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Abstract. Mitochondria and chloroplasts represent endo-
symbiotic models of complex organelle development, driven 
by intense evolutionary pressure to provide exponentially 
enhanced ATP-dependent energy production functionally 
linked to cellular respiration and photosynthesis. Within the 
realm of translational medicine, it has become compellingly 
evident that mitochondrial dysfunction, resulting in compro-
mised cellular bioenergetics, represents a key causative factor 
in the etiology and persistence of major diseases afflicting 
human populations. As a pathophysiological consequence of 
enhanced oxygen utilization that is functionally uncoupled 
from the oxidative phosphorylation of ADP, significant levels of 
reactive oxygen species (ROS) may be generated within mito-
chondria and chloroplasts, which may effectively compromise 
cellular energy production following prolonged stress/inflam-
matory conditions. Empirically determined homologies in 
biochemical pathways, and their respective encoding gene 
sequences between chloroplasts and mitochondria, suggest 
common origins via entrapped primordial bacterial ancestors. 
From evolutionary and developmental perspectives, the eluci-
dation of multiple biochemical and molecular relationships 
responsible for errorless bioenergetics within mitochondrial 
and plastid complexes will most certainly enhance the depth 
of translational approaches to ameliorate or even prevent the 
destructive effects of multiple disease states. The selective 
choice of discussion points contained within the present review 
is designed to provide theoretical bases and translational 
insights into the pathophysiology of human diseases from a 
perspective of dysregulated mitochondrial bioenergetics with 
special reference to chloroplast biology.
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1. Introduction

Mitochondria and chloroplasts represent endosymbiotic models 
of complex organelle development driven by the evolutionary 
modification of permanently enslaved primordial bacteria, 
to provide exponentially enhanced ATP-dependent energy 
production functionally linked to cellular respiration and photo-
synthesis (1-4). Over diverse eukaryotic phyla mitochondria 
and chloroplasts, either alone or together, provide a concerted 
amplification of cellular energy production via conserved 
biochemical pathways that have been positively enhanced in 
their catalytic and regulatory capacities during evolution.

It has been well established in the scientific literature that 
the cellular dysregulation of these two distinct organelles may 
generate potentially dangerous reactive oxygen species (ROS) 
due to compromised complex bioenergetics energy production, 
systemic oxidative stress and compounded pro-inflammatory 
processes in animals (5-11). Importantly, the genetically- or 
biochemically-mediated failure of mitochondrial function in 
human populations represents a potentially dire event in the 
etiology of major disease states that include type II diabetes, 
atherosclerosis, rheumatoid arthritis, Alzheimer's disease and 
cancer progression (12-28). These compelling mechanistic and 
clinical data suggest that the extent of mitochondrial/chlo-
roplast regulatory signaling may vary over the lifetime of 
the eukaryotic cell and/or on a moment to moment basis, 
according to physiological demand and bioenergetics require-
ments (28-30).

Interestingly, a tumor cell may be viewed as a phenotypic 
reversion to the last common eukaryotic ancestor of the host 
cell, i.e., a facultative anaerobic microbe with unlimited repli-
cation potential (31). For example, anaerobic mitochondria in 
gill cilia of Mytilus edulis have evolved to utilize the phenotype 
of a facultative anaerobe, demonstrating that this primitive 
type of respiration has been evolutionarily conserved (32,33). 
Accordingly, anaerobically functioning mitochondria may 
represent a re-emergence or evolutionary retrofit of primordial 
metabolic processes and a reasonably posed scientific question 

Dysregulated mitochondrial and chloroplast bioenergetics 
from a translational medical perspective (Review)

GEORGE B. STEFANO  and  RICHARD M. KREAM

MitoGenetics, Farmingdale, NY 11735, USA

Received October 30, 2015;  Accepted January 22, 2016

DOI: 10.3892/ijmm.2016.2471

Correspondence to: Dr George B. Stefano, MitoGenetics, 3 Bioscience 
Park Drive, Suite 307, Farmingdale, NY 11735, USA
E-mail: george.stefano@mitogenetics.com

Key words: mitochondria, chloroplasts, stereoselectivity, reactive 
oxygen species, kleptoplasty, translational medicine



STEFANO  and  KREAM:  BIOENERGETICS FROM A TRANSLATIONAL MEDICAL PERSPECTIVE548

may relate to the frequency of this state-dependent phenom-
enon during the lifetime of an organism (2).

2. Co-identities within mitochondria and chloroplasts

It becomes readily apparent that the basic architectonic features 
of the mitochondrion also permit discrete microenvironments 
with specialized and autonomously segregated biochemical 
pathways (34). Given the spectrum of evolutionarily 
conserved chemical substrates and signaling molecules within 
TCA (Krebs) cycles and respiratory complexes of functional 
mitochondria across diverse cell types, it is not surprising that 
additional points of regulation are continuously emerging (3,35). 
Furthermore, the presence of functional mitochondria in both 
plant and animal cells underlines the molecular identities of 
shared regulatory, bioenergetics and chemical substrate path-
ways (3,35). The primacy of optimized energy processing in 
both plant and animal cells is supported by the observation 
that functional chloroplasts are found in selected animal cell 
types. The discovery of kleptoplasty, i.e., the dual expression 
of functional mitochondria and chloroplasts within specialized 
non-photosynthetic host cells has been extensively studied in 
the metazoan sacoglossan sea slug (36-39). The sacoglossan 
sea slug extracts and incorporates functional chloroplasts from 
Ulvophyceae into selected gut cell types (40), thereby allowing 
derived ‘food’ sources to be accumulated over time. The 
dependence on specific strains of algae suggests that strong 
adaptation mechanisms underlie the successful realization of 
bidirectional regulatory processes responsible for these requi-
site synergistic cellular phenomena (41). In conclusion, the dual 
expression of mitochondria and functional chloroplasts within 
specialized animal cells indicates a high degree of biochemical 
identity, stereo selectivity, and conformational matching that 
are the likely keys to their functional presence and essential 
endosymbiotic activities for over 2.5 billion years.

Interestingly, the ability of a phototroph to function 
intracellularly within a representative invertebrate, i.e., the 
sacoglossan sea slug, was identified as a unique phenom-
enon unlikely to occur in vertebrates (36-40). This working 
hypothesis, however, was overturned by the observation of 
internalized algae within embryonic tissues of the spotted 
salamander (42) and suggests that developmental processes 
within a vertebrate organism may also require photosynthetic 
endosymbiosis as an internal regulator. In effect, it appears that 
green algae and spotted salamander embryos have established 
an intimate endosymbiotic relationship that permit algae 
to invade the embryonic tissues and cells of the salamander 
and eventually degrade as the larvae develop over time (42). 
Although endosymbiotic algal cells go through degradation, 
the cells can also encyst on the inner capsule wall which is 
detected through 18s rDNA amplification in the reproductive 
tracts of the adult salamanders, thereby allowing for genera-
tional transfer of genes (42). Due to the dense accumulation 
of algae within the embryo, a distinct green color is exhibited, 
which leads to beneficial effects for the embryo. Requisite 
physiological effects include lowering embryonic mortality, a 
larger embryo size and earlier hatching times. It is still unclear 
as to whether the algae and the embryo have a true bidirec-
tional symbiotic relationship, as there is evidence that the algae 
have no increase in oxygen levels, although they may benefit 

from the embryos when their nitrogenous waste is released. 
In any event, this phenomenon defines a distinctive relation-
ship between developmental processes in a defined vertebrate 
organism and eukaryotic algae.

A careful examination of the biomedical literature 
has yielded many examples of biochemical and molecular 
commonalities between mitochondria and chloroplasts with 
regard to energy production. A prime biochemical example is 
the Qo motif in cytochrome b (cyt b), formally known as the 
PEWY motif in mitochondrial complexes that possesses a 
high degree of catalytic importance within ordered electron 
transport complexes. Comprehensive evolutionary sequence 
analysis of the cyt b Qo motif shows significant substitution 
within the tetra peptide sequence (PDWY, PPWF, PVWY and 
PEWY) according to phylogenetically specific patterns (43). 
The Qo motif has been identified as PEWY in mitochondria 
and chloroplasts, as PDWY in Gram-positive bacteria, 
Deinococcus-Thermus and halo archaea, and as PVWY in 
β- and γ-proteobacteria patterns (43). It appears that the differ-
ential expression of PEWY by mitochondria and chloroplasts 
and PDWY by Gram-positive bacteria is functionally entrained 
to the redox potential of quinone, thereby reflecting an 
evolutionary modification from low to high potential electron-
transfer systems in the emerging oxygenic atmosphere (43). 
The molecular evolution of the catalytic Qo quinol oxidation 
site of cyt b complexes, in particular the tetra peptide PEWY 
sequence, functionally underlies the common retention of a 
chemiosmotic proton gradient mechanism for ATP synthesis in 
cellular respiration and photosynthesis.

In plants, the dynamic relationship between photosynthetic 
and respiratory processes can vary according to physiological 
or developmental demands. For example, when tomato fruit 
ripen, their chloroplasts are functionally differentiated into 
photosynthetically inactive chromoplasts that can produce 
ATP through a process known as chromo respiration (44). 
Similar to mitochondrial respiration, heightened O2 consump-
tion is driven by the concentrations of reduced NADH and 
NADPH as key electron donors, and is sensitive to the plastid 
terminal oxidase inhibitor, octyl gallate. Isolated chromoplasts 
are also sensitive to the cytochrome b6f complex inhibitor, 
2,5-dibromo-3-methyl-6-isoproply-p-benzoquinone, thereby 
indicating heightened electron transport coupled to ATP 
production concurrent with the ripening process (44). Finally, 
the number of functionally active mitochondria in fruit tissue 
was observed to decrease during ripening, consistent with the 
enhanced contribution of chromoplasts to total ATP produc-
tion (44).

The essential role of molecular oxygen as the ultimate 
acceptor in the electron transport chain in animal and plant 
mitochondria is critically dependent on the integrity of cellular 
respiratory processes. In contrast to animal systems, it has been 
well established that plants lack active transport machinery 
to achieve adequate O2 distribution to all cellular compart-
ments, since gradients within plant tissues are vulnerable to 
severe hypoxic perturbations with potential dire functional 
endpoints. In effect, plants require different physiological 
responses to manage temporal variations in O2 saturation with 
metabolic adaptations in energy requirements. Thus, an altered 
physiological demand under hypoxic stress may be coupled 
to the activation of the cellular glycolytic pathway to generate 
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substrate level ATP production when oxidative phosphorylation 
is compromised. Therefore, the regulated production of ATP, 
via anaerobic respiratory mechanisms, requires the co-ordinate 
recruitment of biochemical and molecular components of 
the oxygen-sensing pathway in plants, notably selective gene 
expression of different isoforms of glycolytic enzymes that are 
functionally adapted to hypoxic conditions, as well as the acti-
vation of transcription factors that regulate individual members 
of other hypoxia-inducible genes (45,46).

In this regard, cellular O2 concentrations have been 
demonstrated to regulate the expression of group VII ethylene 
response factors (ERFVIIs), a family of plant-specific 
transcription factors that are stabilized during hypoxia, but 
degraded during normoxic conditions, via targeting to the 
N-end rule pathway of selective proteolysis (46-49). ERFVIIs 
are subsequently involved in the regulation of hypoxia-induc-
ible genes that include HRE1 and HRE2, thereby providing an 
adaptive homeostatic sensor of O2 deprivation in plants. The 
N-end rule signaling pathway represents a cellular response 
mechanism that requires ubiquitin ligation linked to protea-
some degradation via covalent modification of N-terminal 
amino acids. A recent study determined that the conserved 
N-terminal domain of ERFVIIs also distinguishes them as 
nitric oxide (NO)-dependent substrates of the N-end rule 
pathway of targeted proteolysis (50). It therefore appears that 
the state-dependent expression of ERFVIIs coordinately regu-
lates homeostatic sensing to O2 concentration, as well as key 
NO-dependent cellular processes.

Finally, the array of complex control mechanisms by 
which organelle gene expression (OGE) promotes respira-
tion, photosynthesis and plant development is actively under 
investigation (51). Presently, several required components have 
been identified that are functionally associated with OGE 
processes. Nuclear-encoded proteins play important roles in 
OGE by promoting various required functions such as splicing, 
transcription, RNA processing and the regulation of transla-
tional processes. Normative OGE is regulated by the family 
of mitochondrial transcription termination factors (mTERF), 
and the observed dual regulatory targeting of nuclear mito-
chondrial and chloroplast gene expression by mTERF proteins, 
supports contentions of convergent evolutionary development. 
In conclusion, the dual regulatory targeting of mitochondrial 
and chloroplast gene expression by mTERF proteins to promote 
optimal energy production and oxygen consumption further 
advances the evolutionary importance of OGE processes.

It is now established that a similar set of functional genes 
are encoded in both the plastid and mitochondrial genomes 
that express catalytically conserved protein subunits within the 
electron transport chain (52). This implies that OGE processes 
are critically linked to shared stereo-selective enzyme reactions 
within common biochemical pathways (41). As an example of 
parallel and convergent evolution (52), ongoing processes that 
determine biologically meaningful modification of the OGE 
may be entrained to regulatory stability of intracellular and 
intra-mitochondrial redox potential. As such, any hypothesis 
of the evolutionary modification of the coordinate regulation 
of redox potential should predict discrete cellular loci for 
membrane proteins that are functionally related to respira-
tory and/or photosynthetic processes (52). Furthermore, the 
dual evolution of the plastid and mitochondria genomes will 

effectively drive the retention of functionally similar set of 
ribosomal protein genes which are functionally required for 
proper ribosomal assembly.

3. Antibiotic usage and mitochondrial dysfunction from an 
evolutionary perspective

Clinically employed classes of antibiotics represent the primary 
arsenal of chemical agents used to treat bacterial infections. 
Between 1940 and 1962, 20 novel classes of antibiotics 
were discovered and vary with regard to their structure and 
mechanism of action (53). The bactericidal effects of various 
antibiotics are possibly mediated by the induction of damaging 
ROS (54,55). A recent key study determined that bactericidal 
antibiotics elevate O2 consumption, thereby altering bacterial 
redox physiology to produce lethal concentrations of ROS (55). 
As a critical control, the bactericidal efficacy of antibiotics 
was observed to decrease under strict anaerobic conditions, an 
effect that could be reversed by exposure to O2 or equivalent 
electron acceptors. The overall importance of these observa-
tions relates to an expanded mechanism of action, whereby 
bactericidal antibiotics promote complex redox alterations that 
contribute to cellular damage and death, while also underlining 
a common evolutionary and developmental linkage between 
primordial bacteria and mitochondria (56,57).

Despite their number and various mechanisms of action, 
bacterial resistance has markedly limited widespread unre-
stricted usage of previously efficacious antibiotics (58). As 
alluded to above, additional limitations on the usage of certain 
classes of antibiotics relates to their documented side-effects 
functionally linked to mitochondrial dysfunction. As a prime 
example, aminoglycoside antibiotics used to treat infections 
of the inner ear (59) have been shown to irreversibly damage 
sensory hair cells due to the excessive production of mitochon-
dria-derived ROS (3,18,24,29,60-62). Furthermore, the widely 
used class of tetracycline derivatives presents significant risk to 
patients with compromised mitochondrial functioning (63) due 
to established inhibitory effects on mitochondrial translational 
activities, including targeting of ribosomal RNA (64) that result 
in ‘proteotoxic’ stress and compensatory changes in nuclear 
gene expression (65). Interestingly, the selective targeting of 
mitochondrial translational apparatus by low concentrations 
of tetracyclines may in fact reiterate the evolutionary and 
developmental links between mitochondria and proteobacteria 
expression (65,66).

The glycopeptide antibiotic vancomycin chloride is widely 
used for the treatment of infections caused by methicillin-resis-
tant Staphylococcus aureus (MRSA). Nephrotoxicity, however, 
has been observed as a major adverse effect of vancomycin 
usage, thereby limiting the utility of the antibiotic in selected 
cases (67). A proposed mechanism of action was derived from 
a recent in vitro study demonstrating vancomycin-induced 
apoptotic renal tubular cell death driven by enhanced mito-
chondrial-derived ROS production linked to the inhibition of 
mitochondrial complex I activity (68). The results of this study 
were complemented by those of an earlier study demonstrating 
enhancements in complement-related and pro-inflammatory 
gene expression associated with oxidative cellular damage in 
kidney tissues of female rats following the administration of 
high concentrations of vancomycin (69).
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It is worth noting that ‘reverse engineering’ of antibiotic-
induced mitochondrial dysfunction has been proposed and 
pre-clinically employed as a therapeutic strategy against various 
malignant cell types, including cancer stem cells (70-74). 
Importantly, several classes of FDA-approved, widely employed, 
antibiotics including the erythromycins, the tetracyclines and 
the glycylcyclines have been shown to be highly effective anti-
proliferative agents against cancer stem cells in 12 different cell 
lines via the inhibition of mitochondrial biogenesis linked to 
anabolic processes (74). Interestingly, in this same study, the 
authors proposed to treat cancer according to an infectious 
disease paradigm, utilizing a therapeutic regimen consisting of 
mitochondrial targeting by selected antibiotics. As a corollary, 
it has been recently demonstrated that the widely administered 
tetracycline analog, doxycycline, downregulates DNA repair 
mechanisms in cancer stem cells that are functionally linked 
to the maintenance of mtDNA integrity and copy number (72). 
Mechanistically, it was also shown that doxycycline treatment 
quantitatively reduced nuclear respiratory factor (NRF)1/2-
mediated antioxidant responses and effectively inhibited 
multiple cancer stem cell signaling pathways. By contrast, 
the broad spectrum antibiotic, chloramphenicol, previously 
demonstrated to inhibit both mitochondrial protein expression 
and ATP production, may stimulate tumor progression via 
the activation of c-Jun N-terminal kinase (JNK) and phos-
phoinositide 3-kinase (PI3K) signaling pathways, leading to 
enhanced matrix metalloproteinase-13 region (MMP-13) gene 
expression (75,76). In conclusion, the translational potential of 
selected classes of antibiotics as anti-cancer agents must be 
evaluated by multiple physiological criteria, including inhibi-
tion of normative mitochondrial functioning.

4. Antibiotic usage and acute behavioral disorders: Potential 
association with mitochondrial dysfunction

A 2002 publication reviewed the incidence of acute manic 
episodes subsequent to antibiotic usage, subsequently termed 
‘antibiomania’, as documented in 21 published studies, 82 cases 
reported by the World Health Organization (WHO), and unpub-
lished data supplied by the Food and Drug Administration 
(FDA) (77). In total, usage of the erythromycin derivative, clar-
ithromycin, was implicated in 28% of reported cases, whereas 
usage of the fluoroquinolones ciprofloxacin and ofloxacin was 
implicated in 27% of reported cases. These reports were consis-
tent with unpublished FDA data indicating clarithromycin and 
ciprofloxacin usage to be most frequently associated with the 
development of acute manic episodes and were supported by 
additional studies exclusively focusing on the involvement of 
ciprofloxacin (78-80), oflaxocin (81) and clarithromycin (82,83) 
in the induction of acute psychotic episodes.

Mechanistically, it has been proposed that the stereoselec-
tive binding of ciprofloxacin to a mitochondrion-associated 
subtype of the NMDA receptor (84) promotes psycho-affective 
behavioral effects similar to those produced by the adminis-
tration of dissociative anesthetics via the calcium-dependent 
excitation of hippocampal subfields (85). Conversely, the cipro-
floxacin/fluoriquinolone-mediated inhibition of GABA-ergic 
signaling, partially driven via the production of mitochondrial 
ROS (86), has been shown to result in excitatory pro-convulsive 
neuronal activation as a putative contributing factor to the 

presentation of acute psychotic episodes (87-89). Subsequent 
case reports have observed acute psychotic/manic episodes 
following the administration of the nitroimidazole antibiotic, 
metronidazole (81), the mixed folate inhibitor/sulfonamide 
antibiotic cotrimoxazole (90-92), and the third generation ceph-
alosporin derivatives ceftazidime (93) and ceftriaxone (94). 
Based on the diversity of the chemical structure and mode 
of action inherent to each class of antibiotic, a generalized 
downregulation of mitochondrial bioenergetics may account 
for the integrated psycho-affective behavioral effects observed 
in the string of case reports cited above. It would also appear 
likely that previous studies linking the acute psychotic effects 
of fluoroquinolones to interactions with NMDA and/or GABA-
ergic neural transmission can be attributed to acute metabolic 
rundown due to severe mitochondrial inhibition (78-81).

5. Mitochondrial dysfunction in psychiatric disorders

The emergence of a highly efficient mitochondrial-driven ATP 
production appears to be a requisite component for the devel-
opment of evolutionary diverse networking systems within the 
central nervous system (CNS) of higher animals, e.g., cogni-
tion appears to be rare. The manifestation of compromised 
cellular energy production, either due to oxidative stress and 
compounded pro-inflammation, hypoxia or genetically- or 
biochemically-determined mitochondrial abnormalities repre-
sents a major contributing factor to the symptomatology of 
major psychiatric illnesses, including major depressive disorder, 
bipolar disorder and schizophrenia (1,62,95). As a corollary, 
increases in the prevalence of neuropsychiatric disorders 
within aging adult populations suggest that the proto-symbiotic 
relationship of cellular mitochondria to compounded CNS 
energy production linked to entrainment of complex behaviors 
may be markedly altered within the lifetime of an individual. 
As with other metabolic processes, aberrantly high levels of 
ROS have been linked to cell death and degeneration in rela-
tively diverse CNS pathophysiologies, including Alzheimer's 
disease, autism spectrum disorder, attention deficit hyperac-
tivity disorder (ADHD), major depressive disorder (MDD) and 
bipolar personality disorder (BPD) (96-102).

Mechanistically, causative factors involved in acute and 
chronic CNS damage linked to complex behavioral sequelae 
include high levels of mitochondrial-associated pro-oxidant 
iron functionally linked to lipid peroxidation (103-106) and 
ultimately enhanced endonuclease-mediated DNA fragmenta-
tion (107). Enhanced mitochondrial uptake of calcium linked to 
enhanced ROS production (108-112) has been established as a key 
causative factor in neurodegenerative conditions (98,113-120), 
as well as major psychiatric illnesses including schizo-
phrenia (SCZ) (99,101,121-123). Chronic oxidative stress in 
conjunction with altered NO-mediated signaling pathways has 
also been proposed as a significant contributing factor in the 
pathophysiology of SCZ-related behaviors (124,125) and in the 
etiology of BPD (126). Etiological factors involving mitochon-
drial dysfunction in the presentation of BPD- and SCZ-related 
symptomatologies reveals a reduction in the gene expression of 
essential electron transport chain subunits (127).

Dysfunctional GMP-PKG signaling (116,128,129) and 
NOX2-mediated processes (130) also are causative factors 
in the pathogenesis of diverse psychiatric disorders (130). 
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Abnormalities associated with the electron transport chain 
system and the mitochondrial complex may be involved in 
the etiology of autism spectrum disorder (ASD) (102,131,132). 
Additional mitochondrial-associated pathophysiological factors 
in the development of ASD include altered pyruvate dehy-
drogenase activity and mtDNA copy numbers and enhanced 
oxidative stress (102,131,133,134). Finally, CNS antioxidant 
glutathione deficiency has also been functionally linked to 
autistic behaviors (131,135) and in SCZ and BPD (136).

In light of the above, we previously hypothesized that the 
multi-enzyme biosynthetic pathway responsible for endog-
enous morphine in animal cells may be similarly compromised 
in neuropsychiatric disorders due to their dependence on 
dopamine as a major synthetic precursor (137,138). Morphine 
administration engenders inhibitory effects on neuronal exci-
tation and associated integrated behaviors that are consistent 
with coordinate regulatory activities on mitochondrial respi-
ration, O2 consumption, and aerobic ATP synthesis (139). 
Furthermore, the metabolic effects of endogenous morphine 
on CNS mitochondrial functions are selectively mediated by 
a novel 6-transmembrane domain GPCR, the mu-3 opiate 
receptor subtype, that is functionally coupled to constitutive 
NO production and release (139-145). The multi-faceted regula-
tory role of mitochondrial NO on O2 consumption, oxidative 
phosphorylation, and ATP production reinforce the biological 
importance of morphine-coupled regulatory responses in 
integrated CNS behavioral pathways and their dysregulation 
in oxidative stress-associated neuropsychiatric disorders (95). 
Accordingly, endogenous morphine expression, which exerts 
its cellular actions via novel membrane G-coupled receptors, is 
directly responsible for overall cellular integrity via its regula-
tion of mitochondrial respiration and functional linkage to NO 
production and release (138).

6. Conclusions and translational insights

As noted earlier, the dual expression of mitochondria and 
functional chloroplasts within specialized animal cells indi-
cates a high degree of biochemical identity, stereoselectivity 
and conformational matching that are the likely keys to their 
functional presence, tolerance and essential endosymbiotic 
activities for billions of years (3,35,41,146,147). It has been 
recently proposed that archaebacterial and eubacterial precur-
sors led to the origin of eukaryotes (148,149). Mitochondria 
arose via bidirectional endosymbiotic selection processes 
from an entrapped α-proteobacterium within a primordial 
eukaryotic cell (149,150). Plastids arose in a similar manner, 
but from an entrapped cyanobacterium within a eukaryotic 
precursor cell (149). Hence, eukaryotic cell types of higher 
organisms were evolutionarily fashioned to express autono-
mously contained bioenergetics processing centers in the form 
or mitochondria or chloroplasts.

The developmental primacy of photosynthesis was prob-
ably due to abundant sunlight and the coincident appearance 
of requisite photovoltaic chemical processes. Furthermore, the 
global abundance of reduced carbon in the form of glucose 
with concurrent expansion of atmospheric O2 concentration 
introduced a major change in the biosphere, thereby driving 
evolutionary development of complex cellular respiratory 
processes along with major potential problems involving 

O2 toxicity. In light of these changes, both photosynthetic and 
respiratory processes were driven by the potential for endosym-
biotic protobacteria to evolve into semi-autonomous cellular 
organelles with concentrated catalytic foci expressed as highly 
ordered membrane protein complexes capable of errorless 
electron transport.

It has been proposed that the respiratory ‘bacterium’ 
evolved and remained in place because of its existential 
brokerage of molecular oxygen and the use of glucose as an 
initial fuel source within the metabolic pathway terminating in 
chemiosmotic ATP production. In this regard, photosynthetic 
priming events promoted evolutionary acceleration of intra-
cellular membrane differentiation, selective for plastid-like 
structures. This major contention is supported by the observa-
tion that many organelles can be found in both plant and animal 
cells and that their molecular biology/bioenergetics share basic 
chemical processes (3,35,41).

Concerted biochemical and molecular investigation of 
the human gut microbiome is necessary to elucidate complex 
regulatory activities that directly affect diverse physiological 
activities of the ‘host’ organism (151-153). Given this multi-
faceted complex nature of the relationship between gut 
bacteria and humoral CNS factors, it is a highly reasonable 
contention that the gut microbiome is playing a role in the 
initiation and sustainability of normal and abnormal behav-
iors (153). Whereas normative microbiome activities represent 
key contributing factors to ongoing diverse physiological 
activities, severe perturbations of gut microbiota resulting in 
mucosal dysbiosis (154,155) are associated with pathological 
conditions that include gastrointestinal disease, obesity, and 
type II diabetes and ASD (156). The regulatory influences of 
the human gut microbiome also extend to immune activation 
and neuro-immune communication. In a pathophysiological 
setting, microbiotic dysregulation may inappropriately stimu-
late macrophage penetration into the CNS, with concurrent 
activation of proinflammatory processes involving activated 
microglia (157). Counter-intuitively, given the 10X greater 
number of gut bacteria in comparison to eukaryotic cells, which 
also contain evolutionarily derived mitochondria, it would 
appear that the summated populations of ‘simple’ organisms 
may in fact regulate the ultimate fate of our genetic material. 
In sum, it has become compellingly apparent that eukaryotic 
cells and complex organ systems cannot survive without the 
synergistic complex interactions of competent enteric bacteria 
and evolutionarily fashioned mitochondria.
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