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Abstract

Heterogenous nuclear ribonucleoproteins (hnRNPs) are a complex and functionally diverse family of RNA binding proteins with
multifarious roles. They are involved, directly or indirectly, in alternative splicing, transcriptional and translational regulation, stress
granule formation, cell cycle regulation, and axonal transport. It is unsurprising, given their heavy involvement in maintaining
functional integrity of the cell, that their dysfunction has neurological implications. However, compared to their more established
roles in cancer, the evidence of hnRNP implication in neurological diseases is still in its infancy. This review aims to consolidate the
evidences for hnRNP involvement in neurological diseases, with a focus on spinal muscular atrophy (SMA), Alzheimer’s disease
(AD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), multiple sclerosis (MS), congenital myasthenic syndrome
(CMS), and fragile X-associated tremor/ataxia syndrome (FXTAS). Understanding more about hnRNP involvement in neurological
diseases can further elucidate the pathomechanisms involved in these diseases and perhaps guide future therapeutic advances.
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Introduction

Heterogeneous nuclear ribonucleoproteins (hnRNPs) are a
family of functionally diverse RNA bindings proteins
(RBPs) [1]. Originally named alphabetically from Al to U,
they range from 34 to 120 kDA [2]. Their high involvement in
RNA metabolic processes including pre-mRNA processing,
splicing, and nucleocytoplasmic shuttling makes them pivotal
in the regulation of gene expression [3]. Having a substantial
control over post-transcriptional modifications and transla-
tion, it is unsurprising that aberrance in hnRNP function can
lead to dire functional consequences. While their role in reg-
ulating several cellular processes is established, their role in
neurological diseases has not been comprehensively investi-
gated. This review aims to consolidate the existing literature
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of hnRNP abnormalities in various neurological diseases and
spur further research in this area.

Structure of hnRNPs

Four evolutionary conserved RNA binding domains (RBD)
have been elucidated in hnRNPs. The RNA recognition motif
(RRM) is one of the most abundant protein domains in eukary-
otes and was first discovered in the U1A protein [4]. It consists
of 4 3-sheet (343 13332) and 2 o-helix (1 x2) domains which
fold into a sandwich structure to bind RNAs [5]. Its two con-
sensus sequences which are involved in RNA interaction, RNP1
(Lys/Arg-Gly-Phe/Tyr-Gly/Ala-Phe/Tyr-Val/lle/Leu-X-Phe/
Tyr) and RNP2 (Ile/Val/Leu-Phe/Tyr-Ile/Val/Leu-X-Asn-Leu),
are located in (33 and 31 respectively [4]. These motifs, along
with distinctive and varied terminal N- and C-sequences, ac-
count for the specific affinities of RNA binding [6] (Fig. 1).
Some hnRNPs contain human K (KH) domains in place of
RBMs, named after hnRNP K in which they were first discov-
ered [12]. Different KH domains bind a multitude of molecules;
however, they all have a similar structure consisting of three
anti-parallel 3-strands and three -helices (3 xo[33 o) with sur-
face loops extending from the structure [13], enabling associa-
tion to RNA molecules [12] (Fig. 1). Some hnRNPs also bind
RNA via RGG domains, which are glycine-rich regions
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Fig. 1 RNA binding domains in hnRNPs. RNA-binding domains in
hnRNP include RRM (RNA Recognition Motif), KH (K-Homology),
and RGG (Arginine-Glycine-Glycine). hanRNPA1 UP1, which spans the
first 196 aa at the N-terminus, contains two RRM one in each subdomain
of UP1. a RRM contains two «-helices (RRM1: cyan, RRM2: pink), four
[3-sheets (RRM1: blue, RRM2: purple), and five loops (RRM1: green,

interspersed with arginine residues that are integral for RNA
binding. The RGG domain also consists of aromatic rings which
are responsible for hydrophobic interactions with RNA bases
[14]. The glycine residues serve as hinges that allow the proteins
to conform to a structure whereby arginine molecules or aromat-
ic rings can come into contact with RNA [14] (Fig. 1).

HnRNPs also possess nuclear localisation sequences and/
or nucleocytoplasmic shuttling domains. These ensure
hnRNPs are both localized to the nucleus and allow them to
be shuttled in order to undertake their cytoplasmic functions
[3, 15]. While some hnRNPs can be shuttled in and out of the
nucleus, others (hnRNP C and U) localize exclusively to the
nucleus [16]. Since most hnRNPs are predominantly nuclear
in their steady state and their function is highly dependent on
their intracellular location, the integrity of the NLS is of par-
amount importance [17]. It is noteworthy that NLS defects
have been linked to hnRNP instability and abnormal protein
distribution [18, 19].

Function of hnRNPs
Gene Regulation

HnRNPs have the ability to both positively and negatively
regulate gene expression depending on their binding
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RRM2: orange) that order as Baf33cf3. b The C-terminal of hnRNPA1
contains another RNA-binding motif known as RGG. The name reflects
the abundance of Arg-Gly-Gly tripeptide repeats in the motif. ¢ The KH
domain of hnRNPK consists of three «-helices (cyan), three (3-sheets
(green), and five loops (purple) that fold in the order of B33 ox [7-11]

partner. For instance, hnRNP A binds to the inhibitory
subunit of nf-kb alpha, triggering the activation of tran-
scription factor nf-kb [20]. HnRNP K interacts with the
promotor of the c-myc gene via the pyrimidine-rich CT
region in vivo and in vitro [21, 22] as well as the promotor
of elFF4E which both promote transcription [23]. In addi-
tion, hnRNP K also binds to the TATA-binding protein
and interacts with RNA polymerase II transcription ma-
chinery, thus stimulating transcription [24]. Conversely,
hnRNP K can also suppress transcription by binding to
the zinc finger transcriptional repressor which contains a
KRAB-A domain involved in transcriptional repression
[25]. Therefore, hnRNPs play key roles in gene regulation
and it is likely that hnRNP misregulation may be involved
in the pathomechanisms of multiple diseases.

Alternative Splicing

Alternative splicing is a process which leads to great protein
diversity and regulates gene expression [26] and the brain is
particularly reliant compared to other regions [27, 28]. As a
result, the pivotal role of hnRNPs in regulating gene expres-
sion and cell metabolism renders the integrity and health of the
nervous system highly dependent on their function [29].
Abnormal splicing produces modified or defective proteins
which may underlie neurological diseases due to the reliance
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of the CNS on specific isoforms for vital processes, such as
long term potentiation and neurotransmission [30]. HnRNPs
are heavily involved in alternative splicing as evidenced by its
ability to globally regulate splicing in different cells and tissue
types by regulating the availability of its IDR GY-rich motif
[31]. Furthermore, iCLIP procedures have revealed 2394 clus-
ters of hnRNP A2/B1 binding sites on 564 genes, including
those involved in protein binding, myelination, and neurite
projection [32], demonstrating its heavy role in alternative
splicing. HnRNP A2/B1 binds to UAGG motifs in a regula-
tory manner [32], and the glycine-rich domain of hnRNP A1
is involved in splice-site silencing by looping of the RNA
between binding elements [33, 34]. HnRNP C is able to
crosslink to uridine tracts, regulating alternative splicing
[35]. HnRNP F and hnRNP H bind RNA containing G
quadruplexes and G tract motifs which result in alternate
splicing [29, 36] and hnRNP A binds to splicing factor
U2AF [37]. TDP-43, another member of the hnRNP fam-
ily, is also found to be implicated in many neurodegener-
ative diseases. Its splicing roles include binding to UG
rich regions, non-coding RNAs, 3> UTRs of mRNAs,
and deep intronic binding sites which results in silencing
exon inclusion [33]. The critical roles of hnRNPs in
mRNA processing and regulating cell metabolism strong-
ly suggest that its aberrance may play a role in neurolog-
ical diseases and this will be discussed in later sections.

Stress Granule Formation

Stress granules form during periods of cellular stress as a
form of energy preservation. The pooling of various RBPs
and silenced mRNAs alters the overall levels of functional
proteins and are thought to be crucibles of disease [38, 39].
In genetic abnormalities whereby there are expansion re-
peats, aberrant mRNA can also form toxic aggregates and
consequently sequester important factors that regulate gene
expression or apoptosis [40, 41]. Accordingly, several
RBPs and signaling molecules such as hnRNP A, hnRNP
B, TRAF2, RACKI1, mTORCI1, TDP-43, and FUS have
been discovered to be sequestered in stress granules, there-
by impairing their usual cell regulatory functions [42—47].
Apart from the loss of function due to its sequestration in
stress granules, it has been proposed that hnRNPs are also
involved in stress granule formation, and that stress gran-
ule assembly may be deficient with hnRNP abnormalities.
Intrinsically disordered regions (IDR) within hnRNPs were
found to be involved in liquid-liquid phase separation, a
process which contributes to stress granule assembly [48].
Mutations in IDRs in hnRNP A1 have also been linked to
ALS [49], suggesting deficient stress granule formation in
ALS. This is an expanding concept and has previously
been reviewed in depth [50-52].

Cell Cycle Regulation

Often juxtaposed alongside cancer in epidemiological studies,
cumulating evidence is beginning to elucidate that beneath the
disparate cellular features of cancer and neurodegeneration
lies a common underlying pathology of misregulated cell cy-
cle events [53, 54]. For instance, cell death in Alzheimer’s
disease (AD) has been postulated to be a result of abnormal
cell cycle re-entry which mediates neuronal death [55].
Damaged neurons in the AD brain were also found to possess
biomarkers of cell cycle events [56]. Furthermore, persisting
genomic instability, possibly due to replication stress and the
misregulation of nucleic acid binding proteins, can trigger
cellular death [57]. However, despite the roles of hnRNP in
cell cycle regulation, much is still unknown about their roles
in cell death. For instance, HnRNP A1 is known to be in-
volved in telomere maintenance [58, 59], and its misregulation
may result in premature cell death. HnRNP K, a putative cell
cycle regulator that interacts with p53 and c-myc and causes
cell death and excitotoxicity respectively when misregulated
[53, 60], has been disproportionately studied more in cancer
and its role in neurodegeneration is still unclear.

Axonal Transport

Due to the unique extensive morphology of neurons and their
high dependence on intact intracellular protein transport, axo-
nal defects are often thought to precede neurodegeneration
[61-64]. Neurons also possess intricate and expansive
transcriptomic profiles with its axons containing hundreds to
thousands of mRNAs, including mRNAs of proteins that reg-
ulate gene expression in response to local axonal activity [65].
In addition to the main transport machinery such as dynein,
kinesin, and their cargos, RBPs also play an indispensable
supportive role in maintaining axonal transport. For instance,
hnRNP R co-localizes with beta-actin mRNA in axons and its
knockdown impaired axonal growth [66]. Furthermore,
hnRNP R interacts with 7SK, a non-coding RNA involved
in axon elongation, and reduced levels of hnRNP R depleted
7SK levels and consequently impaired axon growth [67].
HnRNP K was also found to interact with the transcripts of
several cytoskeletal genes such as Arp2, tau, and «-
internexin-like-neurofilament, all of which are integral for
axonogenesis and intracellular transport [68]. HnRNPs are
also involved in regulating specific axonal translation. For
instance, hnRNP A2/B1 was found to interact with Netrin-1
DCC, which binds a subset of mRNAs involved in cell-cell
adhesion and protein targeting, inducing the translation of
specific subsets of mRNAs [69, 70]. HnRNP H1, H2, and F
are also involved in regulating axonal mRNA regulation [71].
It was found that a combined knockdown reduced levels of
axonal Hmgb 1 and Nrnl mRNA levels, and decreased axonal
protein synthesis [71]. With the diverse roles of hnRNPs in
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maintaining neuronal health and the dire consequences when
perturbed, it is reasonable to postulate that neurodegeneration
can be precipitated by the misregulation of hnRNP in the
neuronal parenchyma.

HnRNPs in Neurological Diseases

Mounting evidence points to RNA perturbations as the under-
lying driving factor of neurodegenerative diseases such as
ALS and FTD [72-74]. In light of this, there has been a major
paradigm shift away from targeting abnormal protein accumu-
lation in neurodegeneration, towards investigating possible
RNA disturbances as a precipitating factor for neurological
pathogenesis [75] (Table 1). There is emerging evidence of
an overlapping RNA pathology in otherwise distinct neurode-
generative diseases, and therefore there is a need to further
investigate hnRNPs which tightly govern RNA processing.

Table 1

This may be a hopeful avenue for the development of future
effective therapeutic targets.

Spinal Muscular Atrophy

Spinal muscular atrophy (SMA) is an autosomal recessive
disease marked by motor neuron death in the anterior horn
of the spinal cord. The SMN protein, a protein integral for
motor neuron survival, is encoded by the SMN/ gene which
is found to be deleted or mutated in SMA [76]. Despite a
deficient SMNI, SMA patients possess a paralogous duplicate
gene known as SMN2, a gene almost identical to SMN1 except
that it excludes exon 7 in its splicing. This transcript produces
a truncated non-functional SMN protein [77], resulting in a
failure to confer sufficient rescue. As a result, identifying
RBPs that regulate the splicing of SMN2 in order to promote
the inclusion of exon 7 has been extensively studied as a
potential therapeutic target for SMA [78] (Fig. 2). It has been

Neurological diseases where hnRNPs have been implicated in the disease process. Highlighting additional hnRNP proteins identified not

including the primary protiens found in the pathological inclusions, for example TDP-43 and FUS in FTLD and ALS

Disease hnRNP Function Reference
Spinal muscular atrophy (SMA) hnRNP G Splicing Hofmann & Wirth 2002 [79]
hnRNP Q Splicing Chen et al. 2008 [81]
hnRNP M Splicing Cho et al. 2014 [82]
hnRNP A1l Splicing Kashima et al. 2007 [84]
Koed Doktor et al. 2011 [85]
Back et al. 2019 [86]
hnRNP R Transport of protein Rossoll et al. 2003 [93]
Alzheimer’s disease (AD) hnRNP A1l Splicing Donev et al. 2007 [97]
Bekenstein & Soreq 2013 [98]
hnRNP C Translation Lee et al. 2010 [108]
hnRNP Q Protein folding and aggregation Ashraf, Ganash & Athanasios, 2019 [113]
Amyotrophic lateral sclerosis hnRNP Hand F  Binding to expansion repeats Lee et al. 2013 [138]
(ALS) and frontotemporal dementia (FTD) 1, o\p A Present in pathological inclusions ~ Honda et al. 2015 [150]
Gami-Patel et al. 2016 [152]
hnRNP A3 Present in pathological inclusions ~ Mori K et al. 2013 [137]
hnRNP E2 Present in pathological inclusions ~ Davidson et al. 2017 [151]
hnRNP D Present in pathological inclusions ~ Gami-Patel et al. 2016 [152]
hnRNP G Present in pathological inclusions ~ Gami-Patel et al. 2016 [152]
hnRNP | Present in pathological inclusions ~ Gami-Patel et al. 2016 [152]
hnRNP L Present in pathological inclusions ~ Gami-Patel et al. 2016 [152]
hnRNP Q Present in pathological inclusions  Gittings et al. 2019 [153]
hnRNP R Present in pathological inclusions  Gittings et al. 2019 [153]
Multiple sclerosis (MS) hnRNP A1l Nucleocytoplasmic transport Lee & Levin 2014 [163]
hnRNP H Exon skipping Paraboschi et al. 2014 [168]
Congenital myasthenic syndrome (CMS) hnRNP H Splicing Ohno et al. 2017 [170]
hnRNP L Splicing Rahman et al. 2013 [173]
Fragile X-associated tremor/ataxia hnRNP A2 Binding to repeats Sofola et al. 2007 [184]

syndrome (FXTAS)
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Fig. 2 hnRNPs involvement in spinal muscular atrophy (SMA). Various hnRNPs have been implicated in regulating splicing of the SMA gene.
Promoting the inclusion of exon 7 to produce a functional SMA protein or the exclusion of exon 7 which forms a truncated SMA protein.

shown that several RBPs regulate the splicing of exon 7, sug-
gesting a possible misregulation of these proteins as a contrib-
utor to SMA. For instance, hnRNP G was found to promote
the inclusion of exon 7 via direct interaction with Tra2-p1, a
splicing factor which induces exon 7 inclusion [79, 80]. In
mice, it was also found that hnRNP Q could modulate the
splicing inclusion and exclusion of exon 7 depending on the
ratio of its isoforms, with overexpression of major isoform Q1
promoting inclusion by direct binding to exon 7 [81]. In ad-
dition, not only was hnRNP M overexpression found to facil-
itate exon 7 inclusion in patient cells through binding an en-
hancer on exon 7 via recruitment of U2AF635, its knockdown
also fostered a splicing environment which excluded exon 7
[82]. However, HnRNP Al seems to have opposing effects.
For instance, COT transitions in SMN2 genes have been found
to create a high affinity exonic silencer binding site for splic-
ing repressor hnRNP A1 [83]. While some postulate high
specificity in hnRNP A1 splicing repressor [84], others pro-
pose a more general inhibitory role of hnRNP A1 by binding
to a common ESS motif spanning the 3’ splice site of exons
[85]. It was found that reduction in hnRNP Al levels corre-
lated with inclusion of exon 7, and a resultant increase in SMN
protein [86]. Despite the uncertainty in the precise mechanism
of hnRNP Al repression which warrants further investigation,
it is apparent that hnRNP A1 promotes the exclusion of exon
7. One proposed mechanism is that both RRMs in hnRNP A1
bind to the human intronic splicing silencer ISS-N1 as struc-
tural disruptions to either or both RRMs can successfully im-
pair exon 7 splicing repression [87].

Apart from splicing regulation, it has been suggested that
hnRNPs could also have roles in transporting the SMN protein
which is fundamental for neuronal health. While it has been
established that SMN proteins are crucial in axonal growth
and local synaptic action [88, 89], however, less attention
has been placed on the accompanying molecular partners

behind it. HnRNP R was found to co-localize with SMN in
axons as well as in presynaptic terminals both in vivo and
in vitro [90, 91]. HnRNP R also facilitates complex formation
with 3-actin mRNA [66, 92], suggesting that apart from reg-
ulating splicing, hnRNPs also facilitates transport of SMN
proteins. Corroborating this, it was found that overexpression
of hnRNP R encourages neurite outgrowth in PC12 cells, and
that hnRNP R is needed for the binding of SMN to (3-actin
mRNA [93]. These findings indicate that perturbations to nor-
mal hnRNP levels may compromise axonal transport and
could serve as another route for neurodegeneration consider-
ing the heavy dependence of neurons on intact intracellular
transport for localized protein synthesis [66, 92].

Recent advances in the therapeutics of SMA have led to the
development of a novel drug Nusinersen, also known as
Spinraza, which promotes the expression of full length
SMN2 [94-96]. Nusinersen is a modified antisense oligonu-
cleotide which binds to the SMN2 pre-messenger RNA, en-
couraging the inclusion of exon 7, and augmenting the pro-
duction of functional SMN protein which is deficient in SMA
[94-96]. Phase 3 trials have found that patients who were on
Nusinersen had significant improvements of motor functions
as compared to the control group [95]. Clinical success
through manipulating the splicing pathway in SMA makes
hnRNPs a promising target of therapeutic research with its
heavy role in alternative splicing.

Alzheimer’s Disease

AD is a debilitating neurodegenerative disease characterized by
neuronal death and abnormal protein aggregates comprising of
Af3 and hyperphosphorylated neurofibrillary tau tangles. The
initial links between hnRNPs and AD surfaced when it was
discovered that hnRNP A1 modulates the splicing of the APP
gene, which is the precursor of the A3 peptide [97, 98]. It was
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demonstrated that an imbalance in APP isoforms, in particular
high concentrations of APP770, potentially elevates A3 secre-
tion. HnRNP A1, working in concert with SC35, alternatively
splices the APP pre-mRNA by binding to hexanucelotide re-
peat expansions (HREs) within Alu and flanking the introns
adjacent to exons 7, thus generating APP695 which is protec-
tive against A3 toxicity [97]. This suggests that increasing
hnRNP A levels may ameliorate AD pathology whereas de-
creased levels may be associated with worsened pathology
and the progression of sporadic AD [99].

However, while some evidence suggests a neuroprotective
role of elevated levels of hnRNP A1, others present contradic-
tory results. For instance, apart from managing alternative
splicing of APP, hnRNP A1 also regulates balance of receptor
for advanced glycation end products (RAGE) isoforms
mRAGE and esRAGE [100]. It was found that increased rel-
ative concentrations of mRAGE, which is linked to AD pa-
thology, were induced by an overexpression of hnRNP Al
[100]. Higher levels of hnRNP A1 are also expressed in pe-
ripheral blood mononuclear cells in patients with AD, sug-
gesting that the misregulation of hnRNP Al along with de-
creased levels of transcription factor miR-590-3p may be as-
sociated with neuronal death [101].

Another angle of neurodegeneration adopts a prion like
perspective in which abnormal protein aggregates act like
prionoids and exhibit properties such as templating and inces-
sant proliferation [102—105]. AD is known to be a notorious
proteinopathy, and HnRNP A1 was proposed to exhibit prion
like properties [106] and may be in part responsible for inter-
cellular prion like spread of proteins resulting diseases such as
AD, ALS, and FTD [107].

Unlike the unequivocal role of hnRNP A1 in modulating the
pathology of AD, the roles of other hnRNPs are less clear.
hnRNP C has been found to promote APP translation by com-
peting with the FMRP gene for the same region [108] and also
by stabilizing the APP precursor mRNA by interacting with the
29 nt element at the 3'-untranslated regions [109], suggesting
that increased hnRNP C levels promote A3 secretion. On the
other hand, it was found that cAMP regulated APP processing
in mechanisms independent of hnRNP C [110]. In addition, a
decrease of hnRNP B1 has been shown in the hippocampal
regions of AD patients [111], whereas hnRNP B1 levels are
relatively preserved in the inferior temporal cortex [112].
Though the mechanism is unclear, hnRNP Q InRNAs have
been found to be crucial in regulating protein folding and ag-
gregation, and were found to be associated with AD [113].

Despite the expanding idea that AD is associated with ab-
normal re-entry to the cell cycle and that hnRNPs are pivotal in
regulating cell cycle events [55, 114—116], there has been an
underappreciation of the potential underlying link between
hnRNP abnormalities and its modulation of cell cycle events
and neuronal death. P53, a major cell cycle regulator, gates cells
at the GO/G1 and G2/Gm phases and is crucial in maintaining
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balance between proliferation and apoptosis [53] and hnRNP K
is also a necessary cofactor of this regulation [117].
Furthermore, in times of DNA stress and damage, which is
typical in AD [118], hnRNP K sumoylation mediates the reg-
ulatory mechanisms of p53 [115]. Not only is hnRNP K one of
the most important regulators of p53 action, it was discovered
earlier that p53 levels are elevated in the temporal cortices of
AD patients [119]; hence, it is surprising that hnRNP K
misregulation has not been investigated in AD and further sug-
gests a possible hnRNP related pathway of neurodegeneration.

Amyotrophic Lateral Sclerosis and Frontotemporal
Dementia

Amyotrophic lateral sclerosis (ALS) is the most common form
of motor neuron disease, marked by significant muscle
wasting and widespread neurodegeneration of both upper
and lower motor neurons. Clinically, patients exhibit spinal
symptoms of muscular weakness, spasticity, fasciculations,
fatigue and bulbar symptoms of dysphagia, and breathing dif-
ficulties [120]. In contrast, frontotemporal dementia (FTD) is
characterized by progressive neurodegeneration in the frontal
and temporal cortices with accompanying changes in person-
ality and language abilities [121]. Phenotypic heterogeneity is
observed in ALS and FTD patients, specifically where
ubiquinated TDP-43 pathologies are found [72]. Although
pathogenic variants in TARDBP develop TDP-43 pathologies,
other familial and sporadic ALS cases also develop TDP-43
pathologies [122]. However, despite the rarity of TARDBP
mutations in FTD, those with TDP-43 pathologies account
for around 45% of FTD cases [123]. TDP-43 is a DNA/
RNA binding protein which is usually concentrated in the
nucleus [124]. It contains a nuclear localization signal and
nuclear export signal and hence is able to shuttle between
the nucleus and cytoplasm [124]. The known functions of
TDP-43 are broad, including regulating gene expression and
involvement in several RNA processing steps such as pre-
mRNA splicing, regulation of mRNA stability, mRNA trans-
port, translation, and the regulation of non-coding RNAs [33,
125, 126]. Notably, the majority of TARDBP mutations are
located in the glycine-rich region at the carboxy-terminal re-
gion, which is also the region that interacts with other hnRNPs
and is heavily involved in pre-mRNA splicing regulation
[127]. Pathologically, TDP-43 accumulates in the cytoplasm
resulting in a loss of nuclear TDP-43, and it is this loss from
the nucleus that has led to proposed mechanisms of disease
involving a loss of normal function in the nucleus, a toxic gain
of function in the cytoplasm, or both. These mechanisms have
been tested in many animal models [128-133]. As TDP-43
homeostasis is crucial for normal cellular function, increasing
evidence suggests that aberrant TDP-43 regulation may result
in disease. Excess TDP-43 in the cytoplasm may lead to for-
mation of inclusion bodies resulting in cellular dysfunction,
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while nuclear depletion may induce widespread dysregulation
of mRNA metabolism, with TDP-43 knockdown shown to
cause differential splicing or expression of hundreds of targets
[134-136].

The most common genetic cause of ALS and FTD is
C9o0rf72 expansions which produce extensive amounts of
GGGGCC repeats [74]. It has been shown that GGGGCC ex-
pansions can become highly neurotoxic, correlating with disease
severity and are able to sequester otherwise functional RBPs.
HnRNP A3 has been identified in neuronal cytoplasmic and
intranuclear inclusions in patients with GGGGCC expansion
repeats [137] (Fig. 3). HnRNP H and hnRNP F were also found
to co-localize with GGGGCC expansion foci in immunoprecip-
itation studies [138] and western blot analyses [139] respective-
ly. It has been recently suggested that a GGA-rich sequence on
hnRNP H may account for its affinity to the GGGGCC expan-
sion repeats and its sequestration in ALS and FTD [140].
HnRNP sequestration by G quadruplexes in the expansion re-
peats in ALS and FTD suggests that hnRNP implication may be
in part responsible for the toxicity incurred by C9orf72 muta-
tions as important RNA processes such as splicing are compro-
mised [141]. In addition, TDP-43, has also been found to be
regulated by, co-localize with, or interact with hnRNPs Al,
A2/B1, C1/C2, A3, K [127, 142, 143], suggesting a strong
association of impaired hnRNP translation machinery and neu-
rological diseases (Fig. 3). Apart from the ability of GGGGCC
repeats to sequester important proteins, several other pathogenic
mechanisms have been suggested, including loss of function of
C9orf72 and generation of toxic dipeptide repeats [144, 145],
and these have been reviewed in detail elsewhere [146, 147].

ALS/FTD

Fig. 3 The involvement of hnRNPs in amyotrophic lateral sclerosis and
frontotemporal dementia. hnRNPs have been shown to be involved in
ALS and FTD in many ways. hnRNPs are able to bind to the
hexanucleotide repeats within the nucleus, bind to the dipeptide repeat
protein (DPRs) inclusions in the cytoplasm and also to the main patho-
logical inclusions in both diseases TDP-43. In FTLD-FUS, hnRNP

FTLD-FUS

As hnRNPs are normally localized to the nucleus, cytoplas-
mic redistribution has been linked to disease pathology and
impaired nucleocytoplasmic transport has been suggested to
be a common feature of ALS and FTD [49, 148]. For instance,
mutations in hnRNP Al can disrupt its nuclear localization
sequence and result in cytoplasmic redistribution and aggre-
gation [149]. It was also found in ALS patients that hnRNP
Al, along with TDP-43, had a greater tendency to aggregate
in the cytoplasmic inclusions compared to controls [150].
Another hnRNP, E2, also co-localized with TDP-43 in path-
ological inclusions of the semantic dementia subtype FTD
patients [151] (Fig. 3). In FTLD FUS-positive patients,
hnRNP Al, D, G, I, and L, which are involved in nuclear
transport, have been found to exhibit pathological
mislocalisation or accumulated in neuronal cytoplasmic inclu-
sions [152] (Fig. 3). hnRNPs R and Q have also been found to
co-deposit with FUS in FTLD-FUS inclusions [153], suggest-
ing that impaired nucleocytoplasmic transport may contribute
to disease pathology (Fig. 3).

As in AD, it has also been suggested that ALS proteins
such as TDP-43, SOD1, and FUS, exhibit a prion like spread
[154]. Accordingly, it was revealed that mutations in the prion
like domains in the sAnRNP Al and A2/BI genes increased the
propensity for protein self-aggregation, excessive,
fibrilisation, and incorporation into stress granules [155].
Furthermore, it is thought that even though cytoplasmic for-
mation of membrane-less organelles such as stress granules
may be advantageous for energy conservation, high concen-
trations of hnRNPs aggregated within stress granules may
accelerate fibrillisation [49].

FTLD-TDP type C

TDP-43

hnRNP E2

proteins have been found to co-localize with FUS in the nucleus and
the cytoplasm. It has also been shown that other hnRNP proteins also
form patholigcal inclusions without the presence of FUS. FTLD-TDP
type C pathology shown distinct inclusions as long twisted neurites which
have also been shown to co-localize with hnRNP E2
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Multiple Sclerosis

Multiple sclerosis (MS) is an autoimmune disorder of the cen-
tral nervous system characterized by demyelination; however,
the exact target epitope of autoimmunity remains unclear
[156]. Focus has been placed on autoimmunity against myelin
related targets and it has been shown that antibodies against
myelin proteins such as MOG and MBP are not specific to MS
and are also elevated in other neurological diseases [157]. Asa
result, there has been a growing interest in investigating non-
myelin targets in contributing to the pathogenesis of MS
[158]. HnNRNP A1l and hnRNP B1 are highly expressed in
neurons [159, 160], and were found at significantly high
levels in the CSF of MS patients than in other diseases
[161]. Interestingly, their antibodies were found in MS pa-
tients. The antibodies generated may have dual roles as they
can on one hand impair proper functioning of epitopes and on
the other hand directly damage the cells. For instance, MS
patients developed antibodies against the M9 epitope of
hnRNP A1l where the nuclear localization sequence is found
[162, 163]. In line with this, MS patients typically possess
genomic single nucleotide variants in the /nRNP Al gene
within the nucleocytoplasmic transport domain TPNO-1, sug-
gesting that impaired hnRNP A1 mediated nucleocytoplasmic
transport could be involved in MS pathology [163]. On the
other hand, the antibodies generated can also cause a toxic
gain of function. It was found that anti-hnRNP A1 antibodies
penetrate neuronal cells and alter levels of ATP and apoptotic
regulator caspase 3/7, as well as promote a redistribution of
hnRNP Al intracellularly [164]. They also alter transcripts
related to hnRNP Al function, reduce neuronal processes
and distort the cytoplasm [162]. Compared to hnRNP A1, less
is known about hnRNP B1 despite the elevations of its anti-
bodies in MS patients. Not only were hnRNP B1 antibodies
found in the CSF of a large proportion of MS patients exam-
ined, the generation of hnRNP B1 antibodies in the CSF was
found to be specific only to MS and not found in other neu-
rological diseases [165]. Although not much is known about
the precise implications brought about by hnRNP B1 antibod-
ies, its specificity to MS and its potential as a biomarker pro-
vides ample basis for further research.

There is also evidence suggesting that hnRNP Al may
be responsible for the phenotypical features in MS. It was
found that hnRNP A1 binds to spastin, a gene responsible
for hereditary spastic paraparesis, which produces a phe-
notype that is closely similar to MS [162]. This finding was
also replicated by another group which found a hnRNP Al
antibodies in animal models also contributed to neurode-
generation as evidenced by increased localization to stress
granules, worsened experimental autoimmune encephalo-
myelitis (EAE) cases, modifications in phenotype from
flaccid to spastic paralysis, and selective degeneration in
the cerebellar white matter [166].
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Aside from being possible epitopic targets, hnRNPs may
also mediate ectopic splicing, causing alterations to levels of
RNA and proteins. Lower levels of PRKCA have been shown
to increase MS susceptibility [167]. Interestingly, it was found
that hnRNP H overexpression mediates the expression of the
PRKCA gene by promoting the skipping of exon 3 while
hnRNP H silenced cells increased exon 3 inclusion [168],
suggesting that hnRNP H abnormalities may be related to
MS predisposition.

Congenital Myasthenic Syndrome

Congenital myasthenic syndrome (CMS) consists of geneti-
cally inherited diseases in which normal neurotransmission is
impaired at the neuromuscular endplate. CMS usually stems
from mutations in the muscle nicotinic acetyl choline recep-
tors (AChR) subunits, AChE deficiencies, or inefficient kinet-
ics of AChRs [169]. As in other neurological diseases, the
roles of hnRNPs in regulating alternative splicing are pivotal
in maintaining transcripts necessary for healthy functioning. A
variety of molecules are expressed at the neuromuscular junc-
tion and its abnormal expression, highly regulated by RBPs, is
impaired in CMS.

The alpha subunit of AChR is encoded by the CHRNAI,
and it was discovered that hnRNP H binds to an intronic
splicing silencer on CHRNA and enhances the skipping of
a non-functional P3A exon. The exclusive inclusion of exon
P3A is often displayed in CMS causing genetic mutations
[170]. From individual patients with CMS, it was revealed
that G > A mutations in this region led to a 100-fold decrease
in the binding affinity of hnRNP H, suggesting a regulatory
role of the alternative splicing of exon P3A [171]. It was later
also discovered that a tannic acid induced increase in
polypyrimidine tract binding protein could rescue the effects
of hnRNP H mediated inclusion by binding close intron 3 on
CHRNAI, promoting its exclusion [172]. HnRNP L and
hnRNP LL also antagonistically bind the polypyrimidine tract
binding protein which modulates P3A splicing. It was found
that mutated CHRNA generates an otherwise absent binding
site for hnRNP LL, a splicing enhancer, and results in the
displacement of hnRNP L, a splicing suppressor, which sub-
sequently leads to exclusive P3A inclusion, a pathological
feature that is found in CMS [173].

Not only does hnRNP H regulate CHRNA, it also was
found to be involved in the regulation of AChEr, AChEy,
and AChEg, with the former two being expressed at neuro-
muscular junctions and hematopoietic cells respectively, and
the third being rarely expressed [170]. HnRNP H competes
against another splice site regulator CstF64 and suppresses
cryptic PAS, thereby generating AChEr [170]. CstF64 has
opposing effects which activates cryptic PAS and its
overpowering of hnRNP H generates the other two subtypes
AChEy and AChER [170]. This suggests that abnormal
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hnRNP H activity may result in alterations in AChE levels at
the neuromuscular endplate, another feature of CMS.

Another molecule critical in CMS is the muscle specific
receptor tyrosine kinase (MuSK), which is involved in the
pre-patterning of AChRs, a process required for the high
AChR concentration in neuromuscular junctions [174, 175].
The MuSK gene consists of a frizzled cysteine-rich region that
is essential for both proper folding as well as the binding of
Wnt ligands, important for mediating AChR clustering
[176—178]. Interestingly, exon 10 of the MuSK gene, which
encodes 6 out of 10 of the essential cysteines, is alternatively
spliced and functionally skipped in humans but not in mouse.
It was revealed that hnRNP C regulates the skipping of exon
10 by binding to the poly-T tract in the exon splicing silencer 5
region, and also mediates hnRNP L and YB-1 binding leading
to further additive effects [179].

Collagen Q, encoded by the COLQ gene, is necessary for
the anchoring of AChE to NMJ endplates [180] and mutations
in COLQ are associated with AChE deficiency, a defect often
evident in CMS [181]. HnRNP H suppresses the splicing of
exon 16 in COLQ and results in aberrant skipping, and is
antagonistically modulated by SRSF1, a splicing enhancer
that promotes its inclusion [180, 182].

Whereas the exact roles of P3A and exon 10 alternative
splicing have yet to be elucidated, the disease-causing
effects of the missplicing of these proteins which are sub-
jected to hnRNP regulation provide a strong basis for
further investigation.

Fragile X-Associated Tremor/Ataxia Syndrome

Fragile X-associated tremor/ataxia syndrome (FXTAS) is an
adult onset neurodegenerative disorder and has phenotypic
characteristics that include motor and cognitive impairment.
It is predominant in males and involves the expansion of CGG
repeats in the fragile X mental retardation gene FMRI [183].
As in other neurological disorders with expansion repeats, the
CGG repeats sequester important RBPs, thus depriving the
cell of the normal function of these RBPs and thereby contrib-
uting to the pathomechanisms of the discase. HnRNP A2
binds to the CGG repeats in fly models [184] and is found
in cytoplasmic inclusions in FXTAS post mortem brains
[185]. Furthermore, it was found that hnRNP A2 overexpres-
sion could suppress the rough eye phenotype caused by rtCGG
[184], suggesting that rCGG sequestration of hnRNP A2 may
be involved in the pathogenesis of FXTAS since its over ex-
pression could rescue the neurodegenerative phenotype. It
was also found that misspliced hnRNP A2/B1, which is prev-
alent in CGG expression, could be corrected by TDP-43 and
resulted in a corresponding reduction of rCGG induced dam-
age [186].

Not only does sequestration of hnRNP A2 diminish its
normal cellular functions, it was also revealed that hnRNP

A2 can mediate neurodegeneration through interaction with
its binding partners. It was shown that miRNA miR-277 could
mediate CGG neurodegeneration as overexpression of miR-
277 increased neuronal toxicity whereas decreased expression
of miR-277 suppressed neurodegeneration [187].
Coincidently, miR-277 is also regulated by hnRNP A2
[187], suggesting that sequestration of hnRNP A2 by CGG
repeats could further result in ectopic miR-277 levels,
resulting in a loop which further perpetuates rCGG mediated
neurodegeneration. The neurodegenerative effects of TCGG
are mediated by retrotransposon activation, and it was discov-
ered that hnRNP A2 has the ability to suppress the toxicity of a
particular retrotransposon, Gypsy, by binding to HP1, a
retrotransposon silencer [188].

It has also been suggested that the CGG repeats are con-
stantly expanding dynamic structures and may recruit more
proteins at later stages. For instance, it was found that in later
stages of the disecase where CGG aggregates have expanded
significantly, sam-68 mediated hnRNP G inclusions were also
found [189]. This suggest that the rCGG sequences them-
selves may not recruit proteins directly, but does so indirectly
by protein-protein interactions with inclusions that were re-
cruited earlier. This is noteworthy since hnRNPs are known
to have an expanding repertoire of binding partners; hence,
more information about hnRNP mediated sequestration of
other proteins into inclusion bodies may shed light onto the
pathomechanisms of disease.

Conclusion

This review provides a summary of the existing evidence of
aberrant hnRNP profiles in various neurological diseases, spe-
cifically SMA, AD, ALS, FTD, MS, CMS, and FXTAS. Our
understanding of hnRNPs in these diseases is still in its infancy,
and there remains much that has yet to be uncovered. Human
genome studies have revealed that 40-60% of our genome
relies extensively on alternative splicing to confer functional
diversification upon our otherwise limited gene repertoire
[190]. With the viability and normal functioning of cells being
heavily subjected to intact and tightly regulated splicing mech-
anisms, it would be expected that RBPs dysfunction can serve
as major contributors to disease pathology [191].

However, the array of hnRNP mediated interactions, as
well as binding partners, are far from being fully elucidated,
and better understanding in the structural morphology of
hnRNPs and their interacting partners may provide further
insight into their roles in health and disease. Its implication
in various neurological diseases highly suggests that hnRNPs
possess an underappreciated role in disease pathology. The
role of hnRNPs in neurological disease has been a largely
overlooked area and more research may serve as a promising
platform for the development of novel therapeutic targets.
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