TNF-α), interferon- gamma (IFN-γ), interleukin-1 beta (IL-1β), interleukin -
6 (IL-6), interleukin -16 (IL-16), interleukin-17 (IL-17), interleukin-18 (IL-18), and chemokines. These 
factors translocate via the portal vein and pancreatic duct to the liver and pancreas, respectively, and 
do so directly unto the colon–rectum, thereby initiating inflammation and cancer. 

Though the pancreas was initially presumed to be a sterile organ and not usually exposed to 
microbiota, Pushalkar et al. [16] reported a 1000-fold increase of the intrapancreatic bacteria of human 
pancreatic ductal adenocarcinoma (PDAC) compared with normal pancreatic tissue. Similarly, 
several studies have identified a relationship between microbiota, inflammation, and PC [17]. In 
addition, Sun et al. [18] found that pancreatic β-cells express cathelicidin-related antimicrobial 
peptide under the influence of gut microbiota, thereby exerting an immunoregulatory effect. By 
contrast, the liver is constantly exposed to microbiota through the liver sinusoid [19]. The liver is a 
powerful local surveillance and tolerogenic system with a unique blood supply that plays a role in 
immunological defense and homeostasis. 

The liver’s first line of defense is conferred by the resident Kuppfer cells (KCs), which enhance 
hepatic tolerance by stimulating anti-inflammatory cytokines in response to endotoxins while 
suppressing T cells through the activation of a toll-like receptor (TLR2) [20]. Exposure of the liver to 
microbes enhances activation of KC via TLR3, which inhibits immune tolerance and induces T cell 
response [21]. In addition, liver sinusoid epithelial cells (LSEC) express most of the TLRs and present 
antigens directly to T cells [22]. Myeloid-derived suppressor cells (MDSCs) are potent activators of 
suppressive cytokines such as interleukin (IL)-10, IL-17, and transforming growth factor-beta (TGF-
β), which downregulate the activity of both CD4+ and CD8+ T cells [23,24]. Natural killer (NK) cells 

Figure 1. Intestinal homeostasis and dysbiosis of gut microbiomes in gastrointestinal cancer
development. (A) Gut homeostasis. The gut homeostasis is maintained by an intricate network of
factors such as regenerating islet-derived III-gamma (RegIIIγ), interleukin-22 (IL-22) and interleukin-17
(IL-17) secreted by innate lymphoid cells (ILC). These factors regulate the diverse gut microbiome, aid
tissue repair, and barrier protection. Inhibition of immune activation by regulatory T cells (Treg) is aided
by interleukin-10 (IL-10), retinoic acid and granulocyte macrophage-colony stimulating factor (GM-CSF)
secreted by macrophage and innate lymphoid cells (ILC) respectively. In addition, secreted TGF-β and
IL-18 preserve the intestinal barrier integrity and also promotes early development of regulatory T cells
(Tregs). (B) Dysbiosis. On the other hand, an altered gut barrier due to a dysregulated microbiome
disrupts the intestinal barrier resulting to leakage of microorganism associated molecular patterns
(MAMPs), pathogens associated molecular patterns (PAMPs) and death associated molecular patterns
(DAMPs) into the lamina propria. In addition, T helper-1 and T helper-17 produce interferon-gamma
(IFN-γ), interleukin-17 (IL-17), interleukin -22 (IL-22) and excess nitric oxide, which induce loss of
barrier integrity. Macrophages secretes inflammatory factors such as tumor necrosis factor (TNF-α),
interferon- gamma (IFN-γ), interleukin-1 beta (IL-1β), interleukin -6 (IL-6), interleukin -16 (IL-16),
interleukin-17 (IL-17), interleukin-18 (IL-18), and chemokines. These factors translocate via the portal
vein and pancreatic duct to the liver and pancreas, respectively, and do so directly unto the colon–rectum,
thereby initiating inflammation and cancer.

Though the pancreas was initially presumed to be a sterile organ and not usually exposed to
microbiota, Pushalkar et al. [16] reported a 1000-fold increase of the intrapancreatic bacteria of human
pancreatic ductal adenocarcinoma (PDAC) compared with normal pancreatic tissue. Similarly, several
studies have identified a relationship between microbiota, inflammation, and PC [17]. In addition,
Sun et al. [18] found that pancreatic β-cells express cathelicidin-related antimicrobial peptide under
the influence of gut microbiota, thereby exerting an immunoregulatory effect. By contrast, the liver
is constantly exposed to microbiota through the liver sinusoid [19]. The liver is a powerful local
surveillance and tolerogenic system with a unique blood supply that plays a role in immunological
defense and homeostasis.

The liver’s first line of defense is conferred by the resident Kuppfer cells (KCs), which enhance
hepatic tolerance by stimulating anti-inflammatory cytokines in response to endotoxins while
suppressing T cells through the activation of a toll-like receptor (TLR2) [20]. Exposure of the liver to
microbes enhances activation of KC via TLR3, which inhibits immune tolerance and induces T cell
response [21]. In addition, liver sinusoid epithelial cells (LSEC) express most of the TLRs and present
antigens directly to T cells [22]. Myeloid-derived suppressor cells (MDSCs) are potent activators of
suppressive cytokines such as interleukin (IL)-10, IL-17, and transforming growth factor-beta (TGF-β),
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which downregulate the activity of both CD4+ and CD8+ T cells [23,24]. Natural killer (NK) cells
within the liver respond to cell surface antigens caused by pathogens and stimulate both innate and
adaptive responses through their ability to secrete various cytokines (e.g., IL-15, 1L-7, 1L-12, and
interferon-gamma (IFN-γ) [25]. These cytokines are counterbalanced by TGF-β, IL-10, and IL-13 [26].
Hepatic NK cells also exert an immunomodulatory effect via pro-inflammatory and anti-inflammatory
cytokines [25]. Therefore, any deregulation of the abovementioned intricate network of immune cells,
gut microbiota, and intestinal barrier results in gastrointestinal diseases [27] (see Figure 1).

3. Influence of Pathogens and Role of Immune Cells in GI Cancer

3.1. Influence of Microbiomes on GI Cancer

The pro-tumorigenic role of gut dysbiosis has been described in different cancers through
multiple mechanisms, including metabolic changes, inflammatory cytokines, oncogenic pathways,
and adhesion molecules [28]. The bacteria and its metabolites contributes to gastrointestinal cancers.
Porphyromonas gingivalis, an important contributor for systemic inflammation, was shown in higher
levels in PC patients [29,30]. P. gingivalis is an activator of TLR which acts through the immunoglobulin
(Ig)–like molecule (B7-H1) receptor and its mediated co-stimulatory signal. This promote the
apoptosis of activated T cells [31,32]. Similarly, the proteobacteria (gut microbiota) within the
tumor microenvironment have been shown to promote immune suppression through the activation of
toll-like receptors in monocytic cells [16]. Hence, proteobacteria ablation results in the immunogenic
reprogramming of the tumor microenvironment through enhanced T helper-1 (TH1) differentiation of
CD4+ and up-regulation of programmed cell death- 1(PD-1) expression [16]. Additionally, the liver
tissue is the most common metastatic organ for PC. The recruitment of granulin-secreting inflammatory
monocytes to the liver reprograms hepatic stellate cells into myofibroblasts, which supports the
growth of metastasizing tumor cells [33]. The accumulation of lipopolysaccharides contributes to the
pathogenesis of HCC by activating pro-inflammatory cytokines through toll-like receptor 4 (TLR-4) [34].
TLR activates innate immunity through myeloid differentiation primary-response protein 88-dependent
(MyD88) and MyD88-independent pathways [35] (see Figure 2).

Mice deficient in both TLR-4 and MyD88 have shown a significant decrease in the incidence and
sizes of chemical-induced liver cancers, suggesting a strong relationship between TLR-4 signaling
and hepatocarcinogenesis [36]. Several bacteria such as Fusobacterium nucleatum, Escherichia coli,
Bacteroides fragilis, and Enterococcus faecalis are elevated in CRC patients [37]. By contrast, Clostridiales,
Faecalibacterium, Blautia obeum, and Bifidobacterium are absent within CRC [38]. Bacteria that colonize
the surfaces of the caecum and colon induce inflammation through the T helper-1 and T helper-17
(Th1/Th17) immune response. This aids the recruitment of tumor-infiltrating myeloid cells and cancer
progression [39,40]. Studies have shown that STAT3 (signal transducer and activator of transcription
3) activation contributes to inflammatory bowel disease and CRC [41,42]. Bacteria also activates
ERK (extracellular signal-regulated kinase) and C-MYC, as demonstrated in an APC min/+/MyD88−/−

mouse models [43]. Dejea et al. reported that 89% of right-sided and 12% of left-sided human CRC
contain microbial biofilm [44]. Similarly, microbial biofilm from a healthy individual may be a point of
transition from a healthy state to a diseased state [45]. Tomkovich et al. [46] demonstrated that microbial
biofilm from CRC patients and healthy individuals induces tumor formation when transferred to
germ-free mice. Additionally, the microbial biofilm from a CRC patient aggressively promoted tumor
growth within one week compared with biofilm-positive homogenates from a healthy individual.
Furthermore, the carcinogenic phenotype maintained in a new host is same as the phenotype from
the biofilm source. Immune cells such as natural killer T (NKT) cells, myeloid cells, and Th17 were
recruited by the biofilm in the germ-free mice. A contrasting role has been reported for Th17, given its
involvement in biofilm-induced tumor formation. For example, it is pro-inflammatory through its
enhanced secretion of IL-22 and IL-17 [47]. Conversely, an inflammatory-independent role has been
reported in F. nucleatum-fed mice [39].
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Figure 2. The mechanisms by which pathogens induce gastrointestinal cancer. Nuclear factor-kappa B
(NF-κB) is stimulated through virus-induced activation of toll like receptor (TLR), retinoic acid-inducible
gene-1 (RIG-1) and Epstein–Barr virus latent membrane protein 1 (LMP1). Bacterial infection also can
activate TLR and myeloid differentiation primary response 88 (MYD88) to stimulate NF-κB, which in
turn promotes pro-inflammatory cytokines; IL-6, IL-1β, IL-8, tumor necrosis factor-α (TNF-α) and vice
versa. The activation of pro-inflammatory cytokines promotes infiltration of dendritic cell, macrophages
and other immune cells which activates Janus kinase/signal transducer and activator of transcription
3 (JAK-STAT3). The inflammatory responses and NF-κB activation promotes cell proliferation and
cancer initiation. In addition, the cross-talk between (NF-κB) and JAK-STAT3 stimulate cell growth,
angiogenesis and thus accelerate tumorigenesis.

3.2. Influence of Virali Infection in GI Cancers

Viral infection agents are risk factors of cancers. The role of human papilloma virus, hepatitis virus
(B and C), coxsackie virus, cytomegalovirus (CMV), human immunodeficiency virus, herpes simplex
virus, mumps, and varicella-zoster virus have been documented [48]. For example, chronic hepatitis
B and C viruses are the leading cause of HCC worldwide [49]. These viruses are also present in the
extrahepatic tissue contributing to extrahepatic metastasis in PC [50]. Similarly, transfusion-transmitted
virus (TTV), one of the causative agents of hepatitis, has been detected in pancreatic tumor patients [51].
However, the nature of the link between PC and TTV is unknown. Till date, studies regarding the
role of viral infection in PC is limited. The presence of viral DNA has been reported in colorectal
tumor tissues. For instance, human papillomavirus has been detected in 1,549 samples [52] and BK
virus has been detected in 50 clinical specimens [53]. More recently, Mjelle et al. identified micro RNA
(miRNAs) from Epstein-Barr virus in CRC tumor samples [54]. Whether viral infections contribute
to the development of CRC remains controversial. It is well documented that chronic inflammation
is the cause of cancers [55]. Viral infections have been shown to directly initiate cell proliferation
and promote inflammation [56]. Residues from death-associated molecular patterns (DAMP) and
inflammasomes promote inflammatory cytokines, leading to HCC progression [57]. The inflammatory
responses promote lymphocyte infiltration, macrophages, natural killer cells, dendritic cells, and
pro-inflammatory cytokines (IL-6 and TNF), which activate STAT3 and NF-κB (nuclear factor-kappa
B) [58]. NF-κB stimulates pro-inflammatory cytokines such as IL-6, IL-1β, IL-8, TNF-α and chemokines
C-X-C motif ligand 1 and 2 (CXCL1 and CXCL2) [59] (see Figure 2). Additionally, pro-inflammatory
cytokines exert a stimulatory effect on cyclo-oxygenase (COX)-2, which regulate immunity and maintain
gastrointestinal integrity [60]. Hence, the inhibition of STAT3 and NF-κB abolish inflammation in
animal models of HCC [61], PC [62], and CRC [63]. Conversely, the inhibition of NF-κB enhances
HCC, thereby damaging hepatocytes in animal models of hepatitis B-virus (HBV)-driven HCC [64].
Therefore, NF-κB poses a challenge due to its opposing role in HCC. Furthermore, the persistent
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activation of the immune system due to viral infection results in organ damage due to a weakened and
overpowered immune system [65], leading to T and NK cell exhaustion [66]. It has been shown that
a memory-like virus-specific T cell is elevated without cessation despite the withdrawal of chronic
antigen stimulation during viral infection [67]. Exhausted T cells express multiple inhibitory receptors
such PD-1, lymphocyte activation gene-3 (LAG-3), T cell immunoreceptor with Ig ITIM domains
(TIGIT) [68]. Similarly, exhausted NK cells also express NKG2A as a checkpoint molecule during viral
infection. A recent study identified thymocyte selection-associated high mobility group box protein
(TOX) as the main regulatory protein in exhausted T cells [69]. The similarities between virus-induced
T cell exhaustion and dysfunctional T cells in cancer have been a major debate. However, limited
knowledge exists on the similarities between dysfunctional T cells in cancer and exhausted T cells
in viral infection. The persistent activation of CD8+ T cells results in loss of their effector function.
This leads to dysfunctional T cells with molecular profiles that distinguishes them from exhausted
cells in chronic viral infection [70]. By contrast, Miller et al. [71] identified a shared epigenetic program
of exhaustion that is independent of the disease-specific milieu by comparing exhausted CD8+ T
cells from mice infected with lymphocytic choriomeningitis virus and CD8+ T cells isolated from
ovalbumin-expressing B16F10 (B16-OVA) mouse melanoma tumors. Studies from transcriptome
analysis have shown high similarities between T cell dysfunction in HCC and exhausted T cell from
chronic HBV infection. However, viral induced exhausted T cells and non-viral dysfunctional T cells
possesses specific genes and signaling pathways [72]. Exhausted CD8+ T cells still have effector
functions in both chronic viral infection-induced tumors and cancers without viral infection [71,73].
The effector function is regulated by a balance between the two major subpopulations of the exhausted
T cells (progenitor exhausted and terminal exhausted cells) (see Figure 3).
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Figure 3. Viral infection promotes T cell exhaustion. The chronicity of viral infection determines the
fate of CD8+ T cell. During acute viral infection, naïve CD8+ T cells differentiate into effector CD8+ T
cells. These subset of effector CD8+ T cells possess an effective cytotoxic activity through diverse T cell
receptor (TCR). However, chronic viral infection promotes antigen persistence, causing expression of
exhaustion markers on T cells and a phenotype switch to an exhausted state. Exhausted T cells have
two subpopulations; progenitor exhausted and terminally exhausted T cells. The progenitor exhausted
T cells are responsive to immune checkpoint inhibitor (ICI), whereas terminally exhausted T cells are
more abundant within the tumor and are non-responsive to immune checkpoint inhibitor (ICI).



Int. J. Mol. Sci. 2019, 20, 4624 7 of 47

The terminally exhausted T cells with a shorter life span have CD8+ T cell cytotoxic effector
function [74]. By contrast, progenitor-exhausted cells have a longer life span but a poor cytotoxic
effect [71].

3.3. Paracrine Effect of Fibroblasts on GI Cancer

Fibroblasts are spindle-shaped cells found within loose connective tissue [75]. They consist
of protein fibers composed of collagen (collagenous fibers) scattered loosely within the confines of
the extracellular matrix. Fibroblasts are activated not only in wound healing but also in cancer,
and are referred to as cancer-associated fibroblasts (CAFs). CAFs are a major subset in the tumor
microenvironment that provide cues to cancer cells in the form of secretions, aiding their growth
in a paracrine manner [76]. Though the specific origin of CAFs remains controversial, studies have
proposed that they consist of a diverse subset that is differentiated from a specific origin such as
conventional fibroblasts in the early stages of a tumor [75], recruitment from bone marrow-derived
mesenchymal stem cells [77], or non-fibroblast lineage (epithelial cell, blood vessels or serosa, and
stem cell origin) [78]. More recently, a distinct population of CAFs was found in breast cancer
and NSCLC. These populations express complement 5a G-protein coupled receptor-77 (GPR77) and
CD10 with the ability to promotes stemness and chemoresistance through the NF-κB activation and
cytokine secretion (IL-6 and IL-8) [79]. Furthermore, CAF have specific markers that are shared with
other cell types. For instance, a fibroblast marker known as alpha smooth muscle (α-SMA) is also
expressed by the smooth muscle cell of GIT. Ozdemir et al. [80] found that depleted α-SMA+ cells
led to tumor progression in a PDAC mouse model. Conversely, the high expression of fibroblast
activation protein (FAP) has been found to correlate with poor prognosis in both CRC and PDAC.
Therefore, the depletion of FAP leads to impaired tumors in both types of cancer [81–83]. It is known
that sonic hedgehog signaling pathways contribute to the development of tumors. However, the use of
hedgehog inhibitors in pre-clinical and clinical studies has failed to alleviate tumor progression in both
PDAC and CRC [84,85]. FAP+ CAFs modulate the tumor microenvironment through secretions such
as C-C motif chemokine ligand 1, 2 and 5 (CCL1, CCL2, CCL5) and CXCL12 in HCC [86]. In addition,
CAFs recruits monocytic MDSCs (M-MDSCs), regulatory T cells (Treg CD4+ CD25+ cells) and initiates
macrophage polarization [87,88]. However, evidence has suggested that MDSCs recruited by CAF
exert a neutralizing effect within the tumor microenvironment [89]. Inflammatory cytokines such as
IL-6, IL-1, and TGF-β secreted by CAF inhibit both IFNγ secretion in PC and the tumoral infiltration
of CD8+ T cells in colon cancer [90,91]. Recently, a study showed that both hepatocyte growth factor
(HGF) and IL-6 secreted by CAF promote stemness in CD24+ HCC through STAT3 activation [92].
Colony stimulating factors (CSF) have been shown to modulate the crosstalk between CAFs and cancer
cells via CXCL1 [89]. Clinical studies reported a minimal effect of the CSF-1 inhibitor on the disruption
of such crosstalk in gastrointestinal tumors [93]. CAFs and CD90+ colonic (myo)fibroblasts express
PD-1, which suppresses Th1 helper T cells in ulcerative-induced colitis patients [94] as well as CD8+ T
cells [95]. In addition, CAF also exerts a modulatory effect on neutrophils by increasing PD-L1, IL-8,
TNF-α, and CCL2 expression thereby inhibiting T cell response [96].

3.4. Drivers of Innate Immunity and GI Cancer

3.4.1. NK Cells

NK cells are a component of innate immunity and the first line of defense against foreign agents
within the body. They kill target cells without prior notice at first sight and recruit the adaptive immune
components to reinforce the immune response through cytokine secretion [97,98]. NK cells can be
distinguished by the expression of CD16 and CD56, constituting CD56 bright/CD16− (tissue NK cells)
and CD56 dim/CD16+ (blood) subsets. The cytotoxic effect of NK cells are primarily attributed to
the CD56 dim/CD16+ subset, which constitutes approximately 90% of NK cells [99]. CD 16 plays an
important role in the activation of NK cells by binding to the Fragment crystallizable (Fc) portion of
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immunoglobulins and causing the release of cytokine, thereby recruiting adaptive immunity through
antibody-dependent cell-mediated cytotoxicity [100]. The number of NK cells has been reported to
outnumber CD8+ T cells in liver tumors [101]. Despite this, NK cell function is diminished in HCC.
Several explanations for this phenomenon have been proposed, including NK cell exhaustion or
dysfunction [102], low levels of liver-resident NK cells causing hypo functionality, non-resident cells
maintaining much higher expression [103] and the upregulation TFG-β and IL-10 through the activation
of STAT3 [104]. Similarly, a reduced level and activity of NK cells has been reported in patients with
PC and CRC compared with healthy controls [105,106]. Another study showed that the activity of NK
cell-induced interferon-γ is impaired in post-operative CRC patients, resulting in the recurrence and
formation of early micro metastases [98]. Post-operative impaired NK cell interferon-γ secretion has
been reported as a T cell suppressor in a study using OVA-specific T cells [107]. The impaired activity
of NK cell and reduced level of NKG2D was reported in advanced PC. By contrast, increased NKG2D
expression was reported in resected PC [108]. However, a recent study found no correlation between
NKG2D and interferon-γ secreting NK cells [109].

3.4.2. Dendritic Cells

Dendritic cells (DCs) are antigen-presenting cells that play a crucial role by inducing anti-tumor
immune responses. The priming of the effector CD8+ T cell response by DCs has been well documented
in several cancers [110]. Furthermore, a recent study demonstrated that IL-33 enhances and promotes
the cytotoxic activities of a DC-induced CD8+ T cell newly identified subset 9 (Tc9). These activities
inhibit the differentiation of exhaustive CD8+ T cells by decreasing expression of both 2B4 (CD244)
and PD-1 while increasing IL-2 and CD127 (IL-7Rα receptor) expression on CD8+ T cells in an OT-I
melanoma mouse model [111]. Despite the reported anti-tumor effect of dendritic cells, several studies
have also shown their immunosuppressive role in human tumors including GI cancers. In HCC,
FcγRII low/−activated B cells are generated by semi-mature dendritic cells through CD95L-dependent
pathway. The activated FcγRII low/− B cells from the HCC tumor subsequently suppress autologous
tumor-specific cytotoxic T cell immunity through IL-10 [112]. Similarly, Yuan et al. [113] demonstrated
an increased number of immature dendritic cells and a decreased number of mature dendritic cells in
CRC tumor tissues. The decreased number of mature dendritic cells is associated with tumor escape
from the immune system [114]. Furthermore, trefoil factor 2 was reported as the main chemoattractant
for immature dendritic cells with no impact on its phenotypic maturation in pancreatic cancer [115].
Interestingly, a distinct subset of dendritic cells, CD103–CD11b+ DC, drives CD4+ T cell tolerance
and also express TGF-β, IL-23 and IL-10+ IL-17+ FOXP3neg Tregs (Tr1 cells) [116]. The ablation
of the CD103–CD11b+ DC subset mitigates the CD4+ T cell expression of IL-17 and retinoic acid
receptor-related orphan receptor gamma-t (RORγt) in PDA-bearing CD11c.DTR bone marrow chimeric
mice [116]. Tr1 cells eliminate CD8+ T cells through perforin-granzyme B and also suppress innate
immunity through IL-10 in myeloid cells [117,118]. The use of DCs in both HCC and CRCs as a
therapeutic window is an ongoing area of research [119].

3.4.3. Macrophages

Macrophages are cells of the mononuclear phagocyte system. There are two types of
macrophage; namely M1 (activated) and M2 (alternatively activated), which expresses CD163. M1 is
pro-inflammatory and anti-tumor, whereas M2 is anti-inflammatory, pro-tumorigenic, promotes
angiogenesis and repairs damaged tissue [120]. Tumor associated macrophage (TAMs) are
immune-related stromal cells which provide support for cancer cells [121] and have the ability
to modulate chemoresistance by activating autophagy [122]. Studies have reported that recurrence
and cancer-related death occur in patients with high TAM infiltration within the tumor stroma [123].
Consistently, evidence from animal studies has also shown a detrimental effect of high infiltrated
TAM2 rather than the total TAM population [124]. The prevalence of high tumor-infiltrating TAM2
correlates with larger tumor size and poor prognosis in solid tumors, including PC [125] and
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HCC [126]. Studies have shown that TAM1 is localized to the perivascular niche, in contrast to
the TAM2 which is found in hypoxic areas [127]. The C–C chemokine ligand type 2 and receptor
(CCL2/CCR2) pathway is required for the mobilization of monocytes from the bone marrow into the
tumor microenvironment [128]. Bartneck and colleagues [129] reported an accumulation of a distinct
subset of macrophage, CCR2+ TAM at the stroma/tumor interface within a highly vascularized region
in resected HCC. This subset of macrophage expresses an inflammatory marker S100a9 rather than
CD163. Hence, the depletion of CCL2 results in reduced TAM, pathogenic angiogenesis and tumor
progression. Additionally, IL-34, IL-35, IL-10, IL-4, TGF-β, and CSF-1 promote the differentiation,
survival, and recruitment of macrophages into the tumor microenvironment [130–133]. The abrogation
of colony-stimulating factor 1 and its receptor (CSF-1/CSF-1R) depletes CD206hi TAMs and also
reprograms residual TAMs to promote antigen presentation and T cells in an experimental model of
PDAC [134]. As opposed to the beneficial effect of the CSF blockade, they also upregulate immune
checkpoint molecules; PD-1 and cytotoxic T-lymphocyte-associated protein4 (CTLA-4). Another
study also showed that TAMs can be derived from tumor-infiltrating monocytes, which express an
elevated level of programmed cell death-ligand 1 (PD-L1), suppressing cytotoxic T cell responses [135].
Hence, the combination of a CSF inhibitor and an immune checkpoint antagonist inhibits tumor
progression [134]. Consistently, the depletion of a specific extratumoral macrophage Ly6ClowF4/80+

enhances CD8+ T cell tumor infiltration in response to CD40 agonist immunotherapy [136]. A study
identified Kupffer cells as a TAM population that promotes tumor progression in HCC [137]. However,
it is difficult to determine the functional role of KC due to a lack of animal experimental models
that can selectively inhibit KC without resulting in liver toxicity to confirm the observation [138].
There is a contrasting evidence regarding the exact role of TAM in CRC, as it has been shown to exert
both beneficial and detrimental effects on this type of cancer [139]. Khorana et al. [140] reported that
vascular endothelial growth factor (VEGF)-expressing TAM increases median survival in patients
with colon carcinoma, and a decreased number of macrophages is associated with more advanced
stages among CRC patients. By contrast, pancreatic macrophages express VEGF-A, VEGF-C, and basic
fibroblast growth factor (FGF), promoting angiogenesis and tumor invasiveness [141]. Of particular
clinical relevance was a finding that macrophage orchestrates resistance to anti-VEGF therapy and
macrophage depletion could improve VEGF blockade [142].

3.4.4. Myeloid-Derived Suppressor Cells

Myeloid derived suppressor cells (MDSCs) are immature myeloid-derived cells. These cells
suppress immune response through an array of secretory factors such as arginase, nitrites, reactive
oxygen species (ROS), immunosuppressive cytokines and the expansion of immunosuppressive
cells (Tregs) [143,144] (see Figure 4). Impaired myelopoiesis results in defective differentiated
progenitor cells in cancer [145]. This alters their phenotype, similar to TAM and tumor-associated
neutrophil, and these are referred to as M-MDSCs and polymorphonuclic or granulocytic
(G-MDSC/PMN-MDSC) [146,147]. Murine MDSCs are characterized by the co-expression of CD11b,
an α-M integrin, and the myeloid differentiation antigen Gr1 [148], whereas human M-MDSCs are
characterized by CD11b+CD14+HLA-DRlow/−CD15− and PMN-MDSCs as CD14–CD11b+ CD15+

(or CD66b+) cells [149]. CD38, a transmembrane receptor-ectoenzyme, is highly expressed in both
the M-MDSCs and G-MDSC/PMN-MDSC of CRC patients [150]. Studies have shown that the
high infiltration of MDSC correlates with a poor prognosis in most cancers [151,152]. Consistently,
reports from a KrasLSL.G12D/+; p53R172H/+; PdxCretg/+ (KPC) model of metastatic PC showed that
MDSCs positively correlate with cancer cell metastases and suppresses T cell proliferation through
GM-CSF [143]. Another study showed that a population of CD14+ HLA−DRlow M-MDSCs catabolizes
L-arginine, which inhibits T cell-induced IFN-γ and NKp30-induced cytotoxicity in HCC [153,154].
However, the administration of exogenous L-arginine to the co-culture medium reversed IFN-γ
secretion. Similarly, the accumulation of CD11b+Gr1+ MDSCs-induced IL-10 has also been shown to
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promote colitis-induced CRC through epigenetic upregulation of DNA methyl transferase (DNMT3b
and DNMT1), as well as a decreased expression of interferon regulatory factor 8 [155].Int. J. Mol. Sci. 2019, 20, x 10 of 46 
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T cells and B cells promotes phagocytosis of cancer cells by dendritic cells and macrophages through
Fas/FasL, granzymes, perforins, interleukin-2 (IL-2), tumor necrosis factor (TNF-α), and interferon –γ
(IFN-γ). (C) Cancer associated fibroblast (CAF) provides support for cancer cells to promotes immune
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3.5. Drivers of Adaptive Immunity and GI Cancer

3.5.1. T Lymphocytes

The subset of total CD3+ T cells includes cytotoxic CD8+ T cells, CD4+ helper T cells and
CD4+CD25+ Tregs. Cytotoxic CD8+ T cells physically attack foreign invaders through perforins,
granzymes, and a FasL/receptor [156] (see Figure 4). By contrast, B lymphocytes kill at a distance
through humoral immunity (the secretion of antibodies). Cytotoxic T cells secrete IFN-γ and
TNF-α, and combat invading molecules through major histocompatibity complex (MHC) class
I [157]. Helper T lymphocytes aid B lymphocytes and killer T lymphocytes through the secretion
of chemical regulators called lymphokines (i.e., IL-22). Fork head box P3 (FOXP3)+ Tregs secrete
IL-10 and TGF-β, which inhibit both B lymphocytes and T lymphocytes. CD8+ T cells are the main
constituent of tumor-infiltrating lymphocyte (TILs) that perform the effector function. Studies have
shown that the distribution and density of TILs determine the functional states within the tumor
microenvironment (i.e., anti-tumorigenic or pro-tumorigenic) [158]. The distribution of TILs varies
significantly among different cancer types. For instance, TILs are confined to the peritumoral tissue in
PC patients [159] and both peritumoral and intra-tumoral in CRC patients [160]. A higher infiltration
correlates with longer survival in human cancer [161,162]. The anti-tumor effector function requires
the infiltration of CD8+ T cells within the tumor. Hence, a lower number or absence of CD8+ T cells
within tumors have been implicated as major obstacles for immunotherapies in solid tumors, especially
in PC [163]. Mounting evidence over the years has shown the potential mechanism responsible
for the reduced TIL infiltration. Zhang et al. [164] reported that CD11bhiF4/80low tumor-associated
myeloid cells secrete the S100a9 protein through CCL5, which inhibits the accumulation of CD8+
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T cells. The blockage of CCL5-enhanced CD8+ T cell mobilization and reduced secretion of the
S100a9 protein in a CRC mouse model. In addition, the downregulation of type I interferon receptor
(IFNAR1), which maintains the pool of CTL (cytotoxic T cell), promotes immune privileged niche [165].
The stabilization of IFNAR1 improves CTL and enhance the efficacy of chimeric antigen receptor T
and PD-1 inhibition. Furthermore, the lack of neoantigens expressed in cancer cells may also result
in poor TIL infiltration [166]. In addition, exosome derived 14-3-3ζ (14-3-3 protein zeta) results in
an impaired anti-tumor effect of TILs, thereby contributing to T cell exhaustion [167]. The depletion
of CD8+ T cells has been reported to promote tumor development in fumarylacetoacetate-induced
hepatitis in fumarylacetoacetate hydrolase-deficient mice [168]. However, a study showed that
the pro-tumorigenic role of CD 8+ T cells is due to lymphotoxin a and b, which promote chronic
inflammation-induced tissue damage and HCC [169,170]. As opposed to their pro-tumorigenic
role, lymphotoxins exert an anti-tumor response in numerous human cancers [171]. However, the
mechanism underlying the switch from an anti-tumoral to a pro-tumorigenic effect is unknown. In
addition, exosome-derived 14-3-3ζ (14-3-3 protein zeta) results in an impaired anti-tumor effect of
TILs, thereby contributing to T cell exhaustion [167]. Studies have shown that tumor-specific CD4+ T
cells have complex roles beyond supporting CD8+ T cells. CD4+ T cells are predominantly subtyped
into Th1- and Th2-based on cytokine secretion. Th2 exerts an anti-tumor function, and an imbalance
between Th1 and Th2 contributes to tumor progression. Studies have demonstrated an association
between Th2 dominance and cancer [172], whereas Th1 confers a good prognosis in cancer [173].
Interestingly, CD4+ T cells have the ability to convert and switch to CD4+CD25+Treg [174]. Studies have
shown that thymus-derived Tregs or peripheral-derived Tregs may mediate the conversion of CD4+ T
cells [174,175]. Tregs promote immune suppression by secreting TGF-β and IL-10 [176]. Contrarily,
Tregs are associated with a good prognosis in CRC [177]. Th17 is another type of helper T cell induced
by TGFβ- and IL-10. Th17 secretes IL-17, a pro-inflammatory cytokine which mediates tumorigenic
and angiogenic effects. The frequency of IL-17 positively correlates with tumor recurrence in HCC,
CRC, and pancreatic intraepithelial neoplastic cells [178–180]. Neutrophil recruitment induced by
IL-17 aggravates nonalcoholic steatohepatitis via fatty acid release, resulting in HCC [181]. By contrast,
Amicarella et al. [182] reported that IL-17 promotes the recruitment of cytotoxic CD8+ T cells and
beneficial neutrophils via CCL5-CCL20 and IL-8, respectively. The cytokine-induced killer (CIK) cells
are subset of CD8+ T cells derived from human peripheral blood lymphocytes. CIKs are expanded
in vitro using IL-2, IFN-γ, and anti-CD3 antibodies. Other reported sources of CIK cells include the
bone marrow and umbilical cord [183,184]. CIK cells are classified into two subsets, CD3−CD56+ and
CD3+CD56−, due to their expression of CD16 and CD56 [185] and CD3+CD56+, which perform the
effector function. CIK cells attack cancer cells via the Fas ligand [186] and NK-activating receptors
such as NKG2D, NKp30, and NKp46 [187,188]. CIK cells serve as a form of adoptive T cell therapy
(ACT), whereby a patient’s own peripheral blood mononuclear cell is used to expand anti-tumor CIK
cells that are subsequently reinjected back into patients. Donor CIK cells are also used as alternatives
in cases where a patient’s own CIK cells are insufficient.

3.5.2. B Lymphocytes

B lymphocytes are critical for humoral immunity by killing invaders at a distance. B lymphocyte
consists of three subsets: B1 lineage, MZ (marginal zone) lineage, and FO (follicular) lineage.
B lymphocytes have the ability to present antigenic peptides to CD4+ and CD8+ T cells [189].
Several studies have shown that B lymphocytes express cytokines and co-stimulatory molecules
primarily for T cell activation, such as IFN-γ, BCL-6, CD 40L, and CD28 [190–192]. However, they
are not as potent as DCs. In addition, they express TLRs, which are activated by pathogen-associated
molecular patterns [192]. Controversy exists regarding the exact role of B lymphocytes in solid
tumors. They have been reported to promote tumor growth by inhibiting CD4+ T cell priming and
the cytotoxic effect of CD8+ T cells in B cell-deficient mice [193]. Similarly, hepatic B lymphocytes
have been found to downregulate surface co-stimulatory CD80 expression through interactions with
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intrahepatic MDSCs in a colorectal liver metastasis model, leading to impaired T cell activation [194].
This can be reversed in the absence of MDSC through STAT3 signaling, which is the key factor
regulating MDSCs. B cells have also been implicated in promoting an immunosuppressive milieu
through secretion of IL-10 in HCC [195]. Another study showed that B lymphocytes can switch and
convert to B-reg phenotypes [196]. A higher B lymphocyte-activating factor correlates with disease
progression in HBV-HCC, indicating poorer median survival compared with non-HBV-HCC and
non-HCC controls [197]. In PDAC, a subset of B lymphocyte CD5+ secretes IL-35 which promotes
tumor growth [198]. Gunderson et al. [199] found that B cells promoted macrophage polarization
to an immunosuppressive phenotype and further confirmed the pro-tumorigenic role of B cells by
transplanting PDAC cells into B-cell-deficient mice. Conversely, the amount of B lymphocytes present
in HCC has been reported to correlate with T cell activation markers, indicative of a close interaction
between both T- and B-cells and a better prognosis [200]. Furthermore, B cell-depleted mice indicates
that B cells might be critically involved in decreasing tumor growth in established HCC, while the
prevention of initial tumor formation is a role played by T cells [201]. Similarly, the infiltration of
CD20+ B cells in metastatic CRC has been reported to improve survival rates [202].

3.5.3. NKT Cells

Natural killer T cells (NKTs) are subset of T cells that possesses an antigen-specific T cell receptor
(TCR) that recognizes self and foreign antigens, specifically lipid antigens i.e., α-galactosyl ceramide
(α-GalCer) that are undetected by CD8+ and CD4+ T lymphocytes. NKTs can be iNKT (Type I NKT
cells), with an invariant TCR, or Type II NKTs (variable or diverse TCR). Invariant NKTs have been
reported to produce anti-tumor factors such as IFN-γ and activate both CTL and NK cells [203],
whereas variable NKTs inhibit anti-tumor immunity. Contrasting results regarding the role of iNKT
cells have been reported in gastrointestinal tumors, especially CRC. For instance, an abundance of
NKT cells in HCC has been reported [204,205]. The profibrotic role has also been reported in the
non-alcoholic steatohepatitis (NASH) model of HCC [205]. By contrast, a study showed that a strain of
gut microbiome (Clostridium species) uses bile acids as a messenger to regulate CXCL16 levels in LSECs,
thereby increasing CXCR6+ hepatic NKTs. The accumulated NKTs inhibit tumor growth in primary
and metastatic liver tumors [206]. Similarly, the absence of NKTs is associated with increased pancreatic
tumor development and progression in LSL-KrasG12D/+ mice. The pharmacological inhibition of
arachidonate 5-lipoxygenase (5-LOX) and microsomal prostaglandin E synthase-1 (mPGES-1) led to
reversal of the NKT population, enhanced CD8+ T cells, and tumor suppression [207]. Moreover,
higher Valpha24+ NKT cell infiltration in colorectal carcinomas has been reported as an independent
factor for favorable prognosis [208]. By contrast, evidence regarding the role of NKTs in intestinal
inflammation in both human and animal models of ulcerative colitis suggests that NKTs may favor
tumor development in intestinal tissue. Wang et al. [209] investigated the iNKT-mediated regulation of
tumor immunity in an orthotopic spontaneous model of the early stages of intestinal cancer in Apc min/+

mouse model of CRC deficient of all NKT and/iNKT cell. The study found a reduction in intestinal
polyps, an increased proportion of FOXP3 Tregs, and a reduced expression of genes associated with
TH1 in the absence of iNKT. In the presence of iNKTs, an enhanced proportion of M2 macrophages
and MDSCs was found in the presence of iNKT. Consistently, Heller et al. [210] that reported the
pro-inflammatory role of iNKTs in a mouse model of intestinal disease.

3.5.4. Regulatory T Cells

Tregs are characterized by their ability to activate the FOXP3 gene. Tregs release cytokines such as
IL-10, CTLA-4, and TGF-β, and exerts an inhibitory effect on both B- and T-lymphocytes (see Figure 4).
It has been shown that Tregs may have an influence on macrophages (M1/M2) and neutrophils (N1/N2)
phenotype [211]. Tregs also promote the destruction of their target cells by releasing granzymes and
perforins. The high prevalence of Treg CD4+CD25+FOXP3 correlates with the poor prognosis and
recurrence of solid tumors, including HCC and PC [212,213]. However, the role of Tregs in CRC
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remains controversial. As opposed to the immunosuppressive role of Tregs, numerous studies have
shown that the high intra-tumoral frequency of Tregs correlates with good prognosis in patients
with CRC [214–216]. By contrast, Tregs within the same type of tumor suppress T cell response
by promoting recurrence [217]. The alternative role of Tregs in CRC may be due to changes in the
immune microenvironment that causes the expression of RORγt by Tregs, which led to a switch from
an anti-inflammatory to inflammatory role through IL-17 secretion [218]. Additionally, another study
showed that Foxp3+ Tregs are enriched with of RORγt in mouse colon and lymphoid tissues [219,220].

4. Immune Landscape Determinants and Predictors in GI Cancer

Molecular subtypes and stratification identify the drivers of human cancer. This strategy has
been used to profile the molecular, genetics, and immune composition of cancer, while an appropriate
treatment regimen is assigned [221,222]. Notably, there have been a recent breakthrough using
high-throughput next generation sequencing and consensus-based clustering technique to map the
immune landscape to the genetics of tumors. Remarkably, CRC has been successfully stratified, and a
consensus on four molecular subtypes (CMS) has been reached (see Figure 5).
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Figure 5. The consensus molecular classification (CMS) of CRC in correlation with tumor infiltrating
lymphocyte (TIL) abundance. CMS1 is infiltrated with T helper 1 lymphocytes, CD8+ T cells, NK cells,
PD-1, tumor mutation burden (TMB) and increased TIL as compared with other CRC subtypes. High
TIL infiltration represent a hot tumor, which can be targeted with an immune checkpoint inhibitor,
whereas reduction in TIL denotes a cold tumor.

CMS1 denotes microsatellite instability subtypes that are composed of microsatellite instability
(MSI), CpG island methylator phenotype (CIMP), mismatch repair deficiency (MMrd), and BRAF
mutations; CMS2 denotes canonical or epithelial subtypes consisting of chromosomal instability; CMS3
denotes a metabolic subtype consisting of KRAS mutations; and CMS4 denotes a mesenchymal subtype
consisting of mesenchymal and CIMP phenotypes [223]. By contrast, there is little consensus on
molecular subtypes in both pancreatic ductal adenocarcinoma (PDAC) and HCC, as these are still in their
infancy. Similarly, tumors have also been classified based on tumor-infiltrated lymphocytes (TILs) and
macrophages. The immune-inflamed or hot tumors are characterized by the high infiltration of immune
cells; the immune-excluded is identified and characterized by immune cells which are trapped at the
boundaries of the tumor; and immune-desert or cold tumor phenotypes are characterized by a complete
absence of immune cells [224,225]. However, the limitation of the classification is that most studies have
not simultaneously considered the boundaries and tumor core. The success of programmed cell death-1
and its ligand (PD-1/PD-L1) has been demonstrated in many cancers [226,227]. Nevertheless, some
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patients do not derive benefits from the immune checkpoint inhibitor (ICI). For instance, the failure of
nivolumab in a phase III study has been reported [228,229], despite its success alongside pembrolizumab
in phase II clinical trials [230,231]. Furthermore, a trial testing pembrolizumab in combination with
dexamethasone (immunomodulatory agent) with either lenalidomide or pomalidomide in the treatment
of patients with multiple myeloma was terminated due to death risk (US Food and drug administration
alerts, 2018). An effective predictive biomarker is therefore needed to stratify patients who may respond
to an immune checkpoint inhibitor. Several mechanistic studies have identified the determinants of
tumor immune contextures as biomarkers for predicting the patient’s response to immune checkpoint
inhibitors (see Figure 6).
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cell-death 1 and its ligand (PD-1/PD-L1) are tumor escape factors used widely as predictive biomarkers
for patient’s response to immunotherapy. Other suggestive biomarkers include genomic, tumor-escape,
immune-microenvironment and host factors. These factors include TMB (tumor mutation burden),
MMrd (mismatch repair deficiency), VI (oncogenic viral infection), ODM (oncogenic driver mutation),
TIL (tumor infiltrating lymphocyte), ISF (Immune suppressor factor) and tumor immune phenotype
(TIP).

PD-L1 is critical in predicting patient’s response to PD-1/PD-L1 inhibitor immunotherapy. Thus,
PD-L1 expression using immunohistochemistry is the only approved biomarker widely employed
to distinguish responders from non-responders [232]. However, there are limitations with the use of
PD-L1 as a predictive biomarker. First, there have been contradictory results on the association between
PD-L1 expression and immune checkpoint efficacy [233]. Furthermore, PD-L1-negative patients benefit
from immune checkpoint inhibitor therapy [234]. Other limitations include non-standardized cutoff

to access PD-L1 positivity, unreliable predictive ability in CRC and HCC [235], different detection
techniques [236], and the types of cells expressing PD-1/PD-L1 molecule within the tumor [237]. Thus,
it can be concluded that PD-L1 expression is not a one-size-fits-all biomarker. TIL is another predictor
of immune checkpoint inhibitor efficacy and also a strong prognostic biomarker for some cancers
regardless of the ICI. For example, the tumor-inflamed phenotype exhibits a better response to ICI due to
the high infiltration of TILs within the stroma [238]. Surprisingly, some patients with a tumor-inflamed
phenotype still do not derive benefit. A study showed that the early infiltration of regulatory T cells
(Tregs) may hinder the cytotoxic effect of TIL [239]. It has been reported that mutations within cancer
cells encode for neoantigens, recognized by T cells when presented by the MHC molecules [166].
In addition, the number of non-synonymous single nucleotide variants (nsSNVs), somatic copy
numbers, and indels are hypothesized to be contributors to the tumor mutation burden (TMB). A high
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TMB observed in CRC and HCC positively correlates with PD-1/PD-L1 expression, whereas PDAC has
the lowest TMB [240,241]. Conversely, a meta-analysis by Liu et al. [242] found no association between
PD-1/PD-L1 and TMB in curative resected HCC. Evidence from both tumor samples and patients
implicates V-domain Ig suppressor of T cell activation (VISTA) as the main inhibitory checkpoint
expressed in PDAC [243]. Indeed, the elevated mutational burden and expression of cytotoxic T cells,
NK cell infiltration, Th1 lymphocytes, and PD-1 due to enhanced neoantigens are hallmarks of the
CMS1 subtype of CRC [221] (see Figure 5). A mutation per mega base of 17 or above has been reported
to correlate with microsatellite instability (MSI-CRC) in CMS1 of CRC [244], although other studies
have reported a variable TMB cutoff point [245]. Remarkably, 3% of microsatellite stable (MSS-CRC)
patients also benefit from a high TMB cutoff [246]. Similar results identify a correlation between TMB
and immune checkpoint response in many cancer types [247]. Surprisingly, some patients with a
high TMB do not respond to the immune checkpoint inhibitor and vice versa [248,249]. Contrary to
reports on TMB and ICI response, a recent study utilized the quanTIseq deconvolution approach
on 8000 cancer genome atlas (TCGA) tumor samples across 19 solid tumors and found that both
mutation burden and tumor clonality heterogeneity are weakly associated with infiltrated CD8+ T
cells [250]. However, this study reported a stronger association between CXCL9/CXCR3 and CD8+

T cell infiltration. Tumor clonality also influences the response to the immune checkpoint inhibitor
but does not contribute to mutational burden. Clonal mutation from homogenous tumors has been
reported to enhance immune response more effectively than subclonal mutation from heterogeneous
tumors [251]. Notably, MSI is a type of mismatch repair deficiency (MMRd) which generates indel
and frameshift mutations. This stimulates neoantigens, leading to increased T cell infiltration with an
improved response to the immune checkpoint inhibitor [252]. However, MMRd gives rise to subclonal
neoepitopes that are less effective at generating a good response to ICI [251,253]. The mechanism by
which MMRd generates a better response to ICI is not understood. The loss of tumor suppressor genes
(TSG), oncogenic driver mutations, and oncogenic pathways (see Figure 7) have also been found to
contribute to immune composition and immune checkpoint response.
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Figure 7. Signaling pathways for PD-L1 expression in cancer. Programmed death ligand-1 (PD-L1) is
a cell surface receptor on cancer cells modulated by interferon gamma receptor (IFNGR), epidermal
growth factor (EGFR), toll-like receptor (TLR), Epstein–Barr virus latent membrane protein (LMP1)
and hypoxia.

Research has shown that driver oncogenes or a loss of TSG enhance immune suppression and
attenuate immune responses in GI cancers. For example, a mutation in TP53 is associated with increased
immunosuppressive cells (Tregs and T follicular helper) and immune checkpoint molecules (CTLA-4,
PD-1 and T-cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) in HCC [254]. P53
loss decreased cytotoxic CD8+ T cells and increased Th1/2 shifts, which promote gemcitabine resistance,
thus leading to a reduced survival in PC mouse models [255]. Similarly, mutation in P53-induced TAM
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population and Tregs leads to tumor progression [256]. Another study showed a positive correlation
between P53 loss or KRAS mutation alone or co-occurrence of both mutations and ICI response was
reported in lung adenocarcinoma [257]. Consistently, PD-L1 expression is higher and correlates with P53
mutation in NSCLC than in CRC [258]. In addition, a positive correlation between KRAS mutation and
PD-1/PD-L1 was found in PC [259]. Contrarily, a lower efficacy in response to anti-PD-1 was reported
in CRC with a KRAS mutation [260]. Other clinical studies on NSCLC reported that epidermal growth
factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) rearrangements, KRAS,
and BRAF do not influence the efficacy of the immune checkpoint inhibitor [261–263]. Furthermore,
Balli et al. [248] reported an inverse correlation between NOTCH2-, MYC-, and fibroblast growth
factor receptor-1 (FGFR1)-amplified tumors and cytolytic T cell response rather than mutation load in
pancreatic tumors. Further research has revealed the modulatory effect of microbiota on the efficacy
of ICI. For instance, Sivan et al. [264] identified a relationship between Bifidobacterium and the PD-1
inhibitor in a mouse model of melanoma. Bifidobacterium enhanced anti-PD-1 efficacy by augmenting
dendritic cell function and CD8+ T cell priming. Similarly, patients with Faecalibacterium had longer
progression-free survival and higher TILs compared with patients who had a lower abundance of this
strain of bacteria [265]. Furthermore, the over-presentation of Ruminococcaceae, Faecalibacterium, and
Clostridiales in peripheral blood positively correlates with CD8+ T cells while Bacteroidales correlates
with MDSCs and Tregs [265]. Routy et al. [266] compared clinical outcomes when patients were treated
with the PD-1 inhibitor in combination with or without antibiotics. Treatment with antibiotics and PD-1
resulted in shorter overall survival and progression-free survival alone or with the CTLA-4 inhibitor.
By contrast, bacterial ablation upregulated T cell and PD-1 expression in a mouse model of PDAC [16].
As opposed to PD-1, CTLA-4 efficacy is determined by Bacteroides fragilis. The colonization of B. fragilis
in germ-free mice improved the anti-tumoral response of anti-CTLA-4 therapy [267]. Other emerging
predictive biomarkers include immune microenvironment factors, host factors (see Figure 6).

Additionally, the carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9) are
glycoproteins and cancer antigens mostly found elevated in solid tumors [268]. CEA and CA-19-9
are widely used as the prognostic and/or predictive biomarkers for the detection and management of
adenocarcinoma including GI cancer. A recent study showed that serum CA-19-9 predicts PC in acute
pancreatitis patients [269]. Similarly, CEA level is a recommended prognostic biomarker according
to the national comprehensive cancer network (NCCN) guidelines in CRC. Based on the sensitivity,
the clinical use of these prognostic biomarker is controversial. Notably, these cancer antigens are
prerequisite for clinical therapy design for bispecific T cell engagers (BiTES) (CD3*CEA), anti-CEA
Chimeric antigen receptor T cell (CAR-T), anti-epithelia cell adhesion molecule (EPCAM) CAR-T and
several others. These are currently being tested for their efficacy in clinical trials, whereas some of
them showed promising result in clinical trials (as discussed in Section 5).

5. Progress and Current Immunotherapeutic Approaches in GI Cancers

5.1. Adoptive T-Cell Therapy

5.1.1. Chimeric Antigen Receptor T Cells

The chimeric antigen receptor T cell (CAR-T) is a major breakthrough in oncology. CAR-Ts are
genetically engineered and designed to recognize tumor antigens in the absence of MHC presentation
through the expression of CARs. The CARs fuses an antibody-binding domain to the signaling
domain linked to the co-stimulatory domain [270,271]. The only approved CAR-T is anti-CD19 for the
treatment of B-cell lymphoma, which targets the co-stimulatory molecule CD19 in B-cell lymphoma
and leukemia [272]. However, a tolerable side effect may occur as well as relapse due to CAR-binding
epitopes [270,273]. Other limitations from CAR-T treatment include exhausted CAR-T and poor
trafficking into the tumor [274,275]. Several attempts to treat solid tumors with CAR-T therapy have
been unsuccessful due to the nature of the tumor microenvironment as well as contributing factors
such as hypoxia, which leads to toxicity in treated patients [276–278]. Furthermore, evidence from
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pre-clinical studies has identified loopholes, and strategies that aim to address setbacks from CAR-T
treatment in solid tumors have been extensively discussed [279–281]. Notably, therapeutic approaches
such as combination strategies and the modification of CAR-T have been implemented. Several of
them are undergoing clinical trials (NCT02729493, NCT03323944, NCT03638206) (see Table 1).

For instance, a recently completed phase 1 clinical trial of anti-glypican-3 (GPC3) CAR-T, evaluating
its efficacy and safety for 13 patients with R/R (relapse/refractory) HCC, yielded promising results.
All patients tolerated the treatment; one patient had a serious adverse event (SAE) grade 3 fever. Patients
treated without lymphodepletion conditioning had progressive disease after receiving anti-GPC3
CAR-T. Conversely, treatment with lymphodepletion conditioning results in one partial response—three
patients had a stable disease (SD), two had a progressive disease, and one death was reported in the
stable disease group after 108 days [282]. Another completed phase 1 trial showed that CEA CAR-T
was well tolerated in CRC patients. Seven patients who previously had progressive disease had a SD,
with two of the seven patients having a SD for 30 weeks. Two patients had tumor shrinkage, and CEA
was reduced in the blood of most patients. Lastly, CAR-T was found to proliferate and persist in the
patient’s blood after the second infusion [283]. (see Table 2).
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Table 1. Clinical trials of various adoptive immunotherapies in gastrointestinal (GI) cancer.

Cancer Type Start Year No of Participants Site of Trial Agents Phase
Clinical

Trials Gov
Number

Recruitment
Status

CAR-T Therapies
Liver neoplasms 2015 25 China EPCAM CAR-T cells N/A NCT02729493 Yes
Metastatic cancer 2012 15 US Mesothelin CAR-T I/II NCT01583686 Terminated

HCC 2018 50 China c-Met/PD-L1 CAR-T Ia NCT03672305 Not yet
Advanced HCC 2015 13 China Anti-GPC3 CAR-T I NCT02395250 Completed

Malignancies 2018 73 China Autologous CAR-T/TCR I/II NCT03638206 Yes
PC 2017 18 US huCART-meso cells I NCT03323944 Yes

HCC 2019 14 US GPC3-CAR-T + Cytoxan + Fludarabine I NCT02905188 Yes
Malignant solid tumor 2019 30 China Nectin 4/FAP CAR-T I NCT03932565 Yes

PC 2018 10 China CAR-T-meso cells N/A NCT03638193 Yes
PC

CEA + liver metastases 2019 6 US CAR2Anti-CEA CAR-T Ib NCT03818165 Yes

HCC/Metastatic
colorectal and PC 2016 20 China CAR-T I/II NCT02959151 Unknown

EPCAM + cancer 2017 60 China CAR-T I/II NCT03013712 Yes
HCC 2017 18 China ET1402L1-CAR-T I NCT03888859 Yes

Metastatic CRC 2018 20 China EGFR/CAR-T I NCT03542799 Not yet
Advanced malignancies 2015 20 China Anti-CD133 CAR-T I NCT02541370 Unknown

Tumor-Infiltrating Lymphocyte Therapies

Metastatic cancer 2010 332 US TIL + Aldesleukin + Cyclophosphamide
+ Fludarabine + Pembrolizumab II NCT01174121 Yes

Colorectal cancer 2019 20 China Anti-PD-1 activated TIL + Xelox I/II NCT03904537 Yes
Advanced refractory

solid tumor 2017 40 China Neoantigen Reactive T Cells (NRTs) +
PD-1 I/II NCT03171220 Yes

Advanced solid cancer 2019 240 US TIL + Cyclophosphamide + Fludarabine II NCT03935893 Not yet

CIK Therapies
PC 2013 47 China DC/CIK + S1 I/II NCT01781520 Completed

PC 2018 90 China CIK + Anti- CD3-MUC1 bispecific
antibody II NCT03509298 Yes

CRC 2012 46 China CIK + Folfox4 IV NCT03084809 Completed
Colon cancer 2019 20 Iran Autologous CIK I/II NCT03329664 Not yet

Metastatic CRC 2017 28 Korea Immuncell-LC II NCT03220984 Enrolling by
invitation

HCC 2015 55 China Autologous CIK I/II NCT03124498 Unknown
Resected liver cancer 2008 200 China CIK III NCT00769106 Completed

Liver transplant in HCC 2019 18 Korea Immuncell-LC I/II NCT03983967 Yes
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Table 1. Cont.

Cancer Type Start Year No of Participants Site of Trial Agents Phase
Clinical

Trials Gov
Number

Recruitment
Status

iNKT Therapies
Advanced solid tumor 2017 40 China iNKT cells + CD8+ T cells I/II NCT03093688 Yes

HCC 2017 18 Adoptive iNKT therapy I NCT03175679 Yes

Bispecific T cell engager
PC 2015 2 US anti-CD3 × anti-EGFR, IL-2 + GM-CSF I/II NCT02620865 Active, NR

Abbreviations: EGFR, epidermal growth factor receptor; iNKT, invariant natural killer-T cell; CIK, cytokine induced killer cell; GM-CSF, granulocyte macrophage-colony stimulating factor;
NRT, Neoantigen Reactive T Cells; MUC-1, mucin-1; TIL, tumor infiltrating lymphocyte; GPC3, glypican-3; DC, dendritic cell; EPCAM, epithelia cell adhesion molecule; NR, not recruiting;
CEA, Carcinoembryonic Antigen; CART-T, chimeric antigen receptor-T cell; TCR, T cell receptor.

Table 2. Clinical trial efficacy result of selected immunotherapies in GI cancer.

Cancer Type Immunotherapy No of Participants Phase Clinical Outcome Immune Response Adverse Effect Reference

CAR-T
HCC Anti-GPC3 CAR-T 13 I 1 PR, 3 SD, 2 PD SAE grade 3 fever in 1 pt, 1 death [282]
CRC CEA CAR-T 10 I 7 SD, 2SD > 30 wk, 2 TS No IrAE [283]
PC HER2 CAR-T 11 I PFS 4.8 months, 1PR, 5 SD Reversible toxicities, mild to moderate [284]

Advanced metastatic cancer CD133 CAR-T 23 I PFS 5 months, 3PR, 14SD Controllable toxicities [285]

Immune Checkpoint Inhibitor

Advanced GC and CRC Regorafenib +nivolumab 50 Ib 38% ORR, 3PR in GC.44%
RR(GC), 29% MSS(CRC) Grade 3/4 toxicity in 17 pts [286]

CRC Atezolizumab/+ or without
cobimetinib versus regorafenib 363 III mOS 8.87 months

(combination group) SEA in 40% of pts (combination group) [287]

NK Cell Therapy

GI cancer Allogenic NK therapy +
Cetuximab 9 I 2 SD, 1 PR, I DR No DLT [288]

Cancer Vaccine

Metastatic PC G-VAX/CRS-207 93 II OS arm A 6.1 months vs. arm
B 3.9 months Grade 3/4 toxicity [289]

BiTES

Refractory solid tumor EpCAM/CD3 BiTES 65 I 18 SD, 17 BR of SD, 28 PD, 1
unconfirmed PR

DLT in 15 pts, Grade 3/4 toxicity in 95%
pts [290]

Stroma-Targeted Therapies
PDAC Pegylated IL-10 + Folfox 353 I/Ib 15.5% ORR, 10.5% CR Grade3/4 TrAEs, Grade 1/2 neuropathy Ongoing

Advanced metastatic solid tumor NKTR-214 28 I SD in 14 pts, TR in 35% of pts Grade 3 TrAE in 21.4% of pts [291]

Advanced metastatic solid tumor Emactuzumab/ + paclitaxel 217 I 7% ORR in combined
therapy, no anti-tumor effect No toxicity [292]

Abbreviations: ORR, objective response rate; OS, overall survival; PR, partial response; SD, stable disease; PD, progressive disease; CR, complete response; PFS, progression free survival;
mOS, mean overall survival; Rd, dissociated response; DLT, dose limiting toxicities; SAE, serious adverse event; IrAE, immune related adverse event; TrAE, treatment related adverse effect,
PDAC, pancreatic ductal adenocarcinoma; TR, tumor reduction; Pts, patients; TS, tumor shrinkage.
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A different CAR-T approach has recently been developed that can eliminate cancer cells with
ET1402L1 T cells in HLA-A* 02:01 restricted AFP+ in HCC [293]. This approach has been found
to counteract tumor growth in pre-clinical studies and is currently being tested for safety and
efficacy in ongoing trials (NCT03888859). However, CAR-T therapy such as anti-mesothelin CAR-T
(NCT01583686) in metastatic PC has been terminated for unknown reasons.

5.1.2. Tumor-Infiltrating Lymphocytes

TILs are employed in ACT, a procedure in which T cells are derived from resected metastatic tumor
or blood and expanded in vitro in the presence of IL-2, anti-CD3 antibodies, and irradiated autologous
or allogenic feeder cells [294]. The final product is infused into lymphodepleted patients to inhibit
tumor progression [295,296]. The modification of the tumor-reactivity selection step results in the so
called “young TIL protocol,” which is a shorter process [297]. Recent advances involve high-throughput
genetic sequencing to identify the non-synonymous mutation and subsequent synthesis of mutation
peptide pulsed with DCs. The isolated TILs from the tumor are co-cultured with pulsed DC peptide,
recognized by the subsequent expansion of T cells [298]. A higher percentage of TILs within tumor
predicts survival in many cancer patients, including those with GI cancer [299,300]. Tran et al. [301]
found that TILs derived from nine out of 10 patients in metastatic GI cancer contained CD4+ T cells
and CD8+ T cells that recognize one to three neoepitopes from somatic mutation. In addition, TILs
adoptive cell therapy yielded 50% ORR and 13% complete response (CR) in melanoma patients [296],
which surpass responses from immune checkpoint inhibitors in reported cases. Even the most difficult
forms of breast cancer; triple negative breast cancer (TNBC) and human epidermal growth factor
(HER2) was successfully treated with TILs [302,303]. Promising results have also been reported in
cholangiocarcinoma after infusion with CD4+ T cells that recognized the Erbb2 binding protein ERBB2IP
epitope [304] and HLA-C*8:02 in restricted KRAS G12D lung metastasis CRC [305]. Interestingly,
CD8+ neoantigen T cells specific to SMAD5 and mucin-4 (MUC4) epitopes, CD4+ and CD8+ memory
T cells specific to KRASG12D and KRASG12V, respectively, have been isolated from peripheral blood
of epithelial cancer patients [306]. Future clinical trials will test neoantigen-specific T cells and TCRs
for the P53 mutation in metastatic cancer [307]. Despite the efficacy of TIL therapy, the limitations of
this approach include the poor survival of T cells, the poor efficiency of the method used to detect
neoantigen reactive T cells, and the derivation of terminally differentiated exhausted T cells that
express immune checkpoint protein [308,309]. More recent studies have reported strategies that can
improve the efficacy of TIL treatment, such as reprogramming exhausted differentiated T cells using
the Sendai virus to transduce octamer binding protein-3/4 (OCT3/4), sex determining region-Y2 (SOX2),
kruppel-like factor (KLF4), and c-MYC to induced pluripotent stem cell (iPSC) [310]. In addition, the
enhancement of neoantigen reactive T cells through the enrichment of PD-1-expressing T cells by using
a micro well culture method to prevent the overgrowth of non-reactive T cells [298]. The prevalence
and application of TILs in targeting KRASG12D in patients with gastrointestinal cancer have been a
subject of debate [311]. Treatment with TILs is currently undergoing clinical trials (see Table 1), and the
results are eagerly awaited.

5.1.3. CIK

The efficacy of cytokine induced killer cells (CIK) therapy has been demonstrated in gastrointestinal
tumors such as CRC, HCC, and PC. In addition, combination therapy has also been reported to enhance
efficient cytotoxic and anti-tumor activity of CIK. Consequently, CIK has been used in combination
treatment with dendritic cells (DCs), cytokines, immune checkpoint inhibitors, chemotherapy, chimeric
antigen receptors, antibodies, and nanoparticles. These combination strategies have produced
encouraging results. For instance, pre-clinical and clinical studies have shown that CIK in combination
with DCs exhibited better efficacy than CIK monotherapy in HCC and post-trans catheter arterial
chemoembolization (TACE) HCC [312–314]. A study on 67 patients reported partial remission in five
patients and a stable disease in 29 patients with a decreased migration and proliferation in cancer
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cells. Cytokine induced killer cells-dendritic cells(CIK-DC) combined with sorafenib also improved
patients’ overall survival rate with no adverse effect in advanced HCC [315]. Similarly, CIK-DC
also showed improved overall survival of five years and disease-free survival in CRC [316–318].
The transfusion of autologous CIK and a meta-analysis of DC-CIK showed an improved overall
survival rate for advanced PC [319,320]. Furthermore, the clinical efficacy of adjuvant therapy with
activated CIK treatment showed an increased median recurrence-free survival (RFS) time of 44 months
compared with the reccurrence free survival (RFS) of patients receiving curative treatment for liver
cancer [321]. Several clinical trials testing the efficacy and safety of CIK-DC in combination with
immune checkpoint inhibitors, chemotherapy, and others are currently ongoing. One of these will
examine the outcome of combination therapy with CIK-DC plus Anti-PD-1 in refractory solid tumors,
including HCC and CRC (NCT02886897); the efficacy and safety of adjuvant CIK in HCC patients
undergoing liver transplantation (NCT03983967); and intermediate stage HCC who have undergone
TACE (NCT02856815).

5.2. Bispecific T-Cell Engagers

Bispecific T cell engagers (BiTEs) that recognize cancer stem cell (CSC) antigens (CD19) and
antigen-binding domains of antibodies (CD3) attract CSCs while promoting T cell-induced cytotoxicity
as well as redirecting the effector function of a number of immune cells [322,323]. The only approved
BiTE is Blinatumomab, which is given as a continuous infusion and results in a rare remission rate
in patients [323]. Phase 1 clinical trials of EpCAM/CD3 T cell engager (Solitomab) in solid tumors
have shown an anti-tumor effect with a significant side effect [290]. Furthermore, a phase 1 study
of CEA*CD3BiTES was abruptly terminated due to the detection of BiTES antibodies in patients
treated with a high dose, with disease progression in 73% of patients with advanced gastrointestinal
cancer [324].

5.3. Cancer Vaccines

Cancer vaccines are developed to specifically target tumor-associated antigens (TAAs),
virus-associated antigens, cancer germline antigens, or tumor-specific antigens (TSAs) (neoantigen).
Despite treatment with an immune checkpoint inhibitor, cancer-specific immune responses remain
suboptimal, leaving options for alternatives and new therapeutic approaches. Neoantigens expressed
by mutated cancer cells can generate optimal CD4+ and CD8+ T cell responses [325]. A recent study
reported the stimulatory effect of a peptide neoantigens vaccine on CD4+ rather than on CD8+ T
cell responses [326,327]. Remarkably, a neoantigen-based vaccine that contains up to 20 neoantigen
peptides that simultaneously targets multiple proteins showed promising results [328,329]. However,
a study showed that the multipeptide vaccine failed to improve survival rates [330]. Similarly, a DNA
vaccine that targets enolase-1 (ENO1) in genetically engineered mice with PDAC showed promising
results but did not completely eradicate tumor growth [331]. Nevertheless, combination strategies
have been shown to improve the efficacy of the ENO1 DNA vaccine in animal model. In addition, a
multipeptide HCC vaccine IMA970A (HepaVac-101) with a CV8102 adjuvant is currently being tested
in phase I/II clinical trials for very early and intermediate stage HCC positive with HLA haplotype
(NCT03203005). The vaccine is composed of 16 peptide cocktails, with seven peptides restricted to
HLA-A*02, five to HLA-A*24, and four to HLA class II. Of particular clinical relevance was a recent
finding that the replication-deficient human type 5 recombinant adenovirus (Ad5) vaccine encoding
guanylyl cyclase C (GUCY2C) fused to the PAn DR Epitope (PADRE) (Ad5-GUCY2C-PADRE) vaccine
yielded positive results in the phase 1 clinical trial of early CRC patients [332]. The vaccine stimulated
optimal CD8+ T cell responses, while CD4+ T cells were eliminated by self-tolerance, a condition known
as “split tolerance” in the absence of neutralizing antibodies to the viral vector. Oncolytic viruses (OVs)
are genetically engineered DNA viruses. OVs selectively infect highly replicative tumor cells by lytic
cell destruction and dendritic cell activation through GM-CSF to stimulate T cell responses. OVs include
adenoviruses, herpes simplex viruses, vaccinia virus, and vesicular stomatitis virus. OVs activate
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retinoic acid inducible gene -1/stimulator of interferon gene (RIG-1/STING) and TLR pathways [333,334].
Therefore, STING and TLR agonists are now being tested in clinical trials alone or in combination
with immunotherapies. The oncolytic virus T-vec has been shown in all phases of clinical studies to
be tolerable for patients with various types of cancer including GI cancer, and hence, its approval in
melanoma [335–338]. Additionally, OV in combination with the CTLA4 blockade has been shown to
be effective in melanoma [339]. By contrast, a combination approach with chemotherapy (gemcitabine)
showed limited efficacy in oncolytic adenovirus-treated PC (NCT02045589) [340]. Furthermore, a
recent study showed that OV Reo inhibits viral-induced oncogenic drive and tumor mutation burden
in hepatitis C virus (HCV)-HCC [341]. A phase 1 study assessing the safety of an autologous cancer
vaccine showed no significant side effects in 30 advanced solid tumors, including CRC. The study
reported 23 SD out of 27 and one progressive disease (PD) after first vaccination [342]. Finally, small
anticancer molecules have also been used as a potent sensitizers of tumor cells for the improvement of
oncolytic potential [343].

5.4. Checkpoint Inhibitors

Immune checkpoint inhibitors have been used successfully in treating a wide range of cancers
with the exception of GI cancers [344,345]. Checkpoint molecules serve as “brakes” which inhibit
the cytotoxic effect of T cells. The first approved checkpoint inhibitors are ipilimumab, an inhibitor
of CTLA-4, and prembolizumab, which inhibits programmed cell death protein 1 (PD-1) [346,347].
Recently, several studies have focused on critical components and immune contexture by tumor
stratification in predicting therapeutic outcomes across various cancers. For instance, tumors with a
high mutation burden are better targets of immune checkpoints due to the highly expressed tumor
antigen [223,348]. Despite the enhanced mutational burden, some patients remained unresponsive to
immune checkpoint therapies [248]. Several mechanistic studies have identified the involvement of
multiple immunosuppressive pathways [349,350]. Hence, the therapeutic blockade of TIGIT, VISTA,
LAG-3, and TIM-3 are therefore now under investigation. Several strategies are currently piggy-backed
on the success of checkpoint inhibitors [325]. Hence, the use of a combination therapy with checkpoint
inhibitors (see Table 3).

Currently, ongoing studies are testing the safety and efficacy of immune checkpoint inhibitors and
sorafenib in advanced HCC, whereas gemcitabine in combination with checkpoint blockade PDL-1
is being evaluated for the treatment of PC. Furthermore, combinations of radio frequency ablation,
cyoablation, or TACE and CTLA-4 inhibitor in advanced HCC shows promising results [351], and
phase 2 is currently ongoing. Notably, a combination of regorafenib and nivolumab (anti-PD-1) in
patients with advanced CRC yielded a 29% response rate, a reduced FoxP3hiCD45RA-Tregs fraction,
a manageable safety profile, and an anti-tumor effect [286]. By contrast, phase 3 studies on the
combination of cobimetinib or atezolizumab plus regorafenib failed to improve overall survival rates,
and three treatment-related deaths was reported [287].
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Table 3. Clinical trials of other immunotherapies in GI cancer.

Cancer Type Start Year No of Participants Site of Trial Agents Phase ClinicalTrials.Gov
Number

Recruitment
Status

Immune Checkpoint Inhibitors/Combination Strategies
Advanced metastatic solid

tumor 2018 48 Japan Regorafenib + nivolumab I/II NCT03406871 Yes

HCC 2016 90 US Durvalumab + tremelimumab ablative
therapies (TACE, RFA, cryoablation) II NCT02821754 Yes

MSS CRC 2019 54 US Copanlisib + nivolumab I/II NCT03711058 Yes
MSI-H/dMMR or high

TMB CRC 2018 54 China PD-1 antibody + cox inhibitor II NCT03638297 Yes

Stage III&IV HCC 2018 40 US Nivolumab + sorafenib II NCT03439891 Yes

CRC 2018 74 US Anti-PD-L1/TGFbetaRII fusion protein
M7824 I/II NCT03436563 Yes

Stage IV PC 2019 40 US Nivolumab + cabiralizumab +
gemcitabine II NCT03697564 Not yet

MSS CRC 2019 64 US Nivolumab + relatlimab II NCT03642067 Yes

Advanced HCC 2019 545 AstraZeneca
locations Durvalumab + tremelimumab II NCT02519348 Yes

NK-Based Therapies
CRC 2018 54 US Allogenic NK + ALT803 (IL-15) I NCT02890758 Yes

Solid tumor 2018 30 China NKG2D CAR-NK I NCT03415100 Yes
Relapse or refractory solid

tumor 2016 10 China Anti-MUC1 CAR-pNK I/II NCT02839954 Unknown

Cancer Vaccines
Early and intermediate

HCC 2017 40 Multiple locations IMA970A + CV8102 adjuvant I/II NCT03203005 Yes

Refractory cancerCRC 2017 35 US Pexa-Vec + durvalumab + tremelimumab I/II NCT03206073 Yes

PC 2016 26 US LOAd703 oncolytic virus + gemcitabine
+ nab-paclitaxel I/II NCT02705196 Yes

Solid tumor 2019 23 US VSV-IFNβ-NIS and pembrolizumab I NCT03647163 Yes
Colon cancer 2012 3 US Autologous cancer vaccine TGF-β II NCT01505166 Terminated

Advanced malignant
tumor 2018 30 China iNeo-Vac-P01 I NCT03662815 Yes

CRC 2005 37 Taiwan CEA pulsed dendriticcells I/II NCT00154713 Unknown
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Table 3. Cont.

Cancer Type Start Year No of Participants Site of Trial Agents Phase ClinicalTrials.Gov
Number

Recruitment
Status

Stroma-Directed Therapies
MSS CRC 2018 20 Germany CCR5 inhibitor + pembrolizumab I NCT03274804 Active, NR

Malignant solid tumor 2019 30 China Nectin 4/FAP CAR-T I NCT03932565 Yes

Advanced PDAC 2019 30 US Nivolumab + CCR2/CCR5 dual
antagonist + G-VAX I/II NCT03767582 Not yet

PC 2008 12 US
G-VAX vaccine + cyclophosphamide +

pembrolizumab, + anti-CSF-1R
monoclonal antibody IMC-CS4

I NCT03153410 Yes

Metastatic PC 2017 566 Multiple locations Pegylated IL-10 + folfox III NCT02923921 Yes

PC 2017 140 US Tocilizumab + gemcitabine+
nab-paclitaxel II NCT02767557 Yes

Metastatic PC 2017 9 US IL-12 gene therapy I NCT03281382 Yes
HCC 2018 35 China Chiauranib 1 NCT03245190 Yes

Advance cancer 2018 280 Multiple locations Anti-IL-8 + Nivolumab I/IIa NCT03400332 Yes

Abbreviations: HCC, hepatocellular carcinoma; TACE, transarterial chemoembolization; RFA, radiofrequency ablation; MSS, microsatellite stable; MSI-H, microsatellite instability; dMMR,
mismatched repair deficiency; TMB, tumor mutation burden; PD-1, programmed cell death-1; COX, cyclo-oxygenase; CRC, colorectal cancer; PC, pancreatic cancer; NK, natural killer;
CAR, chimeric antigen receptor; CAR-NK, chimeric antigen receptor –natural killer; MUC-1, mucin 1; CEA, Carcinoembryonic Antigen; FAP, fibroblast activation protein; CCR2, C-C
chemokine receptor type 2; C-C chemokine receptor type 5; CSF-1R,colony stimulating factor-1 receptor; IL—interleukin; TGF-β, transforming growth factor; CAR-T; chimeric antigen
receptor-T cell; VSV-IFNβ-NIS, Oncolytic VSV engineered to express interferon-beta (IFNβ) and the sodium iodide symporter (NIS); NKG2D, Natural killer group 2 member D.
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5.5. NK Cell-Based Therapies

NK cell express inhibitory molecules such as KIR (killer cell immunoglobulin-like receptor),
NKG2A, and TIGIT. Similarly, a subset of NK cells has been reported to express checkpoint molecule
(PD-1) [352]. Monoclonal antibodies targeting these molecules are currently being tested alone or in
combination with other immunotherapeutic therapies [353,354]. Potent stimulators of the cytotoxic
effect of NK cells includes IL-2 and IL-15. Allogeneic NK cell transfer is widely used in clinical trials
due to its promising results [355]. For instance, a study reported that irreversible electroporation
in combination with allogeneic NK cells improves the median overall survival in stage IV HCC
patients [356]. Similarly, the combination of irreversible electroporation and allogeneic NK cell
increases progression free survival and overall survival in stage III/IV PC [357]. Another study showed
that combination of either 5-fluorouracil or oxaliplatin with adoptive NK cell increases five years’
progression free survival and overall survival with no severe adverse effect in CRC [358]. A phase
1 study testing the combination of trastuzumab or cetuximab with adoptive NK cell therapy is well
tolerated with four stable diseases; three of which show a decreased tumor size, and two out of the
six treated patients had progressive diseases [359]. Furthermore, the use of CAR-NK in solid tumors
is still in its infancy, as most studies are from preclinical studies and early clinical trials. Pre-clinical
studies of CAR NK-92 targeting receptor tyrosine-protein kinase erbB-2 (ErbB2)/HER2 and EGFR
showed promising results in glioblastoma and renal carcinoma lung metastases, respectively [360,361].
CAR-NK are currently being tested for their safety and efficacy, and the use of modified cytokines in
combination with allogeneic NK is currently ongoing (NCT02890758).

5.6. Stroma-Targeted Therapies

The stroma is a critical component of a tumor that encompasses the extracellular matrix, recruited
mesenchymal stromal cells, fibroblasts, osteoblasts, chondrocytes, macrophages, and myeloid cells,
which contributes to cancer progression [362,363]. Anti-FAP antibodies conjugated to drugs induces
a cytotoxic effect, which inhibits tumor progression in gastrointestinal cancer [364]. Less specific
strategies involve the use of FAP to cleave and activate pro-drug promethelin, as well as the methelin
released exerts cytotoxic effect [365]. In addition, the use of both single-agent CAR-T as well as
combined agent anti-tumor CAR-T specific for antigen erythropoietin-producing HCC A2 (EphA2)
on FAP+ CAF were reported [366,367]. A study showed that the anti-FAP CAR-T and DNA vaccine
inhibits tumor growth in a mouse model of GI cancer [368,369]. In addition, a FAP-specific vaccine
induces cytotoxic T cells and also promotes chemotherapy sensitivity [368,370]. CAF-derived TGF-β
plays an inhibitory role on CD4+ and CD8+ T cells [367,371]. Therefore, the simultaneous blockade
of TGF-β and PD-L1 facilitates T cell infiltration into the tumor microenvironment [91]. However,
TGF-β inhibitors failed to improve the efficacy of anti-PD-1 in tumors [372]. The proliferation of
CAF triggered by TGF-β inhibition increases matrix metallopeptidase 9 (MMP-9) and reduced the
expression of PD-L1. Therefore, a synergetic and sequential approach has been suggested that involves
delaying TGF-β inhibition until anti-PD 1 resistance is observed [373,374].

Cytokines and chemokines act in a paracrine and autocrine manner within the tumor
microenvironment. For instance, IL-8 promotes immunosuppression and tumor escape. In addition,
the serum level of IL-8 is associated with a poor prognosis in patients [375]. Furthermore, cytokines
are known to have shorter half-lives, and their systemic use is limited due to toxicity [376,377]. Of a
clinical benefit was the recent advances made towards modification of cytokines by the attachment of
polyethylene glycol (PEG) to prolong their shelf lives. Modified cytokines include pegilodecakin (IL-10)
(AM0010), biomimetic IL-2 pulmoleukin, IL-2 variant (IL-2v) linked to anti-FAP, and ALT-803; and
others are still in development. For example, NKTR-214 (bempegaldesleukin) can target interleukin-2
(IL-2) receptor beta subunit with the potential of turning cold tumors to hot tumors. Most cytokine-based
drugs are now given in combination with checkpoint inhibitors, chemotherapy, and CAR-T to enhance
their efficacy [378]. Clinical trials testing the efficacy are currently ongoing (NCT03400332) (see Table 3).
Similarly, a study showed that inhibition with anti-CXCR2 and anti-PD-1 synergistically inhibits tumor
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formation [379]. Other stroma-targeted strategies include CSF-1R, CXCR1, CXCR2, and CCR2/CCR5
blockades, which inhibit the trafficking and recruitment of myeloid cells such as macrophages into
the tumor [380,381]. Surprisingly, CSF-1R inhibitors have failed to improve survival rates in early
clinical trials. A recent phase 1 study of emactuzumab alone or in combination with paclitaxel in
advanced tumors showed a 7% ORR without a relevant anti-tumor effect [292]. By contrast, pre-clinical
studies showed that CSF-1R inhibition enhances PD-1 in a melanoma mouse model with a BRAF
mutation [382].

6. Conclusions

GI cancer is a pervasive disease with pathogenic contributions. The tumor
immune-microenvironment play a role in the pathogenesis. Mounting evidence that has accumulated
from preclinical studies over the years has identified immune therapeutic targets. However, the
overall survival advantage of patients treated with immunotherapies in solid tumors including
GI cancer is suboptimal. Recent advances in predictive/prognostic biomarkers and combination
treatment approaches have been made towards improving patients’ responses to immunotherapy.
The understanding of the tumor-immune microenvironment and identification of potential predictive
biomarkers could hold the answers to future immunotherapy targeting the GI cancers, in particular for
the development of precision-based medicine.
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