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The cervicovaginal microbiota plays a key role in the health and reproductive outcomes of
women. In reality epidemiological studies have demonstrated that there is an association
between the structure of cervicovaginal microbiota and reproductive health, although key
mechanistic questions regarding these effects remain unanswered and understanding the
interplay between the immune systemand the structure of the cervicovaginalmicrobiota. Here,
we review existing literature relating to the potential mechanisms underlying the interaction
between vaginal microbes and the immune system; we also describe the composition and
function of the microbiome and explain the mechanisms underlying the interactions between
these microbial communities and various aspects of the immune system. Finally, we also
discuss the diseases that are caused by disorders of the reproductive tract and how the
immune system is involved. Finally, based on the data presented in this review, the future
perspectives in research directions and therapeutic opportunities are explored.
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INTRODUCTION

Microbial communities are hypothesized to play an important role in promoting homeostasis. It is
known that certain types of cervicovaginal (CV) communities are associated withmultitude of adverse
outcomes and some CV communities are associated with lower than expected risk of these outcomes.
Again, it is important to recognize the difference between causation and association. Compared to
other parts of the body, the vagina appears to have a particularly simple and low-diversity microbial
community (1). The microbial community in women at childbearing age can be divided into five
different categories, referred to as community-state types (CSTs). Four of these CST species are
dominated by Lactobacillus, namely L. crispatus (CST-I), L. iners (CST-III), L. gasseri (CST-II) and L.
jensenii (CST-V). The CST-IV category does not feature many Lactobacillus species; rather, this
category consists of multiple microbial mixtures of strict and facultative anaerobes, including
Gardnerella, Atopobium, Mobiluncus, and Putelltella (2). There are many kinds of cervicovaginal
microbiota, which symbiotic and antagonize each other, and participate in the formation of a complex
micro-ecosystem. There is always a dynamic balance between the microbiota and the host, the
microbiota and the microbiota, and the microbiota and the environment. This coordinated dynamic
balance plays a decisive role in resisting the invasion of pathogenic microorganisms. However, it is
hypothesized that the stability of vaginal micro-ecosystems depends on its function and not simply
their composition.
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Previously, itwas assumed that the vaginalmicrobiotaofhealthy
women was dominated by Lactobacillus. However, it is now
recognized that the stability of vaginal micro-ecosystems is based
on their true function and not simply their composition (3).
Evidence shows that the vaginal bacterial community is
maintained in a state of dynamic equilibrium and that the vaginal
microbiota is affected by personal hygiene, menstruation, hormone
levels, and disease states (4). furthermore, Pawel Gajer et al. found
that there were five longitudinal patterns of change in vaginal
microbial community composition. Moreover, in some women,
the vaginal microbial community composition changed markedly
and rapidly over time, whereas in others it was relatively stable (5).
Disruption of the vaginal ecosystem contributes to the overgrowth
of pathogens, thus leading to complex vaginal infections such as
bacterial vaginosis (6), sexually transmitted infections (7), and
vulvar vaginal candidiasis (8). Interestingly, vaginal microbes can
be also used to predict the success of in vitro fertilization (9).
THE UTERINE MICROBIOTA

Compared to the vaginal microbiota, the upper reproductive tract
remains largely unexplored. Previously, the endometrial cavity in
healthy women was considered sterile because of the cervical
mucus plug. However, the application of next-generation
sequencing technologies has increased our perception of the
microbiota of the human mucosal surface. Many recent studies
have found that certain changes in the uterine microbiota may be
related to diseases, such as pelvic inflammation and endometrial
cancer (10), and the failure of embryos to undergo implantation
(11). For example, Oleer et al. (12)reported the presence of uterine
colonies that mainly consisted of Gardenella, Enterobacter
bacteria, and Streptococcus lactose. Using 16S rRNA gene
sequencing and Lactobacillus-specific (L. iners & L. crispatus)
qPCR, Andrew et al. reported that Lactobacillus was rarely
found in the endometrium, while the distribution of bacteria in
the endometrium and cervix was dominated by Gardnerella
vaginalis, Enterobacter and Streptococcus agalactiae (13).
INNATE IMMUNITY OF THE GENITAL
TRACT (THE MUCOSAL IMMUNE
SYSTEM)

An Epithelial Barrier in the Mucosa
of the Female Genital Tract
The female reproductive tract includes the fallopian tubes, uterus,
cervix and vagina. The mucosa of the female reproductive tract
varies between the upper and lower reproductive channels. The
upper reproductive tract includes the fallopian tube, uterus, and
inner cervix, and is coveredbyamonolayerof columnar epithelium.
The lower reproductive tract includes the cervix and vagina; these
are covered by a stratified squamous epithelium that forms a more
protective barrier than the columnar epithelium. This is a unique
system that can balancemucosal immunity tomicroorganisms and
immune tolerance to the sperm, embryo, and fetus (14).
Frontiers in Immunology | www.frontiersin.org 2
The mucosal immune system is the first line of defense
against viral, bacterial, fungal, and parasitic pathogens (15). In
the vagina, the main mucosal cells are the epithelial cells, stromal
fibroblasts, and leukocytes; these line the surface of the vaginal
mucosa and provide a barrier that controls epithelial cell barrier
function (Figure 1). Estradiol (E2) increases the proliferation of
vaginal epithelium cells, and high levels of progesterone (P4) are
associated with vaginal epithelial thinning in animal models,
although this has not been observed in humans (16).

Epithelial cells are connected by tight junctions that regulate the
movement of molecules through the epithelium. Tight junctions
predominate between the basal epithelial cells of the stratified
squamous epithelium of the lower female reproductive tract. In
contrast, the columnar epithelium in the upper female reproductive
tract has a more tightly connected and powerful network (17). A
recent study demonstrated that destruction of the epithelium in the
female reproductive tract increases the risk of human
immunodeficiency virus (HIV) infection by interfering with
barrier protection and by promoting the recruitment of HIV
target cells. It was shown that the vaginal use of tenofovir (TFV)
and tenofovir alafamide (TAF) (a modified TFV prodrug) in HIV
prophylaxis trials caused a significant delay in wound closure in the
endometrium (EM), endocervix (CX) and ectocervix (ECX).
Reconstitution of the tight junctions in epithelial cells of the EM
and CX is compromised even after wound closure (18).

A recent study of the mucosal barrier in the reproductive tract
showed that the treatment of bovine endometrial epithelial cell lines
with astaxanthin (AST, a natural antioxidant carotenoid) reduced
the production of lipopolysaccharide-induced interleukin-6 and
tumor necrosis factor, increased the activity of cell superoxide
dismutase and catalase, and promoted the production of insulin-
like growth factor and epithelial growth factor. Furthermore, AST
significantly increased the expression of claudin, a tight junction
protein that may play an important role in maintaining the host
endometrial defense barrier against pathogenic infection.
Collectively, these results suggest that AST is a promising agent
for endometritis (19).
INNATE IMMUNE CELLS

Uterine Natural Killer (NK) Cells
Human natural killer (NK) cells are a class of innate immune cells
that play an important role against pathogenic immunity; this is
due to their ability to recognize and lyse infected cells. NK cells are
also the dominant form of immune cells at the maternal and fetal
interface (20). During the proliferative phase of the endometrium,
only a few NK cells are scattered in the matrix of the functional
layer. However, during the proliferative phase of the menstrual
cycle, only a few NK cells are scattered throughout the stroma of
the functional layer. In contrast, there is a dramatic increase in the
number of NK after ovulation (Figure 2). During the late secretory
phase, the number of NK cells surges up (by up to 30-40% of cells)
in the stromal compartment and the number of endometrial
leukocytes increases up to 70% (17, 23) but numbers of uterine
NK cells are thought to reduce in the second half of pregnancy but
the mechanism for this reduction is unclear (24).
March 2022 | Volume 13 | Article 857299
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Three major subpopulations of NK cells have been identified
in the decidua based on mRNA expression profiles, cell surface
antigens, and metabolic behavior; these subpopulations are
referred to as dNK1, dNK2, and dNK3 (25). Recently, Lamond
et al. reported that NK cells protect the placenta to avoid invasion
by Listeria, an intracellular bacterial pathogen (26). NK cells can
also prevent infection-induced abortion via the injection of
granulysin into the placental trophoblast; this removes
intracellular pathogens without damaging placental cells, thus
reflecting a mechanism that maintains the tolerance of the
maternal-fetal interface to external abnormal factors (20).

Macrophages
Macrophage are the second most abundant subset of immune cells
in the endometrium after uterine NK cells (24). The population of
macrophages increases significantly during the secretion phase
of the menstrual cycle and accounts for 10–20% of the population
of decidual leukocytes (24).Macrophages bind tomolecules that are
specific to the cell wall of pathogens by specific pattern recognition
receptors that participate in the recognition, phagocytosis, and
degradation of microbial cells or ‘self’ cells (27). The phage
function of macrophages in the female reproductive tract is
controlled by dendritic cell-specific regulators that are locally
synthesized by cells (e.g., uterine epithelial cells) and regulated by
estrogen (28). Recent research suggest that dysregulation of the
functions and estrogen responsiveness of female reproductive tract
macrophages may be associated with infertility, estrogen- and
macrophage-dependent gynecological diseases (29).
Frontiers in Immunology | www.frontiersin.org 3
Dendritic Cells
Dendritic cells are a heterogeneous and dynamic population of
leukocytes. These are the most potent antigen capture cells
(immature dendritic cells) and antigen presentation cells (mature
dendritic cells) (30). Recent research demonstrated that uterine
dendritic cells exhibit a tolerant phenotype and both uterine
dendritic cells and uterine macrophages produce IL-10, TGF-b,
and indoleamine 2,3 -dioxygenase, thus helping to maintain a
steady state in the microenvironment (31). Dendritic cells in the
cervical mucosa can effectively promote the replication of human
immunodeficiency virus 1 (HIV-1) and systemic viral dissemination
in the cervical mucosa through siglec-1 antibodies (32). A previous
study demonstrated that decidualization is a process that involves
phenotypic and functional changesof theendometrial stromal cells to
sustain immune homeostasis.

ADAPTIVE IMMUNITY OF THE
REPRODUCTIVE TRACT (SPECIFIC
IMMUNITY)

T Cells and B Cells
Adaptive immune cells in the reproductive tract include both B and
T lymphocytes. Although B cells are relatively rare in the female
reproductive tract, a recent study showed that circulatingmemoryB
cells clustered together in a chemokine receptor 3-dependent
manner in the vaginal mucosa after secondary infection with
herpes simplex virus and then secreted virus-specific IgG2b,
FIGURE 1 | The immune response of female reproductive tract. Upside: The innate immune response of upper female reproductive tract. The upper female reproductive
tract, consisting of the Fallopian tubes, uterine endometrium and endocervix is lined by a single layer of columnar epithelial cells linked by tight junctions. The lower female
reproductive tract, consisting of the ectocervix and vagina, is covered by a layer of stratified squamous epithelial cells. Below the epithelial layer are innate and adaptive
immune cells, as well as some AMPs. When pathogen invades to the epithelial cells, epithelial cells express a panel of Toll-like receptors (TLRs) and RIG-like receptors (RLRs)
that can recognize and respond to bacteria or viruses. The Type I interferon (IFN) response is a potent defense system in female reproductive tract cells. Additionally, in
response to pathogens, antimicrobials and cytokines/chemokines are secreted to confer broad spectrum protection. Below: The effector of adaptive immune response.
Pathogen specific adaptive responses are driven by mucosal macrophages, dendritic cells, and epithelial cells that directly present antigens to T and B cells. Once activated
by cytokine stimulation, T and B cells proliferate and differentiate. The cell-mediated response is characterized by the production of IFN and cytotoxic CD8+ T cells that cause
apoptosis of infected cells. IFN also stimulates the expression of intracellular antiviral genes that block viral replication. The humoral response is mediated by B cells
differentiation into plasma cells that secrete antibodies. Both IgG and IgA are produced in the female reproductive tract and secreted into the mucous.
March 2022 | Volume 13 | Article 857299
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IgG2c and IgA into the lumen. This data indicated that circulating
memory B cells act as a rapid induction source of mucosal
antibodies in the female genital tract (33).

Tissue-resident memory T cells (TRM cells) are composed of
both CD4 and CD8 T cell subsets. We found that the distribution
of TRM subsets was uneven in the female genital tract with
significantly higher levels of CD69+CD103+CD4 TRM in the
vaginal tissue than in cervical tissue (34). Compared to B cells, T
cells are always present in the vagina and uterus. Tissue-resident
memory T cells in the mucosa of the reproductive tract respond
rapidly to reproductive pathogens via the innate and adaptive
immune systems. In cervical tissues, CD103+CD8TRM cells are
preferentially localized to the cervical epithelial cells, whereas
CD69+CD8TRM cells are evenly distributed in the epithelial cells
and stroma (35). The production of TRM cells in the vaginal
mucosa can provide advanced levels of defense against
pathogens. Therefore, T cell-induced vaccines can persistently
prevent infections in the mucosa of the reproductive tract, such
as HIV (36). Hormone levels are also involved in the regulation
of tissue T cells in the female reproductive tract. For example,
estradiol treatment for herpes simplex virus 2 in mice led to
increased levels of Th1 and Th17 TRM cells in the vagina (37).
Estradiol has also been shown to prevent Herpes simplex virus
type 2 (38), although the underlying mechanisms remain
unknown. Recent studies show that compared with pre-
menopausal women, the intra-and extra-cervical CD8+ T cells
can increase cytotoxic activity in post-menopausal women (39).

THE SECRETION OF ANTIMICROBIAL
PEPTIDES (AMP) BY THE MUCOSA OF
THE REPRODUCTIVE TRACT

Themucosal surface of the female reproductive tract represents the
frontline with regards to defense against microbial challenges from
Frontiers in Immunology | www.frontiersin.org 4
the external environment. Antimicrobial peptides are a class of
peptides with both antimicrobial and immunomodulatory
properties; these are located at the host barrier. Antimicrobial
peptides are effective against bacteria, fungi, enveloped viruses,
and protozoa (40) and can even kill tumor cells (Figure 3).
Importantly, most antimicrobial peptides are non-toxic or less
toxic to normal eukaryotic cells and have little pharmacogenetic
resistance. Because of this actions, antimicrobial peptides are also
known as “endogenous antibiotics”. Antimicrobial peptides are
known to protect the reproductive tract and regulate the vaginal
microbiome in the lower female reproductive tract to prevent the
entry of microbes into the upper female reproductive tract. In
addition, antimicrobial peptides can evolve simultaneously with
pathogenic lesions (40). Like other tissues, the female reproductive
tract has a unique set of antimicrobial peptides that are mainly
secreted by epithelial cells (ECs) and neutrophils in the female
reproductive tract after exposure to inflammation or microbial
stimulation (40). The female reproductive tract expresses a series of
AMP, includinghuman beta defensin (HBD), LL -37, SLPI, Elafifin,
S100 protein, C-Type lectins, Lysozyme, Ironmetabolism proteins,
and Kinocidins (Table 1). Recent findings indicate the presence of
additional antimicrobial peptides in the female reproductive tract
(including histone, thrombospondin, lipophilic protein, cystatin A,
and ubiquitin) (88), although the complete antimicrobial profile in
secretions from the female reproductive tract has yet to
be elucidated.
CYTOKINES

Inflammatory cytokines can also exert effect on microbes, as
confirmed by the presence of specific receptors (89). Cytokines
play a unique role in microbial inflammation and can inhibit the
growth of Lactobacillus and increase the resistance of this genus
FIGURE 2 | Immune cell distribution in the female reproductive tract. The predominant immune cells are T cells, Macrophages, NK cells, and B cells. The immune
cells inconsistent distributed in each organ of the female reproductive tract, furthermore, most data indicate the immune cells also differentially populations in all
phases of the menstrual cycle (14, 21, 22).
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of microbes to adverse factors (90). Epithelial cells and potential
antigen-presenting cells exert inflammatory responses to
Prevotella, Mobiluncus, and Sneathia via the production of
proinflammatory cytokines. For example, IL-1a, IL-1b, and
tumor necrosis factor-a (91), along with bacterial vaginosis,
may be associated with genetic polymorphisms in the innate
immune Toll-like-receptor (TLR1, TLR 2, TLR 4 and TLR 9) and
proinflammatory cytokines (IL-1b, IL-1ra, IL-6, IL-6, CXCL8,
and IL-10) (92). IL-1 stimulates the resistance of Lactobacillus
vaginalis to adverse factors, whereas IL-8 and tumor necrosis
factor-a primarily increase resistance to peptidoglycans (89).
PROTECTIVE EFFECTS OF MICROBIOTA
IN THE REPRODUCTIVE TRACT
ON HOSTS

Symbiotic microorganisms are known to interact with the human
immune system (93). Lactobacillus maintains homeostasis in the
reproductive tract to prevent the invasion of pathogens (94).
Lactobacillus exerts functionality through several mechanisms: (i)
by competing for nutrients; (ii) by degrading the glycogen released
from vaginal cells to produce organic acids (especially lactic acid)
which lowers the vaginal pH, thereby exerting selective antibacterial
activity on abnormal microbes; (iii) by producing antimicrobial
Frontiers in Immunology | www.frontiersin.org 5
substances suchasbacteriocins andhydrogenperoxide (H2O2); and
(iv) by helping to regulate the local immune system (95). It is
important to note that not all Lactobacillus species have the same
protective capacity; womenwith a predominant population of inert
Lactobacillus are known to exhibit higher levels of viral
infection (95).

Lactoferrin is a cationic multifunctional glycoprotein that binds
iron and plays an important role in immune regulation by exerting
antibacterial, antifungal, antiviral, and antiparasitic effects; it can
also promote cell growth. When the female genital tract is infected
by Neisseria gonorrhoeae, Chlamydia trachomatis, vaginal
trichomas, or vaginal dysregulation, the increased abundance of
lactoferrin in the sub-genital mucosa can promote both innate and
adaptive immune responses (96). In cases of vaginal dysregulation
that are characterized by a small number of vaginal Lactobacillus
bacteria and an increased number of endogenous anaerobes, the
increased abundance of lactoferrin can act as an immunomodulator
to maintain the normal healthy microbiota of the vaginal mucosa.
Thus, Lactobacillus and lactoferrin can be considered as biomarkers
of altered microbial homeostasis at the vaginal level. Furthermore,
Lactobacillus and lactoferrin can be influenced by paracrine activity
induced by female hormones and a variety of cytokines. A recent
study showed that 17b-estradiol increased adhesion to the vaginal
mucosal epithelial cells by altering the morphology of Lactobacillus
crispatus and inducing the production of biosurfactants (97).
Therefore, hormones can be assumed to act as potential
mediators to protect or restore vaginal homeostasis.
DISORDERS OF THE MICROBIOTA IN THE
REPRODUCTIVE TRACT EXERTS EFFECT
ON THE IMMUNE SYSTEM

The ability of a host to resist pathogenic microorganisms depends
on a bidirectional relationship between the immune system and the
microbiota (98). Changes in the composition of the vaginal
microbiota, even in a small number of microbiota, can induce
local immune responses (Figure 4). Bacteria related to vaginal
dysregulation often produce mucin degradation enzymes (7, 99),
induce a pro-inflammatory response (99), damage the mucosal
barrier, and promote invasion by sexually transmitted pathogens
(7). Disorders of the microbiota in the reproductive tract can also
cause inflammatory and non-inflammatory infections in the
reproductive tract, especially bacterial vaginitis caused by
opportunistic microorganisms, vulvar vaginal candidiasis, and
cervical intraepithelial neoplasia (100–102).

Bacterial Vaginosis
Bacterial vaginosis is characterized by significant reduction of
normal Lactobacillus-dominated microbiota and the overgrowth
of anaerobic organisms (including Gardnerella, Prevotella, and
vaginal fungi); collectively, these changes lead to an increase in
vaginal pH and foul-smelling secretions. The diversity of
microbial communities dominated by bacteria associated with
bacterial vaginosis leads to an increase in the levels of cytokines,
such as IL-8, IL-1a, IL1b, interferon and tumor necrosis factor
FIGURE 3 | The pleiotropic functions of antimicrobial peptides. AMP have
diverse biological effects, which are mainly secreted by female reproductive tract
epithelial cells (FRT EC) following exposure to inflammatory or microbial stimuli.
AMP have a broad spectrum of activity against bacteria and exhibit anti-fungal
and antiviral activity, And AMP promote wound healing and angiogenesis
through triggering cell differentiation, ultimate tissue homeostasis is maintained.
Although AMP are most recognized for their microbicidal and anti-inflammatory
function, AMP also possess immunomodulatory properties through activation of
Mast cells, Monocytes/Macrophages, Neutrophils, and Dendritic cells, and
inducing chemotaxis to infection sites.
March 2022 | Volume 13 | Article 857299
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(103). In a previous study, antimicrobial peptides of human beta-
defensin-2, C-C (cervical cancer) chemokine ligand 20 (CCL20),
and secretory leucocyte peptidase inhibitor, were found to be
upregulated in cases of bacterial vaginosis, although there was no
significant change in CCL20 expression following colonization
with Lactobacillus species (63). The production of CCL20 is
known to be regulated by tumor necrosis factor-a and IL-1b
(104). Notably, both CCL20 and HBD-2 encode antimicrobial
peptides and ligands for C-C chemokine receptor 6 (CCR6); this
Frontiers in Immunology | www.frontiersin.org 6
is a receptor that is specifically expressed on CD4+ T cells,
leukocytes, and dendritic cell populations, and regulates the
migration of these cells during inflammation. A recent study,
based on a three-dimensional human cervical epithelial cell
model, found that the expression levels of IL36G were
significantly increased in bacterial vaginosis-positive cervical
epithelial cells, thus proving that IL-36G is a key regulator of
mucosal inflammation, neutrophil transport, and low immunity
in the female reproductive tract (105).
FIGURE 4 | The immune response of reproductive tract diseases. (1) Bacterial vaginosis (BV) is characterized by significant reduction of normal Lactobacillus-dominated
microbiota and the overgrowth of anaerobic organisms. These changes lead to higher vaginal pH and increased cytokines, such as IL-8, IL-1a, IL1b, interferon and
tumor necrosis factor. (2) Vulvar vaginal candida is predominantly caused by albicans. It induces the upregulation of light chain 3, lysosome-associated membrane protein
1, and cytokines (tumor necrosis factor-a and IL-1), then leading to the activation of cellular autophagy. The specific bacterial species were found in highly diverse and
Lactobacillus-deficient cervicovaginal bacteria communities. Antigen presentation cells have also been shown to produce chemokine (C-X-C motif) ligand 10 (CXCL10)
which can lead to an increase in the number of activated CD4+ T cells. (3) Antivirus-specific immune responses are essential for the eradication of HPV infection, which
requires the cooperation of CD4 + Th cells (TH) and cytotoxic CD8+ T cells. It has also been demonstrated that there are numerous CD4+ Th cells and activated TH-1
and TH-2 cells in persistent high-risk human papillomavirus infection. The high levels of interferon-g secreted by Th-1 cells are known to mediate cytotoxic T cells and
directly block viral cytotoxic activity.
TABLE 1 | The identified antimicrobial peptides (AMP) from the mucosa of female reproductive tract.

Endometrium Reference Cervix Reference Vagina Reference

CCL20/MIP-3a mRNA (41) BPI mRNA (27) Calprotectin protein (42)
CCL20/MIP-3a protein (28) BPl protein (43) CCL20/MIP-3a mRNA (44)
Elafin mRNA (45) CCL20/MIP-3a mRNA (44, 46) CCL20/MIP3a protein (47)
Elafin protein (48) CCL20/MIP-3a protein (49) Elafin mRNA (50)
HBD1 mRNA (51, 52) Elafin mRNA (48) Elafin protein (53)
HBD2 mRNA (54, 55) Elafin protein (48) HBD1 mRNA (56, 57)
HBD2 protein (58) HE4 protein (59) HBD1 protein (57)
HBD3 mRNA (60) HBD1 mRNA (61, 62) HBD2 mRNA (63, 64)
HBD4 mRNA (65, 66) HBD 2 mRNA (67) HBD2 protein (53)
HE4 protein (68) HBD2 protein (69) HBD3 mRNA (70)
Lactoferrin protein (71) HBD3 mRNA (72) HD5 mRNA (73)
SLPI mRNA (74) HBD3 protein (75) HD5 protein (73)
SLPI protein (76) HBD4 mRNA (77) HE4 protein (78)
SP-D mRNA (79) HD5 mRNA (73) LL -37 mRNA (77)
SP-D protein (80) HD5 protein (73) Psorasin protein (81)

HD6 mRNA (73) SLPI mRNA (82)
HNP1-3 protein (83) SP -A protein (84)
psoriasin protein (72) SP -D protein (85)
SLPI mRNA (86)
SLPI protein (86)
S P-D RINA (87)

　 　 S P-D protein (87)
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Vulvar Vaginal Candidiasis
Vulvar vaginal candidiasis is the second most common cause of
vaginal inflammation and is predominantly causes by Candida
albicans as the main pathogen. When Candida albicans invades
the vaginal mucosa, it activates the host innate immune system;
this induces the upregulation of light chain 3, lysosome-
associated membrane protein 1, and cytokines (tumor necrosis
factor-aand IL-1), thus leading to the activation of cellular
autophagy (106). The specific bacterial species that were found
in highly diverse and Lactobacillus-deficient cervicovaginal
bacteria communities, were not only associated with sharply
elevated levels of genital pro-inflammatory cytokines but also
associated with increased genital antigen presentation cell
activation through the lipopolysaccharide sensing pathway.
Alternatively, antigen presentation cells have also been shown
to produce chemokine (C-X-C motif) ligand 10 (CXCL10) which
can lead to an increase in the number of activated CD4+ T cells
(91). Therefore, a small fraction of the vaginal microbiota
regulates the local immune system and inflammatory response,
thus affecting the susceptibility of infection.

Cervical Intraepithelial Neoplasia
Disorders of the vaginal microbiota are risk factors for the
development of cervical intraepithelial neoplasia. Human
papillomavirus infection plays an important role in the etiology
and pathogenesis of cervical cancer lesions. Vaginal Lactobacillus
maintains a low pH environment and produces bacteriocin,
thereby maintaining the barrier function of the cervical
epithelium to inhibit human papilloma virus (HPV) from
entering the basal cells (42). When pathogenic bacteria colonize
the epithelium of the reproductive tract, they produce enzymes
andmetabolites that may impair the barrier and promote the entry
of HPV. Recent studies have shown that the risk of developing
cervical intraepithelial neoplasia in patients with an abnormal
genital microbiota was twice than that in the healthy population
(107). The immune response to acute HPV infection was shown to
be initially mediated by mucosal NK cells and the production of
epithelial antiviral antimicrobial peptides (108). Antivirus-specific
immune responses are essential for the eradication of HPV
infection; this requires cooperation between CD4 + Th cells
(TH) and cytotoxic CD8+ T cells (109). It has also been
demonstrated in persistent high-risk human papillomavirus
infection, that there are numerous CD4+ Th cells, CD25+

regulatory T cells, and activated TH-1 and TH-2 cells (110). The
high levels of interferon-gsecreted by Th-1 cells are known to
mediate cytotoxic T cells and directly block viral cytotoxic activity
(111). A previous clinical study confirmed the strong correlation
between the Th-1 pattern and the clearance of high risk human
papilloma virus (HR-HPV) (112). In contrast, IL-17 has been
shown to inhibit immune response effectors in HPV-related
Frontiers in Immunology | www.frontiersin.org 7
diseases (113). The high-risk human papillomavirus has evolved
different mechanisms to evade host adaptive responses, including
reduced protein secretion or the manipulation of antigen
processing machinery (114). The clearance of infection is not a
rare event and is often associated with the specific composition of
the vaginal microbiota (7).

Microbiota with a reduced content of Lactobacillus may
contribute to HPV persistence. For example, the prevalence of
bacterial vaginosis in women with persistent HR-HPV was
reported to be 11%, while the ratio of bacterial vaginosis in
women clearing HR-HPV was only 5% (103). Persistent
infection with HR-HPV is the leading cause of cervical cancer
worldwide (115). Further studies found that HPV infection and/
or subsequent clearance was not associated with inflammation or
alterations in the subpopulation of cervical T cells but was
associated with an increased number of Langerhans cells (116).

CONCLUSION

The most important function of the microbiota in the
reproductive tract is to maintain immune homeostasis to
prevent infection by harmful pathogens. Clinically, external
auxiliary factors are used to treat gynecological diseases caused
by disorders of the bacterial microbiota, including vaginal acidity,
probiotics, hormone therapy and antibiotics. Antibacterial
peptides, located on the frontline of the host barrier defense and
widely considered as “endogenous antibiotics”, not only prevent
host infection by pathogens but can also evolve with pathogens.
Most antimicrobial peptides are not toxic or only minimally toxic
to normal eukaryotic cells. Therefore, the activation of
antibacterial peptides is a strategy to inhibit the pathogenic
bacteria to maintain homeostasis in the reproductive tract.
Finally, the regulation of cervicovaginal microbiota dysbiosis and
immunity may also have important clinical significance and
provide new challenges for treating gynecological disease.
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