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Allele expression biases 
in mixed‑ploid sugarcane 
accessions
Fernando Henrique Correr  1,2, Agnelo Furtado  2, Antonio Augusto Franco Garcia  1, 
Robert James Henry  2 & Gabriel Rodrigues Alves Margarido  1,2*

Allele-specific expression (ASE) represents differences in the magnitude of expression between 
alleles of the same gene. This is not straightforward for polyploids, especially autopolyploids, as 
knowledge about the dose of each allele is required for accurate estimation of ASE. This is the case for 
the genomically complex Saccharum species, characterized by high levels of ploidy and aneuploidy. 
We used a Beta-Binomial model to test for allelic imbalance in Saccharum, with adaptations for 
mixed-ploid organisms. The hierarchical Beta-Binomial model was used to test if allele expression 
followed the expectation based on genomic allele dosage. The highest frequencies of ASE occurred in 
sugarcane hybrids, suggesting a possible influence of interspecific hybridization in these genotypes. 
For all accessions, genes showing ASE (ASEGs) were less frequent than those with balanced allelic 
expression. These genes were related to a broad range of processes, mostly associated with general 
metabolism, organelles, responses to stress and responses to stimuli. In addition, the frequency of 
ASEGs in high-level functional terms was similar among the genotypes, with a few genes associated 
with more specific biological processes. We hypothesize that ASE in Saccharum is largely a genotype-
specific phenomenon, as a large number of ASEGs were exclusive to individual accessions.

Sugarcane is one of the most important polyploid crops, and is cultivated in 26.8 million hectares worldwide1. 
Profitable and sustainable production relies on high-yielding cultivars developed by breeding programs2. Sug-
arcane breeders can use molecular markers and genomic sequences to explore the variability among Saccharum 
accessions, and enhance knowledge about the molecular basis of desired traits3. However, modern cultivars are 
complex polyploids, which poses challenges for analyzing their genomes. Although such cultivars have a basic 
chromosome set of x = 10, they are highly polyploid and aneuploid interspecific hybrids, resulting in a genome 
of approximately 10 Gb2,4–6. These genotypes can also show a variable number of chromosomes among the 
homoeologous groups5,6.

There are genome references recently available for hybrids and the wild species Saccharum spontaneum7–9. 
Although they are important genomic resources, they are still limited in the representation of multiple copies 
and similar alleles. In addition, multimapping is still an important problem when assigning reads to similar 
sequences. The hom(oe)ologous chromosomes have high levels of collinearity and gene structural conserva-
tion, as the three Saccharum genomes are similar10. Association between genotypic and phenotypic data is thus 
not trivial in sugarcane. Instead of relying only on genomic information, approaches using transcriptomes have 
proven useful in investigation of likely cellular functions of putative genes, aiming to obtain molecular markers 
from functional genomic regions. Thus, analyses of transcriptomic data have made it possible to assess gene 
expression to compare different organs and developmental stages11,12 and to contrast specific genotypes13 or 
groups of accessions14,15.

Differential expression analysis identifies significant changes in the intensity of gene expression, revealing 
possible changes in metabolic pathways according to contrasting factors used in the experimental design16,17. 
However, there is also variation inherent to the allelic origin of each transcript, because a heterozygous locus 
can have more than one haplotype being transcribed. The magnitude of variation between the expression of the 
haplotypes can differ, resulting in preferentially expressed alleles18. Significant differences in the expression of 
the alleles are due to effects in proximal regulation, changes in the reading frame and epigenetic modifications18. 
Therefore, to measure allele-specific expression (ASE), polymorphisms must be detected and the expression 
level of each allele be obtained via RNA sequencing (RNA-Seq)19,20. The objective is to detect deviations from 
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equivalent expression between the alleles (i.e., allelic imbalance), as well as to compare the relative allelic propor-
tion in samples from different environments21–23.

In diploids, tests for allele-specific expression often use a binomial model with an expected probability of 
equivalent expression between the alleles (Fig. 1A in Additional file 1). Then, ASE stems from significant devia-
tions from similar expression levels of both alleles. In polyploids, the allelic frequency in the homology group 
can influence the relative expression levels. Therefore, the doses of the alleles in each heterozygous site must be 
estimated for accurate assessment of ASE. The modeling procedure also follows the binomial distribution, but 
the expected proportion should be equivalent to the relative dose of the allele. Pham and colleagues24 considered 
the possible dosage values in autotetraploid potato—simplex, duplex and triplex25,26—to determine the expected 
probability of allele counts. This is a case of studying allele-specific expression for an organism with fixed ploidy 
(Fig. 1B in Additional file 1). They found from 2180 to 5270 genes showing preferentially expressed alleles in their 
experimental conditions—combination of six genotypes and two organs. Furthermore, all potato genotypes had 
more genes with ASE in the tuber than in the leaves, the former showing enrichment of genes coding for proteins 
responsible for the localization of macromolecules and transport processes. These authors emphasized that ASE 
reflected the breeding history of this crop, as it was more frequent in the target of selection—the tuber. On the 
other hand, they also reported the occurrence of ASE in genes related to traits introgressed from wild genotypes.

Polyploidy arises by whole genome duplications (WGD), originating as autopolyploids; or by hybridization 
between related species, resulting in allopolyploids27,28. While the former event creates multiple sets of homolo-
gous chromosomes, the latter results in parental subgenomes that can be grouped in sets of homoeologous 
chromosomes28. The six Saccharum species are polyploids with a large number of chromosomes5,29. Most of the 
sugarcane cultivars are hybrids between Saccharum officinarum and S. spontaneum, with variable and genotype-
specific numbers of chromosomes5,6. Because both species are considered autopolyploids30, commercial sugarcane 
cultivars are interspecific hybrids that can be genomically classified as auto-allopolyploids10,29. Recently, sugar-
cane breeding has focused on the variability from wild accessions to explore traits for bioenergy production31. 
There is an interest in genes associated with important traits in sugarcane breeding—higher biomass production, 
resistance to diseases and tolerance to adverse environmental conditions. To that end, knowledge about gene 
regulation can provide useful targets for marker-association studies.

Recent research has addressed the detection of allele-specific expression in sugarcane. After determining hap-
lotypes of particular genomic regions, a variable number of polymorphisms were found within the genes where 
allele expression was correlated to the dosage32,33. Sforça and colleagues33 also reported difficulties in observing 
all the haplotypes of a region, inferring missing haplotypes based on expression data when possible. Another 
approach used the tetraploid S. spontaneum genome9 to investigate alleles of specific gene families34. These 
results show that expression of alleles from genes coding for the Dof transcription family differed depending on 
the tissues examined, the developmental stages or hormone treatments. They also found that the cis-elements 
of the alleles of the same gene were associated with different functions. These studies pioneered research on 
allelic expression in sugarcane, but they focused on specific genic regions for a small group of genes. It would 
be informative to have a global view of the frequency of allele-specific expression in sugarcane, considering the 
transcriptomes of different Saccharum accessions.

Pham and colleagues24 used a fixed ploidy of four homologs per group to detect SNPs with ASE in tetraploid 
potato (Fig. 1B in Additional file 1). However, in a crop such as sugarcane, the ASE models must deal with variable 
ploidy levels35, respecting cytological results that demonstrate homoeology and aneuploidy (Fig. 1C in Additional 
file 1)5,36. Nowadays, it is feasible to assess allele-specific expression in sugarcane by combining the expression 
data from RNA-Seq studies with the allelic dosages estimated through an appropriate pipeline for an organism 
with non-fixed ploidy37,38. Our main objective was to test for allele-specific expression using a model leveraging 
the doses of the alleles as prior information. Here we show the use of an adapted Beta-Binomial distribution, 
commonly used for diploid and polyploid organisms, to model ASE in mixed-ploid Saccharum. Finally, we sug-
gest that this model can be easily applied to unravel ASE in other complex polyploid species.

Results
Number of polymorphisms obtained with the polyploid genotyping pipeline.  A total of 63,712 
polymorphic sites were identified in the de novo transcriptome reference, and we kept 37,902 SNPs after remov-
ing monomorphic or missing sites. By doing so, we only kept SNPs that were heterozygous in at least one of 
the genotypes. We also removed polymorphisms identified as indels, keeping 27,041 sites. Most of the SNPs 
sequenced at higher depth were dodecaploid, for all genotypes, with lower frequencies for lower ploidy levels 
(Fig. 2 in Additional file 1). This finding is in agreement with cytological observations, as twelve is the most fre-
quent ploidy among the homologs of Saccharum hybrids6. Less stringent filters resulted in different distributions, 
with higher frequencies of hexaploid and octaploid loci. This may reflect lower accuracy for polymorphisms 
detected at lower depth of sequencing.

Another important observation was that the total number of SNPs was almost constant among the genotypes 
when no depth filter was applied (Fig. 2 in Additional file 1). However, the number of heterozygous SNPs was 
higher in hybrids and S. officinarum (Table 2 in Additional file 1). When increasing the minimum depth filter, 
the genotypes SES205A and US85-1008 had fewer SNPs than the others. During the genotyping-by-sequencing 
(GBS) protocol, these were the only genotypes without replication in the sequencing libraries. Furthermore, 
75% of the transcripts had up to 2665 bp, with an average of roughly four SNPs (Fig. 3 in Additional file 1). It 
also observed that longer transcripts did not necessarily have more SNPs. This is likely explained by the inherent 
limitation of GBS to only detect SNPs in positions adjacent to the restriction enzyme recognition site. Overall, 
these figures show that the markers identified with the GBS pipeline are appropriate for genotyping and compar-
ing different accessions.
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After removing indels, missing and monomorphic sites, quantification of allele expression was performed 
with ASEReadCounter for 26,995 SNPs identified in 6722 transcripts. We used the heterozygous sites in each 
genotype (numbers in Table 2 in Additional file 1) to test if the RNA-Seq proportion between both alleles devi-
ated from the ratio observed in the GBS reads, indicating a likely imbalance between the alleles.

Preferentially expressed alleles.  The SNPs used to test for preferential expression were the heterozygous 
loci with a minimum of ten genomic reads and ten RNA-Seq reads. For all genotypes, SNPs showing ASE were 
the minority (Fig. 2 and Table 3 in Additional file 1). Similarly, the number of genes showing allele-specific 
expression (ASEGs) were less frequent than non-ASEGs. No evidence of positional bias of the SNPs showing 
ASE was found (Fig. 4 in Additional file 1) and we also found no evidence that SNPs in highly expressed genes 
were more likely to show ASE (Fig. 5 in Additional file 1). Dissimilarity among genotypes calculated with ASE-
SNPs was similar to that obtained with all loci. First, using either the relative dosage estimated with the genotypic 
data or the relative expression calculated from the RNA-Seq, hybrid genotypes were clustered with S. officinarum 
(Fig. 6A,C in Additional file 1). A second cluster was formed by the S. spontaneum accessions. These groups were 
also consistent when using only SNPs classified as showing ASE (Fig. 6B,D in Additional file 1), revealing that 
the occurrence of ASE may be used to estimate distances between accessions. In addition, relative expression 
of ASE-SNPs grouped SP80-3280 and RB72454 together, differently than what we observed when using all the 
evaluated SNPs.

The three hybrid genotypes—RB72454, SP80-3280 and US85-1008—had the highest number of ASE-SNPs 
and the highest number of ASEGs (Fig. 1). We noticed that most genes with ASE occurred exclusively in a 
single genotype after evaluating all possible intersections of ASEGs. However, results regarding the functional 
annotation were similar among genotypes (Table 4, 5, 6 and 7 in Additional file 2). We found ASEGs coding for 
stress-related proteins, especially disease resistance proteins. Among the disease resistance gene analogs (RGAs) 
and RPP genes, we found an ASEG coding for the protein enhanced disease resistance 2. In this gene, three SNPs 
revealed allele-specific expression—the two ASE-SNPs found in RB72454 were biased towards the alternative 
allele and one was commonly found in US85-1008 (Fig. 2). The protein coded by this gene is potentially involved 
with hypersensitive response and in preventing senescence induced by ethylene. Curiously, a gene coding for a 
probable ethylene response sensor 2 was among the ASEGs of RB72454 (Table 4 in Additional file 2).

Sucrose content has traditionally been the focus of sugarcane breeding programs and, more recently, there has 
been an increasing interest in developing high fiber cultivars. Hence, ASEGs related to carbohydrate metabolism 
were investigated. However, a clear pattern for genes involved with carbohydrate partitioning was not identified, 
even in genotypes in the same phenotypic group—high or low biomass. On the other hand, genes related to this 
biological process were classified as ASEGs in individual genotypes. For example, a gene coding for UTP–glucose-
1-phosphate uridylyltransferase, an enzyme involved in the synthesis of UDP-glucose, was detected. This gene 
had preferentially expressed alleles in all low fiber genotypes and in two high fiber accessions—IN84-58 and 
US85-1008 (Tables 4 and 5 in Additional file 2 and Fig. 3). Interestingly, the genes coding for Sucrose-phosphate 

Figure 1.   Intersections among the genes showing allele-specific expression (ASEGs) detected for each 
genotype. The number of ASEGs in each genotype is shown in orange and the total number of genes (ASEGs 
and non-ASEGs) is in black, on the left part of the plot. The right plot indicates all possible intersections among 
the genotypes, with ASEGs and non-ASEGs colored with the same scheme in the barplot. High fiber genotypes 
are shown with a green bar, and low fiber genotypes in blue. Purple dots indicate the exclusive genes of each 
genotype, pink dots represent the intersections where SP80-3280 and RB72454 are present.
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synthase and Sucrose transport protein SUT4, proteins respectively involved with sucrose synthesis and transport, 
showed significant ASE in IN84-58. Similarly to carbohydrate metabolism, we could not find evidence of any 
association between photosynthesis-related ASEGs and the two phenotypic groups. Moreover, we identified genes 
showing genotype-specific allele-specific expression in these processes. We could identify genes for which all 
wild accessions had biased expression. In the case of the gene coding for RuBisCO large subunit-binding protein, 
SNPs of high-biomass genotypes and White Transparent showed preferential expression of the reference allele 
(Fig. 7 in Additional file 1). A different pattern was observed for the ASE-SNPs found in the phosphoenolpyruvate 
carboxylase 3 coding gene (Fig. 8 in Additional file 1), where ASE occurred for all genotypes in at least one of 
the four positions.

Functional enrichment tests were used to evaluate if ASEGs were acting on similar processes. No GO term 
was significantly enriched with ASEGs. This result is possibly explained by the limited number of genes with 
detected polymorphisms that passed the filtering steps—roughly one thousand per genotype. We then checked 
the frequency of ASEGs in each GO Term (Tables 6 and 7 in Additional file 2) and found that GO terms with the 
highest frequencies of ASEGs were often found in common for all genotypes. As expected, high-level GO terms 
had the most ASEGs, followed by many metabolic processes and terms associated to the biosynthesis of cellular 
compounds. This shows that many ASEGs are possibly directly involved with maintaining the metabolism. For 
the GO terms, the frequency of ASEGs shared among genotypes (Table 6 in Additional file 2) is higher than the 
frequencies of ASEGs found in individual genotypes (Table 7 in Additional file 2). This indicates that high-level 

Figure 2.   Relative genomic dose and relative expression of the reference allele from SNPs identified in the 
gene coding for enhanced disease resistance 2. Relative genomic dose of the allele is represented by a blue bar. 
The expressed proportion of each allele is represented by orange bars. SNPs showing significant ASE have black 
borders, while those not showing ASE have white borders. The color gradient represents the average expression 
level of the allele. The bottom part of the plot has a schematic view of the gene showing the position of the SNPs.
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GO terms have many genotype-specific ASEGs. Hence, genes with allele-specific expression were found seem-
ingly at random in the same pathway when considering different genotypes.

Discussion
Da Silva31 has shown that dosage-effects and gene duplication are key factors contributing to variations in gene 
expression levels in sugarcane. Allele-specific expression adds another layer to the complexity of interpreting 
gene expression in both autopolyploids and allopolyploids. For sugarcane, this phenomenon was investigated in 
genes with known functions32,34. As we evaluated a larger set of expressed genes, the ASEGs found in our study 
were associated with a wide range of functional roles, mostly with high level metabolic processes. We found no 
differences among hybrids and wild genotypes regarding ASEGs related to the biosynthesis, modification, or 
degradation of compounds. Indeed, we observed that most ASEGs were exclusive to an individual accession 
(Fig. 1) rather than to groups of genotypes, and that the number of ASEGs in high level GO terms was similar 
among the accessions. The lack of co-occurrence of ASEGs in specific pathways can be explained by two concur-
rent hypotheses. First, that allele-specific expression in sugarcane is genotype-specific, occurring for different 
genes in high level pathways. Second, there are ASEGs shared among a few genotypes that can be associated with 
particular functional roles. The second hypothesis could explain the few ASEGs in more specific terms (Table 7 
in Additional file 2), such as the defense gene with ASE-SNPs in all genotypes (Fig. 2).

Figure 3.   Relative genomic dosage and relative expression of the reference allele from SNPs identified in the 
gene coding for UTP–glucose-1-phosphate uridylyltransferase. Relative genomic dosage of the allele is represented 
by a blue bar. The expressed proportion of each allele is represented by orange bars. SNPs showing ASE have 
black borders, while those not showing ASE have white borders. Color gradient represents the expression level 
of the allele. The bottom part of the plot shows a schematic view of the transcript showing the position of the 
SNPs.
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Previous efforts unraveled allele-specific expression in groups of sugarcane genes. Vilela and colleagues32 
found most of the SNPs in the TOR coding gene with the expression of different alleles matching the correspond-
ing doses of the haplotypes. For the Phytochrome C coding gene, however, they identified allele-specific expression 
towards the main haplotype. In another endeavor, Sforça and colleagues compared the expression proportion to 
the genomic proportion of SNPs found in haplotypes of the genes HP600 and CENP-C33. Both genes had SNPs 
showing significant differences between the genomic and the transcriptomic proportions of the haplotypes. Allele 
expression has also been studied in combining the S. spontaneum genome9 and transcriptomic datasets. Recently, 
Cai and colleagues34 used the upstream region of Dof transcription factors and found cis-elements associated 
with different functions in plants. Furthermore, these authors identified differences in upstream regions of the 
alleles of the same gene coding for a transcription factor. They also found alleles showing specific expression 
depending on tissue, developmental stage, and different hormone treatments.

These studies focused on specific haplotypes of a few genes32,33 or evaluated specific gene families34. To 
achieve a global view of allele-specific expression in sugarcane, we took a de novo transcriptome as a reference 
and estimated the allele dosage based on SNPs identified from GBS data. Estimating the doses is common for 
genotyping polyploids33,35,39,40. To test for allele-specific expression in sugarcane leaves, we hypothesized that 
the expression of the alleles followed the allelic dosages. Our results showed that less than half of the evaluated 
genes had at least one SNP showing ASE (Fig. 1 and Table 3 in Additional file 1). We did not verify any bias 
associated with ASE-SNPs (Figs. 4 and 5 in Additional file 1), which also correctly clustered genotypes (Fig. 6 in 
Additional file 1). Thus, neither a restricted coverage of polymorphisms nor differences in multiplexing appar-
ently hampered the detection of SNPs with ASE. Moreover, our results indicate that interspecific hybridization 
may have caused changes in allele expression, as the highest numbers of ASE-SNPs were found in RB72454, 
SP80-3280 and US85-1008. On the other hand, the S. spontaneum accessions showed the highest proportions of 
ASE-SNPs. In addition, hybrids and the accession IN84-58 showed the highest number of ASEGs. Nevertheless, 
we note that this observation should be interpreted with caution, as the sampling of polymorphisms with GBS 
is limited and subject to biases41. The small number of sampled genotypes also limits broader conclusions about 
the frequency of ASEGs in different genetic backgrounds.

Variation in the expression levels due to allele-dosage effects can be expected in polyploids, and this could 
lead to variable phenotypic effects42. Appropriate knowledge of allele dosage in polyploid organisms is required 
to test for allele-specific expression. ASE tests used in diploids are often based on a Binomial distribution using 
the null hypothesis that both alleles are expressed equally ( θ = 0.5)18,21. Genotyping of organisms with a fixed 
ploidy is feasible24–26, with markers possibly having different allelic dosages. Unfortunately, this test is not suitable 
for organisms with variable ploidy levels, as loci can show multiple categories of heterozytes for each ploidy level. 
In this scenario, cytological observations on sugarcane reveal different ploidies in the homoeologous groups6, 
expanding the categories of allelic dosages35.

Knowledge about the complete haplotypes of the homologs/homoeologs from genomic data can improve 
ploidy estimation33. Using SNPs, we restricted our analysis to two alleles, although in many loci the number 
of alleles is probably higher. For identifying multiple alleles, we should use a haplotype-based approach, which 
requires a large marker density or longer sequencing reads43,44. However, determining the ploidy of the genomic 
regions for a large number of loci is still nontrivial for complex polyploids. In this scenario, the best alternative 
still relies on estimating the doses of alleles using molecular markers35,39,40. With this approach, knowledge of the 
doses has been used for constructing genetic maps and improving the performance of predictive models39,40. In 
addition, this information can be used to test for allele-specific expression as done for species with fixed ploidy24. 
For those with variable ploidy levels, models should account for the dosages of alleles in each marker. This is the 
scenario for our Saccharum dataset, in which we aimed to estimate the posterior distribution of the proportion of 
the reference allele. We used a Bayesian hierarchical model considering the estimated doses—obtained through 
genotyping—as parameters of a prior Beta distribution. Because the counts of the allele—from the expression 
data—follow a Binomial distribution, we modeled allele-specific expression for polyploids with a Beta-Binomial 
distribution (Fig. 9 in Additional file 1).

Sugarcane cultivars, which are interspecific hybrids, can also show different regulation of alleles coming from 
different homoeologs. Unfortunately, we currently do not have enough information to identify the homoeologs 
but only the polymorphisms. A limitation would arise if non-identifiable duplicated genes are treated as single-
copy, potentially biasing read mapping33. Lastly, as stated by Vilela and colleagues32, we can only speculate which 
mechanisms are responsible for biased expression, including the regulation of promoter regions or epigenetic 
changes18. For a deeper investigation of the causes of ASE, multiple omics approaches should be integrated. 
Through genomics, assessment of the upstream and downstream regions can reveal polymorphisms in cis-
elements. These regions can be also investigated for epigenetic modifications affecting gene regulation. In any 
case, by combining genomic and transcriptomic data we can identify ASEGs independently from the underlying 
causes.

Testing for allele-specific expression is relevant to understand differences in tissues, conditions or genotypes. 
Previous studies in plants emphasize how this phenomenon is common among the expressed genes. Allelic-
specific expression was found in more than 50% of the genes in the maize ear of a hybrid cultivar, with a similar 
number of ASEGs found independently of the developmental stage19. They also found a higher contribution of 
the alleles from one parent, but this was less pronounced during floret differentiation. Ereful and colleagues21 
studied allelic imbalance combining rice genotypes (parents and F1 hybrids) and drought conditions (plants 
under normal water regime or following a dry-down protocol). They suggested that the occurrence of ASE was 
more associated to the genotype than due to water stress. However, depending on the crop, more ASEGs can be 
found in specific tissues. Pham and colleagues24 found evidence that allele-specific expression is more frequent 
in potato tubers than in leaves, probably due to the selection for carbohydrate accumulation in the tubers.
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Allopolyploids—or even a diploid interspecific hybrid—can be compared to their diploid parents to verify 
the occurrence of expression level dominance and also homoeolog-specific expression45. The study of alleles in 
allopolyploids relies on assessing the expression of the homoeologs to test for both expression level dominance 
and homoeolog-specific expression. This depends on previous knowledge of the allopolyploid parents, as the aim 
is to verify possible biases in gene expression towards a subgenome46. The analysis is similar to that performed 
in the maize hybrid by Hu and colleagues19 to determine the parental alleles with biased expression. In cotton, 
transgressive expression and expression level dominance of the A or D genome, together, were more frequent 
than additive expression45. However, homoeolog-specific expression was balanced between the subgenomes, 
which was partially explained by differential regulation of one parental homoeolog despite the expression level 
dominance of the other parental genome. In addition, allele-specific expression of polyploids can be more associ-
ated with the genotype than to other factors. Similarly, Powell and colleagues47 stated that homoeolog expression 
bias was inherent to the wheat genotype, while the infection by necrotrophic Fusarium pseudograminearum 
mostly altered the magnitude of expression of the subgenomes. Knowledge of gene expression in the parental 
subgenomes is still lacking in the literature for studying expression level dominance and homoeolog-specific 
expression in sugarcane.

Genes showing preferential allele expression can be used for targeted genotyping to discover QTL regions 
associated with a trait. ASEGs found in rice subjected to different drought treatments were closely located to 
eight markers surrounding QTLs with effects on grain yield under drought21. When implemented in breeding 
of polyploid crops, estimation of doses can improve phenotypic predictions compared to the diploid approxi-
mation for heterozygous loci. According to De Lara and colleagues39, the predictive ability of genomic selection 
models was higher when considering allele dosages in the autotetraploid Panicum maximum. In addition to using 
genomic doses, knowledge of expression biases could improve the accuracy of predictive models for plant breed-
ing, especially in the genomic selection context. Depending on the trait evaluated, ASEGs are potential targets 
for associating genomic regions and phenotypes. Nowadays, sugarcane breeding focuses on bioenergy-associated 
traits31. Assessing the regulation of allele expression in Saccharum can provide targets to help in this process.

Allele-specific expression of a large set of expressed genes has been evaluated in plants19,21, but these studies 
are still limited in polyploids24,45,47. Polyploidy has a significant role in the evolution of plants and many crops 
are recognizable polyploids, while others experienced ancient polyploidization42. Among the most important 
polyploid crops, sugarcane presents a complex genome, with a large set of chromosomes. Indeed, the wild species 
used to develop modern cultivars, S. officinarum and S. spontaneum, are polyploids showing up to ten groups of 
homologs, at least six chromosomes per group and aneuploidy is frequent in some accessions6. For this reason, 
we aimed to shed light on the occurrence of allele-specific expression in the genus by assessing a set of wild and 
hybrid genotypes. In this report, we aimed to assess allele-specific expression in sugarcane using a large set of 
genes and multiple genotypes. To achieve this objective, we modified the commonly used Beta-Binomial model 
to appropriately assess allele-specific expression in mixed-ploid organisms. This model can be easily applied to 
other polyploids, both with fixed and variable ploidy levels.

Material and methods
Biological material, SNP calling pipeline and quantification of allele expression.  Genotypic and 
transcriptomic information of Saccharum genotypes from the Brazilian Panel of Sugarcane Genotypes (BPSG) 
was used to investigate the expression of different alleles. A panel of Saccharum accessions forms the BPSG, 
which is composed of wild accessions and hybrids from Brazilian and foreign breeding programs48. The panel 
represents part of the germplasm bank of RIDESA (Inter-University Network for the Development of Sugarcane 
Industry) and is located at the Agricultural Science Center of the Federal University of São Carlos (UFSCar) in 
Araras City, São Paulo State, Brazil. Permission to collect plant samples from the BPSG was granted by RIDESA. 
The authors declare that the collection of plant material and all methods used in this study comply with all rel-
evant institutional, national, and international guidelines.

To characterize expression profiles, we used a set of six genotypes with three replicas each from a previous 
gene expression study14—IN84-58, RB72454, SES205A, SP80-3280, US85-1008 and White Transparent. These 
genotypes represent two groups of accessions contrasting in key biomass traits—fiber content and tillering capac-
ity. Genotypes of the high biomass group include the hybrid US85-1008 and the S. spontaneum genotypes IN84-
58 and SES205. The low biomass group included the S. officinarum White Transparent and the hybrids RB72454 
and SP80-3280. Briefly, we collected portions of the first visible dewlap leaves (+ 1) from 6-month-old sugarcane 
plants and extracted the total RNA from the middle section of each leaf. Pooled libraries were sequenced in two 
lanes of an Illumina HiSeq 2500 platform, in paired-end mode (2 × 100 bp). Information regarding those geno-
types can be found in the supplementary material (Table 1 in Additional File 1). Herein we used as a reference 
the longest isoforms of a transcriptome assembled de novo using the RNA-Seq reads of the full set of genotypes14.

The accessions from the BPSG were genotyped using the GBS protocol49 with the PstI restriction enzyme. 
Library preparation was planned to provide a higher sequencing depth for some genotypes, by including duplicate 
samples in multiple library plates, including White Transparent, IN8458, RB72454 and, in particular, SP80-3280. 
A pipeline for SNP discovery in polyploids was performed with Tassel4-Poly (v.4.3.7—modified)37, using bow-
tie2 (v.2.3.3)50 to align the GBS reads. First, for SNP discovery we used the standard Tassel4-Poly pipeline with 
the following main modifications: a minimum minor allele frequency of 0.01 (mnMAF) and a minimum minor 
allele count (mnMAC) of 40. Next, the ploidy and allelic dosages for each site were estimated with SuperMASSA38 
and vcf2sm37. We used the Hardy–Weinberg inference model with a minimum call rate of 50%, a naïve posterior 
threshold of 0.5 and a minimum posterior probability to keep a variant of 0.5. Ploidy levels ranging from four to 
16 were tested, then filtered for polymorphic sites with the most likely ploidy being between six and 14. The SNP 
calling process took into account all genotypes from the BPSG, but only those present in our RNA-Seq data were 
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kept for downstream analysis. The VCF file was filtered to remove sites where the genotypes were homozygous 
or had missing calls, as well as those identified as insertions or deletions.

hisat2 (v.2.1.0)51 was used to align the RNA-Seq reads to the de novo transcriptome. Quantification of read 
counts of each allele was performed with the GATK ASEReadCounter tool (v.4.1.4.1)18,25,26 for each aligned 
library. Counts of the reference allele and the total counts for each SNP for each genotype were scored. Reads 
from both lanes of the same sample were grouped, as no batch effect was identified. Sites with at least ten genomic 
reads were retained and positions showing low expression—less than ten RNA-Seq reads—were removed.

Model to test for allele‑specific expression in Saccharum.  To assess the occurrence of allelic imbal-
ance in a given SNP, we tested if the expression of the reference allele was equal to its relative dosage in the 
genome, given the estimated ploidy. For the i-th SNP of genotype k, αik and βik were the dosage of the reference 
and the alternative alleles, respectively (Fig. 9—Genotyping Additional file 1). First, the genomic ratio was cal-
culated as the dosage of the reference allele divided by the corresponding ploidy level ( Pik = αik

αik+βik
 ). Next, the 

proportion of the reference allele was estimated from the RNA-Seq count, denoted by θik . Then, we tested the 
null hypothesis of no significant difference between these two ratios:

A model following the Beta-Binomial distribution was used to test this hypothesis (Fig. 9I, II and III in Addi-
tional file 1). First, we modeled the number of RNA-Seq reads of the reference allele of the i-th SNP, on the r-th 
replicate of the k-th genotype, denoted by yirk , following a Binomial distribution (Fig. 9II in Additional file 1):

where nirk represents the total number of reads of the SNP for the corresponding sample. The prior distribution 
of the parameter θik was modeled by a Beta distribution (Fig. 2I in Additional file 1), using as parameters the 
dosages of the alleles:

We obtained the highest density interval (HDI) of the posterior distribution of θik via an optimization algo-
rithm of the Beta-Binomial distribution. We deemed a SNP as showing a preferentially expressed allele if the 
ratio Pik was outside of the highest HDI of θik (Fig. 2III in Additional file 1). We applied a Bonferroni-like cor-
rection, by making the credibility mass for obtaining the HDI corresponding to 1− ζ

N  , where ζ is the desired 
significance level (0.05) and N is the number of genes with at least one tested SNP. Although we found thousands 
of SNPs in each genotype (Table 2 in Additional file 1), GBS relies on the presence of enzyme restriction sites 
and the genotyping resulted in many adjacent and redundant SNPs. Then, because we assessed roughly a thou-
sand independent heterozygous SNPs in each genotype—a number similar to the number of genes assessed in 
each genotype -, we used N = 1000 . A gene with at least one SNP with allelic-specific expression was called as 
having ASE (ASEG).

Enrichment analysis.  Gene Ontology (GO) terms was evaluated for enrichment with ASEGs. To that end 
we used the ASEGs as the set of selected genes, compared against the background of all the genes with at least 
one heterozygous SNP. Tests were performed with the goseq R package (v.1.38.0 in R 3.6.0)52. Terms with an 
FDR-adjusted p-value less than 5%53 were considered overrepresented.

Data availability
The raw Illumina RNA-sequencing data used in this article are available at DDBJ/EMBL/GenBank under the 
BioProject ID PRJEB38368. The genotyping file of the accessions is available at Dataverse (https://​datav​erse.​
harva​rd.​edu/​priva​teurl.​xhtml?​token=​b7586​338-​eeb7-​4039-​a083-​0657d​a7114​fb).

Received: 21 December 2021; Accepted: 27 April 2022

References
	 1.	 FAOSTAT. Food and agriculture organization of the United Nations. Stat database (2021). http://​www.​fao.​org/​faost​at/​en/#​data/​

QC/ (Accessed 20 Jan 2021).
	 2.	 Scortecci, K. C. et al. Challenges, opportunities and recent advances in sugarcane breeding. In Plant Breeding 352 (InTech, 2012). 

https://​doi.​org/​10.​5772/​28606.
	 3.	 Mancini, M. C. et al. New developments in sugarcane genetics and genomics. In Advances of basic science for second generation 

bioethanol from sugarcane (eds Buckeridge, M. S. & De Souza, A. P.) 159–174 (Springer International Publishing, Cham, 2017). 
https://​doi.​org/​10.​1007/​978-3-​319-​49826-3_9.

	 4.	 Diniz, A. L. et al. Genomic resources for energy cane breeding in the post genomics era. Comput. Struct. Biotechnol. J. 17, 1404–
1414. https://​doi.​org/​10.​1016/j.​csbj.​2019.​10.​006 (2019).

	 5.	 Piperidis, G., Piperidis, N. & D’Hont, A. Molecular cytogenetic investigation of chromosome composition and transmission in 
sugarcane. Mol. Genet. Genomics. 284, 65–73. https://​doi.​org/​10.​1007/​s00438-​010-​0546-3 (2010).

	 6.	 Piperidis, N. & D’Hont, A. Sugarcane genome architecture decrypted with chromosome-specific oligo probes. Plant J. https://​doi.​
org/​10.​1111/​tpj.​14881 (2020).

	 7.	 Garsmeur, O. et al. A mosaic monoploid reference sequence for the highly complex genome of sugarcane. Nat. Commun. 9, 1–10. 
https://​doi.​org/​10.​1038/​s41467-​018-​05051-5 (2018).

	 8.	 Souza, G. M. et al. Assembly of the 373k gene space of the polyploid sugarcane genome reveals reservoirs of functional diversity 
in the world’s leading biomass crop. Gigascience. 8, 1–18. https://​doi.​org/​10.​1093/​gigas​cience/​giz129 (2019).

	 9.	 Zhang, J. et al. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nat. Genet. 50, 1565–1573 (2018).

H0 : θik = Pik

yirk ∼ Binomial(nirk , θik),

θik ∼ Beta(αik ,βik)

https://dataverse.harvard.edu/privateurl.xhtml?token=b7586338-eeb7-4039-a083-0657da7114fb
https://dataverse.harvard.edu/privateurl.xhtml?token=b7586338-eeb7-4039-a083-0657da7114fb
http://www.fao.org/faostat/en/#data/QC/
http://www.fao.org/faostat/en/#data/QC/
https://doi.org/10.5772/28606
https://doi.org/10.1007/978-3-319-49826-3_9
https://doi.org/10.1016/j.csbj.2019.10.006
https://doi.org/10.1007/s00438-010-0546-3
https://doi.org/10.1111/tpj.14881
https://doi.org/10.1111/tpj.14881
https://doi.org/10.1038/s41467-018-05051-5
https://doi.org/10.1093/gigascience/giz129


9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:8778  | https://doi.org/10.1038/s41598-022-12725-0

www.nature.com/scientificreports/

	10.	 Pompidor, N. et al. Three founding ancestral genomes involved in the origin of sugarcane. Ann. Bot. 127, 827–840 (2021).
	11.	 Casu, R. E., Jarmey, J. M., Bonnett, G. D. & Manners, J. M. Identification of transcripts associated with cell wall metabolism and 

development in the stem of sugarcane by Affymetrix GeneChip Sugarcane Genome Array expression profiling. Funct. Integr. 
Genomics. 7, 153–167. https://​doi.​org/​10.​1007/​s10142-​006-​0038-z (2007).

	12.	 Mattiello, L. et al. Physiological and transcriptional analyses of developmental stages along sugarcane leaf. BMC Plant Biol. 15, 
300. https://​doi.​org/​10.​1186/​s12870-​015-​0694-z (2015).

	13.	 Vicentini, R. et al. Large-scale transcriptome analysis of two sugarcane genotypes contrasting for lignin content. PLoS ONE 10, 
e0134909. https://​doi.​org/​10.​1371/​journ​al.​pone.​01349​09 (2015).

	14.	 Correr, F. H. et al. Differential expression in leaves of Saccharum genotypes contrasting in biomass production provides evidence 
of genes involved in carbon partitioning. BMC Genomics 21, 673. https://​doi.​org/​10.​1186/​s12864-​020-​07091-y (2020).

	15.	 Kasirajan, L., Hoang, N. V., Furtado, A., Botha, F. C. & Henry, R. J. Transcriptome analysis highlights key differentially expressed 
genes involved in cellulose and lignin biosynthesis of sugarcane genotypes varying in fiber content. Sci. Rep. 8, 1–16 (2018).

	16.	 Soneson, C. & Delorenzi, M. A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinform. 14, 
91. https://​doi.​org/​10.​1186/​1471-​2105-​14-​91 (2013).

	17.	 Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).
	18.	 Castel, S. E., Levy-Moonshine, A., Mohammadi, P., Banks, E. & Lappalainen, T. Tools and best practices for data processing in 

allelic expression analysis. Genome Biol. 16, 1–12. https://​doi.​org/​10.​1186/​s13059-​015-​0762-6 (2015).
	19.	 Hu, X. et al. Transcriptome profiling and comparison of maize ear heterosis during the spikelet and floret differentiation stages. 

BMC Genomics 17, 1–18. https://​doi.​org/​10.​1186/​s12864-​016-​3296-8 (2016).
	20.	 Romanel, A., Lago, S., Prandi, D., Sboner, A. & Demichelis, F. ASEQ: Fast allele-specific studies from next-generation sequencing 

data. BMC Med. Genomics. 8, 1–12 (2015).
	21.	 Ereful, N. C. et al. Analysis of allelic imbalance in rice hybrids under water stress and association of asymmetrically expressed 

genes with drought-response QTLs. Rice. 9, 1–15. https://​doi.​org/​10.​1186/​s12284-​016-​0123-4 (2016).
	22.	 Tuch, B. B. et al. Tumor transcriptome sequencing reveals allelic expression imbalances associated with copy number alterations. 

PLoS ONE 5, e9317 (2010).
	23.	 Wood, D. L. A. et al. Recommendations for accurate resolution of gene and isoform allele-specific expression in RNA-seq data. 

PLoS ONE 10, 1–27 (2015).
	24.	 Pham, G. M. et al. Extensive genome heterogeneity leads to preferential allele expression and copy number-dependent expression 

in cultivated potato. Plant J. 92, 624–637 (2017).
	25.	 DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. 

Genet. 43, 491–498. https://​doi.​org/​10.​1038/​ng.​806 (2011).
	26.	 McKenna, A. et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. 

Genome Res. 20, 1297–1303. https://​doi.​org/​10.​1101/​gr.​107524.​110 (2010).
	27.	 Lavania, U. C. Polyploidy, body size, and opportunities for genetic enhancement and fixation of heterozygosity in plants. Nucleus 

56, 1–6. https://​doi.​org/​10.​1007/​s13237-​013-​0075-7 (2013).
	28.	 Spoelhof, J. P., Soltis, P. S. & Soltis, D. E. Pure polyploidy: Closing the gaps in autopolyploid research. J. Syst. Evol. 55, 340–352. 

https://​doi.​org/​10.​1111/​jse.​12253 (2017).
	29.	 Zhang, J. et al. Comparative structural analysis of Bru1 region homeologs in Saccharum spontaneum and S. officinarum. BMC 

Genomics 17, 1–20. https://​doi.​org/​10.​1186/​s12864-​016-​2817-9 (2016).
	30.	 Zhang, J. et al. Genome size variation in three Saccharum species. Euphytica 185, 511–519 (2012).
	31.	 da Silva, J. A. The importance of the wild cane Saccharum spontaneum for bioenergy genetic breeding. Sugar Tech. 19, 229–240. 

https://​doi.​org/​10.​1007/​s12355-​017-​0510-1 (2017).
	32.	 Vilela, M. D. M. et al. Analysis of three sugarcane homo/homeologous regions suggests independent polyploidization events of 

Saccharum officinarum and Saccharum spontaneum. Genome Biol Evol. 9, evw293. https://​doi.​org/​10.​1093/​gbe/​evw293 (2017).
	33.	 Sforça, D. A. et al. Gene duplication in the sugarcane genome: A case study of allele interactions and evolutionary patterns in two 

genic regions. Front. Plant Sci. 10, 553. https://​doi.​org/​10.​3389/​fpls.​2019.​00553 (2019).
	34.	 Cai, M. et al. Allele specific expression of Dof genes responding to hormones and abiotic stresses in sugarcane. PLoS ONE 15, 

e0227716. https://​doi.​org/​10.​1371/​journ​al.​pone.​02277​16 (2020).
	35.	 Garcia, A. A. F. et al. SNP genotyping allows an in-depth characterisation of the genome of sugarcane and other complex autopoly-

ploids. Sci. Rep. 3, 3399. https://​doi.​org/​10.​1038/​srep0​3399 (2013).
	36.	 Vieira, M. L. C. et al. Revisiting meiosis in sugarcane: Chromosomal irregularities and the prevalence of bivalent configurations. 

Front. Genet. 9, 1–12 (2018).
	37.	 Pereira, G. S., Garcia, A. A. F. & Margarido, G. R. A. A fully automated pipeline for quantitative genotype calling from next genera-

tion sequencing data in autopolyploids. BMC Bioinform. 19, 1–10 (2018).
	38.	 Serang, O., Mollinari, M. & Garcia, A. A. F. Efficient exact maximum a posteriori computation for Bayesian SNP genotyping in 

polyploids. PLoS ONE 7, 1–13 (2012).
	39.	 de C Lara, L. A. et al. Genomic selection with allele dosage in panicum maximum Jacq. G3 9, 2463–2475 (2019).
	40.	 Gemenet, D. C. et al. Quantitative trait loci and differential gene expression analyses reveal the genetic basis for negatively associ-

ated β-carotene and starch content in hexaploid sweetpotato [Ipomoea batatas (L.) Lam]. Theor. Appl. Genet. 133, 23–36. https://​
doi.​org/​10.​1007/​s00122-​019-​03437-7 (2020).

	41.	 Nguyen, T. K. & Lim, J.-H. Tools for Chrysanthemum genetic research and breeding: Is genotyping-by-sequencing (GBS) the best 
approach?. Hortic. Environ. Biotechnol. 60, 625–635. https://​doi.​org/​10.​1007/​s13580-​019-​00160-6 (2019).

	42.	 Osborn, T. C. et al. Understanding mechanisms of novel gene expression in polyploids. Trends Genet. 19, 141–147 (2003).
	43.	 N’Diaye, A. et al. Single marker and haplotype-based association analysis of semolina and pasta colour in elite durum wheat 

breeding lines using a high-density consensus map. PLoS ONE 12, 1–24 (2017).
	44.	 Sehgal, D. & Dreisigacker, S. Haplotypes-based genetic analysis: Benefits and challenges. Vavilovskii Zhurnal Genet Selektsii. 23, 

803–808 (2019).
	45.	 Yoo, M. J., Szadkowski, E. & Wendel, J. F. Homoeolog expression bias and expression level dominance in allopolyploid cotton. 

Heredity 110, 171–180 (2013).
	46.	 Grover, C. E. et al. Homoeolog expression bias and expression level dominance in allopolyploids. New Phytol. 196, 966–971 (2012).
	47.	 Powell, J. J. et al. The defence-associated transcriptome of hexaploid wheat displays homoeolog expression and induction bias. 

Plant Biotechnol. J. 15, 533–543. https://​doi.​org/​10.​1111/​pbi.​12651 (2017).
	48.	 Medeiros, C., Balsalobre, T. W. A. & Carneiro, M. S. Molecular diversity and genetic structure of Saccharum complex accessions. 

PLoS ONE 15, e0233211. https://​doi.​org/​10.​1371/​journ​al.​pone.​02332​11 (2020).
	49.	 Elshire, R. J. et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6, e19379. 

https://​doi.​org/​10.​1371/​journ​al.​pone.​00193​79 (2011).
	50.	 Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 9, 357–359. https://​doi.​org/​10.​1038/​

nmeth.​1923 (2012).
	51.	 Kim, D., Langmead, B. & Salzberg, S. L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods. 12, 357–360. 

https://​doi.​org/​10.​1038/​nmeth.​3317 (2015).

https://doi.org/10.1007/s10142-006-0038-z
https://doi.org/10.1186/s12870-015-0694-z
https://doi.org/10.1371/journal.pone.0134909
https://doi.org/10.1186/s12864-020-07091-y
https://doi.org/10.1186/1471-2105-14-91
https://doi.org/10.1186/s13059-015-0762-6
https://doi.org/10.1186/s12864-016-3296-8
https://doi.org/10.1186/s12284-016-0123-4
https://doi.org/10.1038/ng.806
https://doi.org/10.1101/gr.107524.110
https://doi.org/10.1007/s13237-013-0075-7
https://doi.org/10.1111/jse.12253
https://doi.org/10.1186/s12864-016-2817-9
https://doi.org/10.1007/s12355-017-0510-1
https://doi.org/10.1093/gbe/evw293
https://doi.org/10.3389/fpls.2019.00553
https://doi.org/10.1371/journal.pone.0227716
https://doi.org/10.1038/srep03399
https://doi.org/10.1007/s00122-019-03437-7
https://doi.org/10.1007/s00122-019-03437-7
https://doi.org/10.1007/s13580-019-00160-6
https://doi.org/10.1111/pbi.12651
https://doi.org/10.1371/journal.pone.0233211
https://doi.org/10.1371/journal.pone.0019379
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1038/nmeth.3317


10

Vol:.(1234567890)

Scientific Reports |         (2022) 12:8778  | https://doi.org/10.1038/s41598-022-12725-0

www.nature.com/scientificreports/

	52.	 Young, M. D., Wakefield, M. J., Smyth, G. K. & Oshlack, A. Gene ontology analysis for RNA-seq: Accounting for selection bias. 
Genome Biol. 11, R14. https://​doi.​org/​10.​1186/​gb-​2010-​11-2-​r14 (2010).

	53.	 Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. 
Soc. 57, 289–300. https://​doi.​org/​10.​2307/​23461​01 (1995).

Acknowledgements
All computational infrastructure was supported by grant #2015/22993–7, São Paulo Research Foundation 
(FAPESP), awarded to GRAM, and by The University of Queensland’s Research Computing Centre (RCC). 
This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil 
(CAPES) —Finance Code 001. FHC and GRAM received fellowship grants from the Institutional Program for 
Internationalization financed by CAPES—processes 88887.367965/2019-00 and 88887.466432/2019-00, respec-
tively. FHC received a fellowship grant from the Brazilian National Council for Scientific and Technological 
Development (CNPq).

Author contributions
All authors contributed to conceptualize the study. F.H.C. and G.R.A.M. analyzed the data and drafted the 
manuscript. All authors wrote and approved the final version of the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​022-​12725-0.

Correspondence and requests for materials should be addressed to G.R.A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

https://doi.org/10.1186/gb-2010-11-2-r14
https://doi.org/10.2307/2346101
https://doi.org/10.1038/s41598-022-12725-0
https://doi.org/10.1038/s41598-022-12725-0
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Allele expression biases in mixed-ploid sugarcane accessions
	Results
	Number of polymorphisms obtained with the polyploid genotyping pipeline. 
	Preferentially expressed alleles. 

	Discussion
	Material and methods
	Biological material, SNP calling pipeline and quantification of allele expression. 
	Model to test for allele-specific expression in Saccharum. 
	Enrichment analysis. 

	References
	Acknowledgements


