# organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# Cyclo(-L-prolyl-L-valinyl-) from Burkholderia thailandensis MSMB43

#### Xiang-Yang Liu, Cheng Wang\* and Yi-Qiang Cheng\*

Department of Biological Sciences, Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, PO Box 413, Milwaukee, WI 53201, USA Correspondence e-mail: wang35@uwm.edu, ycheng@uwm.edu

Received 8 October 2012; accepted 15 October 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.002 Å; disorder in main residue; R factor = 0.031; wR factor = 0.075; data-to-parameter ratio = 13.5.

The title compound [systematic name: (3S,8aS)-3-isopropylhexahydropyrrolo[1,2-a]pyrazine-1,4-dione], C<sub>10</sub>H<sub>16</sub>N<sub>2</sub>O<sub>2</sub>,, is a newly isolated cyclic dipeptide from Burkholderia thailandensis MSMB43. There are two independent molecules in the asymmetric unit. Two C atoms and their attached H atoms in the five-membered ring of one of the molecules are disordered over two sets of sites in a 0.715 (5):0.285 (5) ratio. The two independent molecules have the same configuration and the absolute configurations of the chiral centers were determined based on the observation of anomalous dispersion. In the crystal, two types of N-H···O hydrogen bonds link pairs of independent molecules.

#### **Related literature**

For general background to secondary metabolites from B. thailandensis, see: Knappe et al. (2008); Nguyen et al. (2008); Sevedsavamdost et al. (2010); Ishida et al. (2010); Klausmeyer et al. (2011); Biggins et al. (2011); Wang et al. (2011, 2012); Ishida et al. (2012). For isolation of the title compound from other microorganisms, see: Chen (1960); Schmitz et al. (1983); Jayatilake et al. (1996); Ginz & Engelhardt (2000); Qi et al. (2009); Wang et al. (2010); Park et al. (2006). For the biological activity of the title compound, see: Holden et al. (1999); Fdhila et al. (2003). For large-scale genome sequencing, see: Mukhopadhyay et al. (2010); Yu et al. (2006); Zhuo et al. (2012). For our work on obtaining natural products from B. thailandensis MSMB43, see: Liu et al. (2012).



# **Experimental**

Crystal data  $C_{10}H_{16}N_2O_2$  $M_r = 196.25$ Orthorhombic,  $P2_12_12_1$ a = 5.6227 (1) Åb = 10.2571 (2) Å c = 34.2115 (6) Å

#### Data collection

Bruker APEXII area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2007)  $T_{\min} = 0.851, \ T_{\max} = 0.928$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.031$ | H atoms treated by a mixture of                            |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.075$               | independent and constrained                                |
| S = 1.02                        | refinement                                                 |
| 3668 reflections                | $\Delta \rho_{\rm max} = 0.30 \text{ e } \text{\AA}^{-3}$  |
| 271 parameters                  | $\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$ |
| 3 restraints                    | Absolute structure: Flack (1983)                           |
|                                 | 1481 Friedel pairs                                         |

Flack parameter: 0.05 (17)

V = 1973.07 (6) Å<sup>3</sup>

Cu  $K\alpha$  radiation

 $0.22 \times 0.14 \times 0.10 \text{ mm}$ 

28285 measured reflections

3668 independent reflections

3354 reflections with  $I > 2\sigma(I)$ 

 $\mu = 0.76 \text{ mm}^{-1}$ 

T = 100 K

 $R_{\rm int}=0.045$ 

Z = 8

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$ | D-H        | $H \cdots A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|-----------------------------|------------|--------------|--------------|---------------------------|
| $N1-H1\cdotsO1A^{i}$        | 0.872 (19) | 2.016 (19)   | 2.8734 (17)  | 167.7 (17)                |
| $N1A-H1A\cdotsO1^{ii}$      | 0.916 (19) | 2.06 (2)     | 2.9710 (17)  | 172.3 (17)                |

Symmetry codes: (i) x - 1, y, z; (ii) x + 1, y, z.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXTL and OLEX2.

Support for this work was obtained from a Research Growth Initiative Award from the University of Wisconsin-Milwaukee and NIH/NCI grant R01 CA 152212 (both to YQC). The authors thank Lara C. Spencer and Ilia A. Guzei (University of Wisconsin-Madison Department of Chemistry Crystallography Facility) for collecting the crystallographic data.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2084).

#### References

- Biggins, J. B., Gleber, C. D. & Brady, S. F. (2011). Org. Lett. 13, 1536-1539.
- Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, Y. S. (1960). Bull. Chem. Soc. Jpn, 24, 372-381.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Fdhila, F., Vazquez, V., Sanchez, J. L. & Riguera, R. (2003). J. Nat. Prod. 66, 1299-1301.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Ginz, M. & Engelhardt, U. H. (2000). J. Agric. Food Chem. 48, 3528-3532.
- Holden, M. T., Ram Chhabra, S., de Nys, R., Stead, P., Bainton, N. J., Hill, P. J., Manefield, M., Kumar, N., Labatte, M., England, D., Rice, S., Givskov, M., Salmond, G. P., Stewart, G. S., Bycroft, B. W., Kjelleberg, S. & Williams, P. (1999). Mol. Microbiol. 33, 1254–1266.
- Ishida, K., Lincke, T., Behnken, S. & Hertweck, C. (2010). J. Am. Chem. Soc. 132, 13966–13968.
- Ishida, K., Lincke, T. & Hertweck, C. (2012). Angew. Chem. Int. Ed. Engl. 51, 5470–5474.
- Jayatilake, G. S., Thornton, M. P., Leonard, A. C., Grimwade, J. E. & Baker, B. J. (1996). J. Nat. Prod. 59, 293–296.
- Klausmeyer, P., Shipley, S. M., Zuck, K. M. & McCloud, T. G. (2011). J. Nat. Prod. 74, 2039–2044.
- Knappe, T. A., Linne, U., Zirah, S., Rebuffat, S., Xie, X. & Marahiel, M. A. (2008). J. Am. Chem. Soc. 130, 11446–11454.
- Liu, X.-Y., Wang, C. & Cheng, Y.-Q. (2012). Acta Cryst. E68, o2757-o2758.

- Mukhopadhyay, S., Thomason, M. K., Lentz, S., Nolan, N., Willner, K., Gee, J. E., Glass, M. B., Inglis, T. J., Merritt, A., Levy, A., Sozhamannan, S., Mateczun, A. & Read, T. D. (2010). J. Bacteriol. **192**, 6313–6314.
- Nguyen, T., Ishida, K., Jenke-Kodama, H., Dittmann, E., Gurgui, C., Hochmuth, T., Taudien, S., Platzer, M., Hertweck, C. & Piel, J. (2008). *Nat. Biotechnol.* **26**, 225–233.
- Park, Y. C., Gunasekera, S. P., Lopez, J. V., McCarthy, P. J. & Wright, A. E. (2006). J. Nat. Prod. 69, 580–584.
- Qi, S. H., Xu, Y., Gao, J., Qian, P. Y. & Zhang, S. (2009). Anna. Microbiol. 59, 229–233.
- Schmitz, F. J., Vanderah, D. J., Hollenbeak, K. H., Enwall, C. E. L. & Gopichand, Y. (1983). J. Org. Chem. 48, 3941–3945.
- Seyedsayamdost, M. R., Chandler, J. R., Blodgett, J. A., Lima, P. S., Duerkop, B. A., Oinuma, K., Greenberg, E. P. & Clardy, J. (2010). Org. Lett. 12, 716– 719.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, C., Flemming, C. J. & Cheng, Y. Q. (2012). *MedChemComm*, **3**, 976–981.
- Wang, C., Henkes, L. M., Doughty, L. B., He, M., Wang, D., Meyer-Almes, F. J. & Cheng, Y. Q. (2011). J. Nat. Prod. 74, 2031–2038.
- Wang, J. H., Quan, C. S., Qi, X. H., Li, X. & Fan, S. D. (2010). Ann. Microbiol. 396, 1773–1779.
- Yu, Y., Kim, H. S., Chua, H. H., Lin, C. H., Sim, S. H., Lin, D., Derr, A., Engels, R., DeShazer, D., Birren, B., Nierman, W. C. & Tan, P. (2006). BMC Microbiol. 6, 46.
- Zhuo, Y., Liu, L., Wang, Q., Liu, X., Ren, B., Liu, M., Ni, P., Cheng, Y. Q. & Zhang, L. (2012). J. Bacteriol. 194, 4749–4750.

# supplementary materials

Acta Cryst. (2012). E68, o3182-o3183 [doi:10.1107/S1600536812043000]

# Cyclo(-L-prolyl-L-valinyl-) from Burkholderia thailandensis MSMB43

# Xiang-Yang Liu, Cheng Wang and Yi-Qiang Cheng

#### Comment

Many interesting compounds, including thailandamides A—B (Ishida *et al.*, 2012, Nguyen *et al.*, 2008, Ishida *et al.*, 2010), capistruin (Knappe *et al.*, 2008), bactobolins A—D (Seyedsayamdost *et al.*, 2010), burkholdacs A—B (Biggins *et al.*, 2011), spiruchostatin C (Klausmeyer *et al.*, 2011) and thailandepsins A—F (Wang *et al.*, 2011, Wang *et al.*, 2012), were discovered from *Burkholderia thailandensis* E264 in recent years. In conjunction with large-scale genome sequencing (Mukhopadhyay *et al.*, 2010, Zhuo *et al.*, 2012, Yu *et al.*, 2006), the *Burkholderia* species have drawn much attention due to their capabilities to produce novel compounds with antibacterial, antitumor and antiviral activities. As a result of our expanded natural product discovery from *Burkholderia* species, we have recently confirmed that *B. thailandensis* MSMB43 can produce high titers of FK228 in M8 medium (Liu *et al.*, 2012). Here we report the crystal structure of a known dipeptide isolated from the culture broth of *B. thailandensis* MSMB43 grown in M11 medium.

The title compound is a cyclic dipeptide of *L*-proline and *L*-valine. The structural skeleton is fused by a five-membered pyrrolidine ring and a six-membered piperazine ring. The pyrrolidine ring adopts an envelope configuration and the piperazine ring has a boat configuration. These two rings are located on nearly the same plane and the dihedral angles of these two least-squares planes are  $18.2 (1)^\circ$  for the non-disordered molecule, and  $30.6 (1)^\circ$  for the major component of the disordered molecule. There are two independent molecules in the asymmetric unit of the crystal. Atoms C3A and C4A of one of the molecules are disordered over two positions with a major component contribution of 71.5 (5)%. The two molecules have the same configuration and the absolute configurations of C2, C2A, C7 and C7A are *S* based on the results of anomalous dispersion. There are two intermolecular hydrogen bonds present between two independent molecules in the different asymmetric unit and connect them to form a pair of molecules (Table 1, Fig. 1 and Fig. 2).

#### **Experimental**

*Isolation of the title compound Bacterial strain and culture conditions B. thailandensis* strain MSMB43 was obtained from the US Centers for Disease Control (CDC) and was routinely activated on LB agar containing 50 mg ml<sup>-1</sup> of apramycin ( $Am^{50}$ ) at 37°C for 1 to 2 days as a master plate. A single colony was then transferred into a 1-*L* flask containing 300 ml of LB medium and  $Am^{50}$ , and the culture were growing at 37°C for 24 h as seed culture. For fed-batch fermentation 250 ml of seed culture was transferred into a 20-*L* fermentor (BioFlo IV, New Brunswick Scientific Co., USA) containing 12 *L* of M11 medium (10.0 g/*L* dextrose, 2.0 g/*L* pancreatic digest of casein, 1.0 g/*L* yeast extract, 1.0 g/*L* beef extract; pH 7.0). Fermentation was proceeded at 37°C, 300 rpm for 72 h, during which the pH was automatically adjusted by the fermentor with 1 N HCl or 1 N NaOH. Three liters of 10X M11 was fed to the fermentor from 24 h to 48 h at a flow rate of 0.125 ml/min.

#### Recovery of the crude extract

Bacterial cells and debris were removed by centrifugation of broth at 6,000 g for 15 min. Supernatant was applied to a 2-*L* column ( $\Phi$  8.0 x 40 cm) packed with a 50/50 mixture of Diaion HP-20 resin (Sigma-Aldrich, USA) and Amberlite

XAD16 resin (Sigma-Aldrich) to allow absorption to occur. The resins were subsequently dried and extracted repeatedly with ethyl acetate. Organic extractions were pooled and dried in a rotary evaporator to yield a crude extract.

## Isolation and purification of the title compound

Crude extract was mixed with 50 g silica gel (230–400 mesh, Whatman Purasil, USA). The mixture of silica gel was dried overnight and then applied to a 120 - g silica gel column, which has been equilibrated with hexane. The column was eluted sequentially with 1*L* of hexane (fraction 1), 1*L* of hexane:ethyl acetate (3:1, v/v) (fraction 2), 1*L* of hexane:ethyl acetate (1:1, v/v) (fraction 3), 1*L* of ethyl acetate (fraction 4), 1*L* of ethyl acetate:acetone (1:1, v/v) (fraction 5) and 2*L* of acetone (fraction 6). Fraction 5 was applied on a flash chromatography equipped with a silica gel Universal Column ( $\Phi$  23 ×123 mm, 16 g, Yamazen Corporation,) mounted atop an injection column ( $\Phi$  20 × 65 mm, 14 g, Yamazen Corporation). The column was eluted by mixtures of chloroform and acetone with increasing polarity according to the following scheme: 1%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 65%, 100% of acetone. Fraction eluted by 10% acetone was applied on a preparative HPLC system equipped with an Agilent Prep-C18 column ( $\Phi$  21.2 × 250 mm, 10  $\mu$ m). The mobile phase consists of acetonitrile from 90 min to 100 min, then by 15% acetonitrile for 30 min, and finally by 100% acetonitrile for 20 min. The flow rate was 8 ml/min. The UV spectrum was monitored at 210 nm. The title compound was eluted at 30.0 min and other compounds were eluted at later times.

### Crystallization

The purified title compound was dissolved in ethyl acetate and the crystals were obtained after a slow evaporation of the solvent at room temperature for 5 days.

### Refinement

All hydrogen atoms attached to the carbon atoms were placed in geometrically idealized positions (C—H = 0.98, 0.99 and 1.00 Å on the primary, secondary and tertiary aliphatic C atoms respectively). The H atoms were refined as riding, with isotropic displacement coefficients of  $U_{iso}(H) = 1.5U_{eq}(C)$  for methyl groups or  $1.2U_{eq}(C)$  otherwise. The hydrogen atoms attached to N were located in the difference map and refined independently with restraints and constraints. The H atoms on the N were constrained to have the distances of 0.88 Å and the  $U_{iso}$  value were assigned as equal to 1.2 times the  $U_{eq}$  of the attached atoms.

## **Computing details**

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008) and *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008) and *OLEX2* (Dolomanov *et al.*, 2009).



# Figure 1

A molecular structures of *cyclo*(-*L*-prolyl-*L*-valinyl-) in asymmetric unit with displacement ellipsoids shown at the 50% probability level. All hydrogen atoms attached to non-chiral carbon atoms and minor components of disordered atoms were omitted for clarity.



### Figure 2

A packing diagram of *cyclo*(-*L*-prolyl-*L*-valinyl-), viewed along the *b* axis. For clarity, all H atoms attached to carbon atoms are omitted. The dashed lines represent hydrogen bonds.

### (3S,8aS)-3-Isopropylhexahydropyrrolo[1,2-a]pyrazine-1,4- dione

#### Crystal data

C<sub>10</sub>H<sub>16</sub>N<sub>2</sub>O<sub>2</sub>  $M_r = 196.25$ Orthorhombic,  $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 5.6227 (1) Å b = 10.2571 (2) Å c = 34.2115 (6) Å V = 1973.07 (6) Å<sup>3</sup> Z = 8

## Data collection

Bruker APEXII area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator  $0.50^{\circ} \omega$  and  $0.5^{\circ} \varphi$  scans Absorption correction: multi-scan (*SADABS*; Bruker, 2007)  $T_{\min} = 0.851, T_{\max} = 0.928$ 

## Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.031$  $wR(F^2) = 0.075$ S = 1.023668 reflections 271 parameters 3 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map F(000) = 848  $D_x = 1.321 \text{ Mg m}^{-3}$ Cu K\alpha radiation,  $\lambda = 1.54178 \text{ Å}$ Cell parameters from 999 reflections  $\theta = 2.6-69.5^{\circ}$   $\mu = 0.76 \text{ mm}^{-1}$  T = 100 KNeedle, colourless  $0.22 \times 0.14 \times 0.10 \text{ mm}$ 

28285 measured reflections 3668 independent reflections 3354 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.045$  $\theta_{max} = 69.5^{\circ}, \theta_{min} = 2.6^{\circ}$  $h = -6 \rightarrow 6$  $k = -12 \rightarrow 12$  $l = -40 \rightarrow 41$ 

Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement  $w = 1/[\sigma^2(F_o^2) + (0.0411P)^2 + 0.438P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} = 0.001$  $\Delta\rho_{max} = 0.30$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.23$  e Å<sup>-3</sup> Absolute structure: Flack (1983), 1481 Friedel pairs Flack parameter: 0.05 (17)

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|      | x          | у            | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|------|------------|--------------|-------------|-----------------------------|-----------|
| 01   | -0.0686(2) | 0.57786 (10) | 0.42809 (3) | 0.0185 (2)                  |           |
| O2   | 0.6845 (2) | 0.29334 (10) | 0.46538 (3) | 0.0189 (2)                  |           |
| N1   | 0.1607 (2) | 0.39828 (12) | 0.41718 (4) | 0.0158 (3)                  |           |
| H1   | 0.120 (3)  | 0.3984 (17)  | 0.3926 (6)  | 0.019*                      |           |
| N2   | 0.4056 (2) | 0.44278 (12) | 0.48284 (4) | 0.0151 (3)                  |           |
| C1   | 0.0698 (3) | 0.49203 (15) | 0.43957 (4) | 0.0154 (3)                  |           |
| C2   | 0.1570 (3) | 0.48683 (15) | 0.48164 (4) | 0.0152 (3)                  |           |
| H2   | 0.0559     | 0.4246       | 0.4968      | 0.018*                      |           |
| C3   | 0.1676 (3) | 0.61678 (15) | 0.50308 (5) | 0.0177 (3)                  |           |
| H3A  | 0.0138     | 0.6373       | 0.5157      | 0.021*                      |           |
| H3B  | 0.2109     | 0.6886       | 0.4851      | 0.021*                      |           |
| C4   | 0.3622 (3) | 0.59338 (16) | 0.53340 (4) | 0.0179 (3)                  |           |
| H4A  | 0.4259     | 0.6767       | 0.5436      | 0.021*                      |           |
| H4B  | 0.3025     | 0.5404       | 0.5555      | 0.021*                      |           |
| C5   | 0.5497 (3) | 0.51970 (15) | 0.51009 (4) | 0.0167 (3)                  |           |
| H5A  | 0.6562     | 0.5804       | 0.4960      | 0.020*                      |           |
| H5B  | 0.6463     | 0.4628       | 0.5272      | 0.020*                      |           |
| C6   | 0.4837 (3) | 0.34091 (14) | 0.46205 (4) | 0.0155 (3)                  |           |
| C7   | 0.2933 (3) | 0.28844 (14) | 0.43410 (4) | 0.0155 (3)                  |           |
| H7   | 0.1787     | 0.2360       | 0.4500      | 0.019*                      |           |
| C8   | 0.3954 (3) | 0.19864 (15) | 0.40270 (4) | 0.0175 (3)                  |           |
| H8   | 0.4958     | 0.1321       | 0.4163      | 0.021*                      |           |
| C9   | 0.1969 (3) | 0.12534 (16) | 0.38147 (5) | 0.0215 (3)                  |           |
| H9A  | 0.1029     | 0.1870       | 0.3660      | 0.032*                      |           |
| H9B  | 0.0940     | 0.0825       | 0.4007      | 0.032*                      |           |
| H9C  | 0.2668     | 0.0596       | 0.3641      | 0.032*                      |           |
| C10  | 0.5556 (3) | 0.27055 (17) | 0.37385 (5) | 0.0218 (3)                  |           |
| H10A | 0.4603     | 0.3323       | 0.3586      | 0.033*                      |           |
| H10B | 0.6305     | 0.2075       | 0.3562      | 0.033*                      |           |
| H10C | 0.6790     | 0.3180       | 0.3882      | 0.033*                      |           |
| O1A  | 1.0544 (2) | 0.43773 (11) | 0.33589 (3) | 0.0214 (2)                  |           |
| O2A  | 0.4323 (2) | 0.77776 (12) | 0.27683 (3) | 0.0320 (3)                  |           |
| N1A  | 0.7596 (2) | 0.58471 (13) | 0.34599 (4) | 0.0186 (3)                  |           |
| H1A  | 0.799 (3)  | 0.5861 (18)  | 0.3720 (6)  | 0.022*                      |           |
| N2A  | 0.6766 (3) | 0.60603 (14) | 0.26780 (4) | 0.0221 (3)                  |           |
| C1A  | 0.8856 (3) | 0.50385 (15) | 0.32357 (4) | 0.0172 (3)                  |           |
| C2A  | 0.8103(3)  | 0.49229 (16) | 0.28135 (4) | 0.0190(3)                   |           |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

| H2A  | 0.7014      | 0.4155       | 0.2795       | 0.023*     | 0.715 (5) |
|------|-------------|--------------|--------------|------------|-----------|
| H2B  | 0.7274      | 0.4081       | 0.2756       | 0.023*     | 0.285 (5) |
| C3A  | 1.0062 (5)  | 0.4726 (3)   | 0.25090 (7)  | 0.0201 (8) | 0.715 (5) |
| H3C  | 0.9797      | 0.3906       | 0.2363       | 0.024*     | 0.715 (5) |
| H3D  | 1.1637      | 0.4680       | 0.2638       | 0.024*     | 0.715 (5) |
| C4A  | 0.9952 (6)  | 0.5904 (3)   | 0.22307 (7)  | 0.0283 (7) | 0.715 (5) |
| H4C  | 1.0389      | 0.5656       | 0.1960       | 0.034*     | 0.715 (5) |
| H4D  | 1.1001      | 0.6619       | 0.2320       | 0.034*     | 0.715 (5) |
| C3B  | 1.0460 (10) | 0.5041 (11)  | 0.25504 (12) | 0.0201 (8) | 0.285 (5) |
| H3E  | 1.1567      | 0.5726       | 0.2642       | 0.024*     | 0.285 (5) |
| H3F  | 1.1306      | 0.4201       | 0.2518       | 0.024*     | 0.285 (5) |
| C4B  | 0.9032 (14) | 0.5445 (9)   | 0.21869 (9)  | 0.0283 (7) | 0.285 (5) |
| H4E  | 1.0131      | 0.5846       | 0.1996       | 0.034*     | 0.285 (5) |
| H4F  | 0.8355      | 0.4652       | 0.2065       | 0.034*     | 0.285 (5) |
| C5A  | 0.7235 (3)  | 0.62958 (18) | 0.22612 (5)  | 0.0281 (4) |           |
| H5C  | 0.6982      | 0.7222       | 0.2191       | 0.034*     | 0.715 (5) |
| H5D  | 0.6228      | 0.5738       | 0.2093       | 0.034*     | 0.715 (5) |
| H5E  | 0.7743      | 0.7210       | 0.2220       | 0.034*     | 0.285 (5) |
| H5F  | 0.5790      | 0.6131       | 0.2104       | 0.034*     | 0.285 (5) |
| C6A  | 0.5464 (3)  | 0.68536 (16) | 0.28998 (5)  | 0.0218 (4) |           |
| C7A  | 0.5431 (3)  | 0.65377 (15) | 0.33383 (4)  | 0.0187 (3) |           |
| H7A  | 0.4041      | 0.5954       | 0.3390       | 0.022*     |           |
| C8A  | 0.5085 (3)  | 0.77939 (15) | 0.35758 (4)  | 0.0189 (3) |           |
| H8A  | 0.3758      | 0.8289       | 0.3450       | 0.023*     |           |
| C9A  | 0.4322 (3)  | 0.75127 (17) | 0.39963 (5)  | 0.0234 (4) |           |
| H9D  | 0.5601      | 0.7050       | 0.4133       | 0.035*     |           |
| H9E  | 0.2885      | 0.6972       | 0.3995       | 0.035*     |           |
| H9F  | 0.3990      | 0.8336       | 0.4131       | 0.035*     |           |
| C10A | 0.7283 (3)  | 0.86638 (17) | 0.35596 (5)  | 0.0262 (4) |           |
| H10D | 0.6927      | 0.9504       | 0.3683       | 0.039*     |           |
| H10E | 0.7740      | 0.8805       | 0.3286       | 0.039*     |           |
| H10F | 0.8595      | 0.8241       | 0.3699       | 0.039*     |           |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|-----|------------|------------|------------|-------------|-------------|-------------|
| 01  | 0.0189 (5) | 0.0192 (5) | 0.0175 (5) | 0.0049 (5)  | -0.0028 (5) | -0.0005 (4) |
| O2  | 0.0154 (5) | 0.0211 (5) | 0.0203 (5) | 0.0032 (5)  | -0.0027 (5) | -0.0004(5)  |
| N1  | 0.0175 (7) | 0.0179 (6) | 0.0119 (6) | 0.0029 (6)  | -0.0035 (5) | 0.0006 (5)  |
| N2  | 0.0145 (6) | 0.0170 (6) | 0.0138 (6) | 0.0008 (5)  | -0.0021 (5) | -0.0011 (5) |
| C1  | 0.0140 (7) | 0.0174 (7) | 0.0148 (7) | -0.0030 (7) | -0.0006 (6) | 0.0004 (6)  |
| C2  | 0.0138 (7) | 0.0172 (7) | 0.0147 (7) | 0.0002 (6)  | 0.0006 (6)  | 0.0001 (6)  |
| C3  | 0.0151 (7) | 0.0201 (7) | 0.0178 (7) | 0.0007 (6)  | -0.0001 (6) | -0.0028 (6) |
| C4  | 0.0160 (8) | 0.0216 (7) | 0.0161 (7) | -0.0018 (7) | -0.0014 (6) | -0.0019 (6) |
| C5  | 0.0162 (7) | 0.0184 (7) | 0.0155 (7) | -0.0020 (7) | -0.0034 (6) | 0.0001 (6)  |
| C6  | 0.0173 (8) | 0.0152 (7) | 0.0139 (7) | -0.0016 (6) | -0.0007 (6) | 0.0036 (6)  |
| C7  | 0.0169 (8) | 0.0145 (7) | 0.0151 (7) | 0.0005 (6)  | -0.0001 (6) | 0.0025 (6)  |
| C8  | 0.0189 (8) | 0.0167 (7) | 0.0169 (7) | 0.0023 (6)  | -0.0022 (6) | -0.0004 (6) |
| C9  | 0.0243 (8) | 0.0211 (8) | 0.0190 (8) | -0.0011 (7) | 0.0001 (7)  | -0.0048 (7) |
| C10 | 0.0191 (8) | 0.0266 (8) | 0.0198 (8) | 0.0015 (7)  | 0.0021 (7)  | -0.0020 (7) |
|     |            |            |            |             |             |             |

# supplementary materials

| 01A  | 0.0228 (6)  | 0.0242 (6)  | 0.0173 (5)  | 0.0066 (5)   | -0.0020 (5) | 0.0014 (5)  |
|------|-------------|-------------|-------------|--------------|-------------|-------------|
| O2A  | 0.0418 (7)  | 0.0346 (7)  | 0.0197 (6)  | 0.0179 (6)   | -0.0074 (6) | 0.0000 (5)  |
| N1A  | 0.0206 (7)  | 0.0212 (7)  | 0.0139 (6)  | 0.0020 (6)   | -0.0046 (5) | -0.0001 (6) |
| N2A  | 0.0271 (7)  | 0.0247 (7)  | 0.0146 (6)  | 0.0064 (6)   | -0.0050 (6) | -0.0003 (5) |
| C1A  | 0.0181 (8)  | 0.0158 (7)  | 0.0177 (7)  | -0.0024 (6)  | -0.0013 (6) | 0.0010 (6)  |
| C2A  | 0.0209 (8)  | 0.0191 (7)  | 0.0169 (8)  | 0.0005 (7)   | -0.0020 (7) | 0.0001 (7)  |
| C3A  | 0.0151 (12) | 0.0287 (18) | 0.0164 (9)  | -0.0045 (11) | -0.0045 (9) | -0.0028 (9) |
| C4A  | 0.0290 (18) | 0.0287 (16) | 0.0271 (11) | 0.0011 (12)  | 0.0122 (11) | 0.0109 (11) |
| C3B  | 0.0151 (12) | 0.0287 (18) | 0.0164 (9)  | -0.0045 (11) | -0.0045 (9) | -0.0028 (9) |
| C4B  | 0.0290 (18) | 0.0287 (16) | 0.0271 (11) | 0.0011 (12)  | 0.0122 (11) | 0.0109 (11) |
| C5A  | 0.0412 (11) | 0.0307 (9)  | 0.0124 (8)  | 0.0064 (8)   | -0.0042 (7) | 0.0000 (7)  |
| C6A  | 0.0223 (9)  | 0.0243 (8)  | 0.0187 (8)  | 0.0034 (8)   | -0.0070 (7) | -0.0028 (7) |
| C7A  | 0.0174 (8)  | 0.0204 (8)  | 0.0182 (7)  | 0.0004 (6)   | -0.0025 (7) | 0.0026 (6)  |
| C8A  | 0.0191 (8)  | 0.0210 (8)  | 0.0166 (7)  | 0.0030 (7)   | -0.0003 (6) | 0.0006 (6)  |
| C9A  | 0.0219 (8)  | 0.0287 (9)  | 0.0197 (8)  | 0.0035 (7)   | 0.0021 (7)  | 0.0002 (7)  |
| C10A | 0.0331 (10) | 0.0219 (8)  | 0.0236 (8)  | -0.0068 (8)  | 0.0048 (8)  | -0.0012 (7) |

Geometric parameters (Å, °)

| 01—C1    | 1.2390 (19) | N2A—C6A  | 1.332 (2) |
|----------|-------------|----------|-----------|
| O2—C6    | 1.2354 (19) | N2A—C2A  | 1.463 (2) |
| N1—C1    | 1.331 (2)   | N2A—C5A  | 1.470 (2) |
| N1—C7    | 1.4698 (19) | C1A—C2A  | 1.510 (2) |
| N1—H1    | 0.872 (19)  | C2A—C3A  | 1.530 (3) |
| N2—C6    | 1.3381 (19) | C2A—C3B  | 1.607 (4) |
| N2—C5    | 1.4656 (19) | C2A—H2A  | 1.0000    |
| N2—C2    | 1.469 (2)   | C2A—H2B  | 1.0000    |
| C1—C2    | 1.521 (2)   | C3A—C4A  | 1.539 (3) |
| C2—C3    | 1.523 (2)   | СЗА—НЗС  | 0.9900    |
| С2—Н2    | 1.0000      | C3A—H3D  | 0.9900    |
| C3—C4    | 1.527 (2)   | C4A—C5A  | 1.583 (4) |
| С3—НЗА   | 0.9900      | C4A—H4C  | 0.9900    |
| С3—Н3В   | 0.9900      | C4A—H4D  | 0.9900    |
| C4—C5    | 1.523 (2)   | C3B—C4B  | 1.537 (3) |
| C4—H4A   | 0.9900      | C3B—H3E  | 0.9900    |
| C4—H4B   | 0.9900      | C3B—H3F  | 0.9900    |
| C5—H5A   | 0.9900      | C4B—C5A  | 1.359 (7) |
| С5—Н5В   | 0.9900      | C4B—H4E  | 0.9900    |
| С6—С7    | 1.533 (2)   | C4B—H4F  | 0.9900    |
| С7—С8    | 1.527 (2)   | C5A—H5C  | 0.9900    |
| С7—Н7    | 1.0000      | C5A—H5D  | 0.9900    |
| C8—C10   | 1.526 (2)   | C5A—H5E  | 0.9900    |
| C8—C9    | 1.529 (2)   | C5A—H5F  | 0.9900    |
| C8—H8    | 1.0000      | C6A—C7A  | 1.535 (2) |
| С9—Н9А   | 0.9800      | C7A—C8A  | 1.536 (2) |
| С9—Н9В   | 0.9800      | C7A—H7A  | 1.0000    |
| С9—Н9С   | 0.9800      | C8A—C10A | 1.525 (2) |
| C10—H10A | 0.9800      | C8A—C9A  | 1.528 (2) |
| C10—H10B | 0.9800      | C8A—H8A  | 1.0000    |
| C10—H10C | 0.9800      | C9A—H9D  | 0.9800    |

| O1A—C1A    | 1.2402 (19) | С9А—Н9Е     | 0.9800      |
|------------|-------------|-------------|-------------|
| O2A—C6A    | 1.230 (2)   | C9A—H9F     | 0.9800      |
| N1A—C1A    | 1.333 (2)   | C10A—H10D   | 0.9800      |
| N1A—C7A    | 1.469 (2)   | C10A—H10E   | 0.9800      |
| N1A—H1A    | 0.916 (19)  | C10A—H10F   | 0.9800      |
|            |             |             |             |
| C1—N1—C7   | 121.45 (13) | N2A—C2A—C3B | 100.7 (3)   |
| C1—N1—H1   | 116.9 (12)  | C1A—C2A—C3B | 107.4 (3)   |
| C7—N1—H1   | 121.0 (12)  | C3A—C2A—C3B | 15.0 (4)    |
| C6—N2—C5   | 125.23 (13) | N2A—C2A—H2A | 107.1       |
| C6—N2—C2   | 122.52 (13) | C1A—C2A—H2A | 107.1       |
| C5—N2—C2   | 112.22 (12) | C3A—C2A—H2A | 107.1       |
| O1—C1—N1   | 124.88 (14) | N2A—C2A—H2B | 112.8       |
| O1—C1—C2   | 121.83 (13) | C1A—C2A—H2B | 112.7       |
| N1—C1—C2   | 113.28 (13) | C3B—C2A—H2B | 109.8       |
| N2-C2-C1   | 110.11 (12) | C2A—C3A—C4A | 106.77 (18) |
| N2—C2—C3   | 102.62 (12) | С2А—С3А—Н3С | 110.4       |
| C1—C2—C3   | 115.95 (13) | С4А—С3А—Н3С | 110.4       |
| N2—C2—H2   | 109.3       | C2A—C3A—H3D | 110.4       |
| C1—C2—H2   | 109.3       | C4A—C3A—H3D | 110.4       |
| С3—С2—Н2   | 109.3       | H3C—C3A—H3D | 108.6       |
| C2—C3—C4   | 102.58 (13) | C3A—C4A—C5A | 101.4 (2)   |
| С2—С3—НЗА  | 111.3       | C3A—C4A—H4C | 111.5       |
| С4—С3—НЗА  | 111.3       | C5A—C4A—H4C | 111.5       |
| С2—С3—Н3В  | 111.3       | C3A—C4A—H4D | 111.5       |
| С4—С3—Н3В  | 111.3       | C5A—C4A—H4D | 111.5       |
| НЗА—СЗ—НЗВ | 109.2       | H4C—C4A—H4D | 109.3       |
| C5—C4—C3   | 102.61 (12) | C4B—C3B—C2A | 92.4 (3)    |
| C5—C4—H4A  | 111.2       | C4B—C3B—H3E | 113.2       |
| C3—C4—H4A  | 111.2       | C2A—C3B—H3E | 113.2       |
| C5—C4—H4B  | 111.2       | C4B—C3B—H3F | 113.2       |
| C3—C4—H4B  | 111.2       | C2A—C3B—H3F | 113.2       |
| H4A—C4—H4B | 109.2       | H3E—C3B—H3F | 110.6       |
| N2—C5—C4   | 102.57 (12) | C5A—C4B—C3B | 114.2 (4)   |
| N2—C5—H5A  | 111.3       | C5A—C4B—H4E | 108.7       |
| С4—С5—Н5А  | 111.3       | C3B—C4B—H4E | 108.7       |
| N2—C5—H5B  | 111.3       | C5A—C4B—H4F | 108.7       |
| С4—С5—Н5В  | 111.3       | C3B—C4B—H4F | 108.7       |
| H5A—C5—H5B | 109.2       | H4E—C4B—H4F | 107.6       |
| O2—C6—N2   | 124.02 (14) | C4B—C5A—N2A | 102.1 (2)   |
| O2—C6—C7   | 123.85 (14) | N2A—C5A—C4A | 101.27 (15) |
| N2—C6—C7   | 112.11 (13) | N2A—C5A—H5C | 111.5       |
| N1—C7—C8   | 112.07 (12) | C4A—C5A—H5C | 111.5       |
| N1—C7—C6   | 109.31 (12) | N2A—C5A—H5D | 111.5       |
| C8—C7—C6   | 112.84 (13) | C4A—C5A—H5D | 111.5       |
| N1—C7—H7   | 107.5       | H5C—C5A—H5D | 109.3       |
| С8—С7—Н7   | 107.5       | C4B—C5A—H5E | 111.5       |
| С6—С7—Н7   | 107.5       | N2A—C5A—H5E | 110.3       |
| C10—C8—C7  | 112.67 (13) | C4B—C5A—H5F | 113.5       |

| C10—C8—C9                                          | 111.19 (13)              | N2A—C5A—H5F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 110.7        |
|----------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| C7—C8—C9                                           | 110.87 (13)              | H5E—C5A—H5F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 108.7        |
| C10—C8—H8                                          | 107.3                    | O2A—C6A—N2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 123.30 (15)  |
| С7—С8—Н8                                           | 107.3                    | O2A—C6A—C7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.94 (14)  |
| С9—С8—Н8                                           | 107.3                    | N2A—C6A—C7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 115.76 (14)  |
| С8—С9—Н9А                                          | 109.5                    | N1A—C7A—C6A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 111.64 (13)  |
| С8—С9—Н9В                                          | 109.5                    | N1A—C7A—C8A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 111.08 (13)  |
| Н9А—С9—Н9В                                         | 109.5                    | C6A—C7A—C8A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.98 (13)  |
| С8—С9—Н9С                                          | 109.5                    | N1A—C7A—H7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 108.0        |
| Н9А—С9—Н9С                                         | 109.5                    | С6А—С7А—Н7А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 108.0        |
| Н9В—С9—Н9С                                         | 109.5                    | С8А—С7А—Н7А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 108.0        |
| C8-C10-H10A                                        | 109.5                    | C10A—C8A—C9A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 111.84 (14)  |
| C8-C10-H10B                                        | 109.5                    | C10A—C8A—C7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 111.64 (13)  |
| H10A—C10—H10B                                      | 109.5                    | C9A—C8A—C7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 112.04 (13)  |
| C8-C10-H10C                                        | 109.5                    | C10A—C8A—H8A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 107.0        |
| H10A—C10—H10C                                      | 109.5                    | С9А—С8А—Н8А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 107.0        |
| H10B—C10—H10C                                      | 109.5                    | C7A—C8A—H8A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 107.0        |
| C1A—N1A—C7A                                        | 125.26 (13)              | C8A—C9A—H9D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.5        |
| C1A—N1A—H1A                                        | 116.0 (12)               | С8А—С9А—Н9Е                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.5        |
| C7A—N1A—H1A                                        | 118.0 (12)               | H9D—C9A—H9E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.5        |
| C6A - N2A - C2A                                    | 126.07 (13)              | C8A—C9A—H9F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.5        |
| C6A - N2A - C5A                                    | 123 44 (14)              | H9D—C9A—H9F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.5        |
| $C^2A - N^2A - C^5A$                               | 110.25(13)               | H9F—C9A—H9F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.5        |
| O1A - C1A - N1A                                    | 123 44 (14)              | C8A - C10A - H10D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 109.5        |
| O1A-C1A-C2A                                        | 119 79 (14)              | C8A - C10A - H10E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 109.5        |
| N1A - C1A - C2A                                    | 116.76 (13)              | H10D-C10A-H10F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.5        |
| N2A - C2A - C1A                                    | 112 62 (13)              | C84 - C104 - H10E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 109.5        |
| N2A C2A C3A                                        | 105.04(15)               | $H_{10}$ $C_{10}$ $H_{10}$ $H_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 109.5        |
| C14 - C24 - C34                                    | 105.04(15)<br>117.37(17) | H10E - C10A - H10F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.5        |
| CIA-C2A-C5A                                        | 117.37 (17)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 109.5        |
| C7—N1—C1—O1                                        | -170.29 (14)             | C5A—N2A—C2A—C3A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18.7 (2)     |
| C7—N1—C1—C2                                        | 11.1 (2)                 | C6A—N2A—C2A—C3B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -141.0(4)    |
| C6—N2—C2—C1                                        | -45.57 (18)              | C5A—N2A—C2A—C3B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33.5 (4)     |
| C5—N2—C2—C1                                        | 136.54 (13)              | O1A—C1A—C2A—N2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -158.55 (15) |
| C6—N2—C2—C3                                        | -169.60 (13)             | N1A—C1A—C2A—N2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22.8 (2)     |
| C5—N2—C2—C3                                        | 12.51 (15)               | O1A—C1A—C2A—C3A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -36.4(2)     |
| 01-C1-C2-N2                                        | -143.76(14)              | N1A—C1A—C2A—C3A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 145.00 (17)  |
| N1-C1-C2-N2                                        | 34 95 (18)               | O1A— $C1A$ — $C2A$ — $C3B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -48.6(4)     |
| 01-C1-C2-C3                                        | -27.8(2)                 | N1A— $C1A$ — $C2A$ — $C3B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 132.8 (4)    |
| N1-C1-C2-C3                                        | 150.87(14)               | N2A - C2A - C3A - C4A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 73(3)        |
| $N_{2} - C_{2} - C_{3} - C_{4}$                    | -33.24(14)               | C1A - C2A - C3A - C4A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1187(3)     |
| C1 - C2 - C3 - C4                                  | -153 30 (13)             | $C_{2A}$ $C_{3A}$ $C_{4A}$ $C_{5A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -27.8(3)     |
| $C_{2} = C_{3} = C_{4} = C_{5}$                    | 42 04 (15)               | N2A = C2A = C3B = C4B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -404(7)      |
| $C_{2} = C_{3} = C_{4} = C_{3}$                    | -164.35(13)              | C1A - C2A - C3B - C4B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1584(5)     |
| $C_{2}$ N2 $C_{2}$ $C_{4}$                         | 13 47 (16)               | $C_{2A}$ $C_{3B}$ $C_{4B}$ $C_{5A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 41 1 (0)     |
| $C_2 = 112 = C_3 = C_4$<br>$C_3 = C_4 = C_5 = N_2$ | -33.83(15)               | $C_{2A} = C_{3B} = C_{4B} = C_{5A} = C_{5A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -230(8)      |
| $C_{5} = C_{4} = C_{5} = 1\sqrt{2}$                | 53.05 (15)               | C64 N24 C54 C4P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23.0(0)      |
| $C_2 = N_2 = C_6 = C_2$                            | -172.35(14)              | $C_{1} = 1 2 A = C_{2} A = C_{4} A $ | -8.6(5)      |
| $C_2 = 1N_2 = C_0 = 0_2$                           | 1/2.55(14)<br>175.76(12) | $C_{A} = N_{A} = C_{A} = C_{A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0(3)       |
| UJ-1N2-U0-U/                                       | -1/3.10(13)              | CUA-INZA-CJA-C4A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 130.70 (19)  |

| C2—N2—C6—C7     | 6.64 (19)    | C2A—N2A—C5A—C4A  | -35.9 (2)    |
|-----------------|--------------|------------------|--------------|
| C1—N1—C7—C8     | -175.93 (14) | C3A—C4A—C5A—N2A  | 37.7 (3)     |
| C1—N1—C7—C6     | -50.06 (19)  | C2A—N2A—C6A—O2A  | -177.98 (16) |
| O2-C6-C7-N1     | -142.09 (14) | C5A—N2A—C6A—O2A  | 8.2 (3)      |
| N2-C6-C7-N1     | 38.92 (17)   | C2A—N2A—C6A—C7A  | 1.2 (2)      |
| O2—C6—C7—C8     | -16.7 (2)    | C5A—N2A—C6A—C7A  | -172.63 (15) |
| N2-C6-C7-C8     | 164.34 (13)  | C1A—N1A—C7A—C6A  | -31.1 (2)    |
| N1-C7-C8-C10    | 56.61 (17)   | C1A—N1A—C7A—C8A  | -154.21 (15) |
| C6—C7—C8—C10    | -67.31 (17)  | O2A—C6A—C7A—N1A  | -154.28 (15) |
| N1—C7—C8—C9     | -68.72 (16)  | N2A—C6A—C7A—N1A  | 26.5 (2)     |
| C6—C7—C8—C9     | 167.36 (13)  | O2A—C6A—C7A—C8A  | -30.5 (2)    |
| C7A—N1A—C1A—O1A | -172.92 (14) | N2A—C6A—C7A—C8A  | 150.31 (15)  |
| C7A—N1A—C1A—C2A | 5.6 (2)      | N1A—C7A—C8A—C10A | 53.83 (17)   |
| C6A—N2A—C2A—C1A | -26.9 (2)    | C6A-C7A-C8A-C10A | -70.28 (17)  |
| C5A—N2A—C2A—C1A | 147.63 (14)  | N1A-C7A-C8A-C9A  | -72.51 (17)  |
| C6A—N2A—C2A—C3A | -155.8 (2)   | C6A—C7A—C8A—C9A  | 163.39 (14)  |

Hydrogen-bond geometry (Å, °)

| <i>D</i> —н | $H \cdots A$             | $D \cdots A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D—H··· $A$                                            |
|-------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| 0.872 (19)  | 2.016 (19)               | 2.8734 (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 167.7 (17)                                            |
| 0.916 (19)  | 2.06 (2)                 | 2.9710 (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 172.3 (17)                                            |
|             | 0.872 (19)<br>0.916 (19) | D         II         III         III <thiii< th=""> <thiiii< th="">         III</thiiii<></thiii<> | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*+1, *y*, *z*.