
1

Briefings in Bioinformatics, 22(4), 2021, 1–10

https://doi.org/10.1093/bib/bbaa245
Problem Solving Protocol

GuidingNet: revealing transcriptional cofactor and
predicting binding for DNA methyltransferase by
network regularization
Lixin Ren, Caixia Gao, Zhana Duren and Yong Wang
Corresponding author: Yong Wang, CEMS, NCMIS, MDIS, Academy of Mathematics and Systems Science, National Center for Mathematics and
Interdisciplinary Sciences, Chinese Academy of Sciences, Zhongguancun East Road, Beijing 100190, China. Tel.: 86-10-82541372; Fax: 86-10-82541372.
E-mail: ywang@amss.ac.cn

Abstract

The DNA methyltransferases (DNMTs) (DNMT3A, DNMT3B and DNMT3L) are primarily responsible for the establishment of
genomic locus-specific DNA methylation patterns, which play an important role in gene regulation and animal
development. However, this important protein family’s binding mechanism, i.e. how and where the DNMTs bind to genome,
is still missing in most tissues and cell lines. This motivates us to explore DNMTs and TF’s cooperation and develop a
network regularized logistic regression model, GuidingNet, to predict DNMTs’ genome-wide binding by integrating gene
expression, chromatin accessibility, sequence and protein–protein interaction data. GuidingNet accurately predicted
methylation experimental data validated DNMTs’ binding, outperformed single data source based and sparsity regularized
methods and performed well in within and across tissue prediction for several DNMTs in human and mouse. Importantly,
GuidingNet can reveal transcription cofactors assisting DNMTs for methylation establishment. This provides biological
understanding in the DNMTs’ binding specificity in different tissues and demonstrate the advantage of network
regularization. In addition to DNMTs, GuidingNet achieves good performance for other chromatin regulators’ binding.
GuidingNet is freely available at https://github.com/AMSSwanglab/GuidingNet.
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Introduction

DNA methylation is essential for mammalian development and
plays crucial roles in various biological processes, including
regulation of gene expression, maintenance of genomic stability,
genomic imprinting and X chromosome inactivation [1, 2]. It is
catalyzed by DNA methyltransferases (DNMTs) to bind to DNA-
specific region and add methyl groups to cytosine residues. For
example, DNMT3A and DNMT3B alone or in a complex with
DNMT3L are known to de novo establish DNA methylation,
whereas DNMT1 mediates DNA methylation maintenance [3–6].
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An urging question is how DNMTs recognize their binding
sites in the genome in different tissues. The researchers were
puzzled by the fact that DNA methylation established by DNMTs
is highly locus and tissue specific but DNMTs do not have
binding specificity by serving as general chromatin regulators.
ChIP-seq experiments can measure DNMTs’ genome-wide bind-
ing locations in specific cellular context [7]. However, ChIP-seq
technique requires a large amount of sample material and high-
quality antibody. Thus, DNMTs’ genomic binding in most tissues
are still missing. We observed that large-scale transcriptomic
and epigenomic data across tissues are more easily measured
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and rapidly accumulated in ENCODE and ROADMAP database.
This motivates us to develop computational method to integrate
the available omics data, predict DNMTs’ binding and further
understand their binding specificity mechanism.

Our recent study suggests that chromatin regulator (CR) is
likely to be recruited to a regulatory element (RE) if RE is open
and is bound by transcription factors (TFs), which have protein
interaction propensity with the CR [8]. This allows us to hypoth-
esize that DNMTs’ binding is guided by TFs to a particular locus
to methylate cytosines. TFs is known to express specifically in
certain tissue types, recognize specific DNA motifs, bind regions
with open chromatin structure and have direct and indirect pro-
tein–protein interactions with DNMTs. In addition, DNA methy-
lation is almost exclusively found in CpG dinucleotides, and it
suggests that DNMTs tend to bind to GC-rich sequences. Taken
together, it is promising to integrate those evidence from avail-
able genome sequence, gene expression, chromatin accessibility
and protein–protein interaction data to reveal DNMTs’ binding
sites and mechanism for binding specificity.

Collecting the existing DNMTs’ ChIP-seq data as gold-
standard positives, we model the DNMTs’ binding site prediction
as a binary classification problem. The purpose is to mine the
matched expression and accessibility data (i.e. measured on the
same sample), and context nonspecific data (sequence data and
protein–protein interaction data), to recover a significant portion
of the information in the missing data on DNMTs’ binding
location. Numerous statistical methods have been successfully
applied in binary classification, and logistic regression (LR)
is a powerful discriminative method. LR provides predicted
probabilities of class membership and easy interpretation of
the feature coefficients. In our case, we need to select TFs to
provide rich interpretation of the DNMTs’ binding mechanism.
Regularized logistic regression (RLR) provides different choices of
regularization terms such as the lasso (l1−norm) regularization
[9] and the elastic net [10], which generalizes the lasso by adding
a l2 penalty. Furthermore, the adaptive lasso regularizes different
coefficients in the l1-regularization [11] and provides a very
general framework for setting feature weights [12–16].

In this paper, we develop a network regularized logistic
regression framework, GuidingNet, to predict DNMTs’ binding
by integrating multiple dataset. Our major contribution is to
reconstruct TF protein–protein interaction and coexpression
network for regularization, to choose weights efficiently in
adaptive lasso and to improve prediction accuracy and biological
interpretability. GuidingNet predicts binding of Dnmt3b and
Dnmt3l for E14 mESC, DNMT3A for human MCF-7 cells and
DNMT3B for human HepG2 cells and foreskin keratinocyte.
GuidingNet shows superior performance in both prediction
and feature selection. In addition, GuidingNet outputs a TF
cofactor network to interpret the mechanism of DNMTs’ binding
specificity in genomic locus and in different tissue contexts.

Methods
Overview of GuidingNet model

We propose GuidingNet to model the physical process that TF
recruits DNMTs to a specific regulatory element (RE) to methy-
late cytosines (Supplementary Figure 1), i.e. DNMT is guided by
TF to recognize the specific DNA motifs and bind in a RE. This
requires that RE should be context-specifically accessible to TF
binding, and TFs have context nonspecific protein interaction
propensity with DNMT. Together GuidingNet takes those context
specific and nonspecific genomic data as input and outputs the

DNMT’s binding probability on a given RE and the guiding TF
network. As depicted in Figure 1, GuidingNet has three com-
ponents, respectively, (i) extracting predictive genomic features
and combining feature with physical meaning, (ii) generating the
candidate guiding TF network and (iii) training the model and
outputting DNMT binding and TF cofactors.

Figure 1 shows the example for Dnmt3b’s binding prediction
in mouse E14. The input data include chromatin openness,
expression, sequence and protein–protein interaction. Features
are extracted from the input data to construct training dataset.
The training labels are from Dnmt3b’s ChIP-seq data. Indepen-
dently, the candidate GuidingNet are generated and weighted
based on the TF protein–protein interaction network and
co-expression. We used the TFs and weights of the candidate
GuidingNet to train a network regularized logistic regression
model. Model output are the probability that a specific region
is the binding site of Dnmt3b in E14 and the underlying
GuidingNet. The model components are described in Table 1
with definitions of notations.

Feature collection and combination

We extracted five features including openness (O), TF bind-
ing strength (B), TF expression (TF), TF expression specificity
(TFS) and GC content (GC) from our input data (see details in
Supplementary Materials). These features are not independent.
Different combinations indicate different recruitment patterns
of DNMT binding to the RE. We used the following feature
transformation to model the three physical steps for DNMTs’
binding processes that (i) RE is open, (ii) TF binds to the RE and
(iii) RE has proper GC content for methylation. B·TF·TFS indicates
that TF has significant motif match on the RE, highly expressed
and specific expression across tissues (Figure 1). Then we have
three features openness O, TF binding information B·TF·TFS and
GC content GC for each RE.

Logistic regression model

We model DNMTs’ binding to REs by a logistic regression, which
is a statistical method for a binary classification problem. Given
a DNMT, we can measure its ChIP-seq data and extract peaks
as the gold-standard positive data (GSP) for binding. The gold-
standard negative data (GSN) are randomly sampled from the
nonbinding regions (see details in Supplementary Materials).
Assume the entire training gold-standard data (includes GSP
and GSN) and genomics feature data have n regions and p
predictors. We denote whether a DNMT3 binding to regions i

as Yi ∈
{
0, 1

}
,Yi = 1 means region i is bound by DNMT and Yi = 0

means not. The genomic features are openness (O), TF binding
information (B·TF·TFS) and GC content (GC). A linear relationship
between the genomic features and the log-odds of the event that
Yi = 1 can be written in the following mathematical form:

log
P (Yi = 1 |TF, Oi , GCi)

1 − P (Yi = 1 |TF, Oi, GCi )

= α0 + α1Oi + α2GCi +
∑

k∈S
βkBi,k · TFk · TFSk (1)

μi = P (Yi = 1 |TF, Oi, GCi )

= exp
(
α0 + α1Oi + α2GCi + ∑

k∈SβkBi,k · TFk · TFSk
)

1 + exp
(
α0 + α1Oi + α2GCi + ∑

k∈SβkBi,k · TFk · TFSk
) , (2)
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Figure 1. Overview of GuidingNet model.

GuidingNet is illustrated from three parts: input, model and output. Dnmt3b in mouse E14 is used as an example for DNMTs’ binding prediction. Model input includes

the construction of training data and the candidate GuidingNet. Openness, expression, sequence and protein–protein interaction data are collected and processed

as the GuidingNet’s input. Seven genomic features are extracted from the input data. TF expression, TF expression specificity and TF binding strength are further

combined as one feature. This together gives training data X. The training labels are from the ChIP-seq data. Meanwhile the candidate GuidingNet is generated and

weighted based on TFs’ protein–protein interaction network and co-expression. GuidingNet is trained by an adaptive lasso-regularized logistic regression framework

with the candidate GuidingNet and corresponding training data. The model components are described in Table 1 with mathematical notations. Model output are the

probability that the region i is the binding site of Dnmt3b in E14 and the underlying GuidingNet.

Table 1. Model components for GuidingNet

Description of data and variables Notation Example

Expression of TF TFk :expression of TF k TFNanog = 30.95 in E14 mESC

Accessibility of a genomic region Oi :degree of openness of region i Ochr7:12,922,178-12,922,505 = 12.83in E14 mESC

Binding status of Dnmt3b in a genomic region Yi : indicator for whether the Dnmt3 is

binding to region i.

Dnmt3b binds genome at chr7:12,922,178-12,922,505

in E14 mESC

Interacting TFs for Dnmt3b PPI(Dnmt3b) :set of TFs known to interact

with Dnmt3b

PPI(Dnmt3b) contains Nanog

TFs with motif match in a genomic region MB : set of TFs with significant motif match

in region i

Nanog has motif match at chr7:12,922,178-12,922,505

in E14 mESC

Motif matching strength of TF in a genomic region Bi,k : binding strength of TF k in region i Bchr7:12,922,178−12,922,505,Nanog = 5.39

GC fraction of a genomic region GCi : GC content of region i GCchr7:12,922,178-12,922,505 =0.61

where S = PPI(DNMT3) ∩ MB. The log-likelihood function of
equation (1) is defined as

l (α, β) = 1
n

n∑
i=1

yi log μi + (
1 − yi

)
log (1 − μi) , (3)

where α = (α0, α1, α2) is a vector of TF-independent coefficients,
β = (β1, β2, . . . . . . ) is a vector of TF-dependent coefficients and
yi ∈ {0, 1} is the training label of region i. We can estimate the
parameters by minimizing the negative log-likelihood function.

Network regularization

We further introduce network regularization term in the above
logistic regression model (3) to constrain the parameters and
enhance model interpretation. The regularization is achieved
based on our hypothesis that TFs physically interact and guide
DMNT to DNA binding. These TFs do not work independently
and tends to form a complex. Our network regularization aims
to dig the biological relationships between them. First, we check
the physical protein–protein interactions (PPI) among TFs and
extracted the TF PPI data. Second, we check the TF co-expression
relationships from a large amount of gene expression data in
diverse context and reconstruct the TF co-expression network.
In summary, we have two biological relationships among TFs,
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namely protein–protein interaction and mRNA expression corre-
lation, and the network structure can be constructed by integrat-
ing the TF PPI network and the TF co-expression network into
a candidate GuidingNet. Then we use candidate GuidingNet’s
topology to derive the feature weights as network regularization
in model (3).

Specifically, the generation of candidate GuidingNet consists
of three steps (Figure 1 for Dnmt3b in mouse E14 example):

Step 1. TF set is constructed as S = PPI(DNMT3) ∩ MB by
considering protein–protein interaction (PPI) with DNMT3b and
motif occurrence. S is further divided into U and V. The set
of TFs having direct PPIs (first order neighbor) with Dnmt3b is
defined as U. The set of TFs having indirect PPIs (second order
neighbor) with Dnmt3b is defined as V. Then we construct a
bipartite graph G1(U, V, E1) from PPI network with nodes in U and
V. The edges of this graph are defined if TF i in U has PPI with
TF j in V (as shown in Figure 1). For co-expression network, a
complete bipartite graph G2(U, V, E2) is constructed and we use
cij to represent the weight of the edge between TF i and TF j.
cij is calculated by the correlation between TF i and TF j for the
expression levels across diverse tissues.

Step 2. We set rij as the weight of the edge between TF i and
TF j in G1(U, V, E1).

Step 3. Let si = ∑
j∈V | rij |, and sj = ∑

i∈U | rij |. If sk = 0; k ∈ S,
we delete TF k in G1(U, V, E1). Then we generated the candidate
GuidingNet and constructed feature weights wk = 1/sk; k ∈ S.

With the candidate GuidingNet and derived weight, we regu-
larize parameter β in logistic regression model (3) as follows:

minimize
α,β

−
[

1
n

n∑
i=1

yi log μi + (
1 − yi

)
log (1 − μi)

]
+ λ

∑
k∈S

wk |βk| ,

(4)
where wk is the weight of the kth TF and is calculated from
TF protein–protein interaction and co-expression network in an
unsupervised manner. In practice, we fit the network regularized
model using the vector of weight as ‘penalty factors’ in the
glmnet R package.

Data sources

We collected the ChIP-seq of DNA methyltransferases 3 (DNMT3)
family proteins including Dnmt3b and Dnmt3l for E14 mouse
embryonic stem cells (mESC), DNMT3A for human MCF-7 cells,
DNMT3B for human HepG2 cells and foreskin keratinocyte
form the Cistrome Data Browser (http://cistrome.org/db). The
corresponding paired RNA-seq and DNase-seq are down-
loaded from the ENCODE project. We collected RNA-seq
data from other 145 mouse (Supplementary Table 1) and 832
humn (Supplementary Table 2) samples from the ENCODE and
ROADMAP. We also collected the WGBS data of mouse E14
[17]. Both mouse and human protein–protein interaction data
are from the BIOGRID database. The RNA-seq, DNase-seq and
WGBS of mouse embryo development are downloaded from the
ENCODE Web site.

Result
Openness, TF information and GC content are
predictive for DNMTs’ binding

We first quantitatively assess the usefulness of openness, TF
information and GC content feature for DNMT3 binding predic-
tion by area under the curve (AUC) value with univariate ordi-
nary logistic regression. As shown in Figure 2, all three genomic
features are good predictors for the DNMT3 prediction in five

scenarios. All AUC values of single feature predicting exceed 0.5
and demonstrate all the features are informative than random
guess. The performance of openness, TF information and GC
content of binding prediction for the same DNMT3 protein in
different cell types and different DNMT3 proteins were distinc-
tive. In particular, the predictive ability of TF information is great
except in human HepG2, demonstrating the importance of TF
guidance in the process of DNMT3 binding to the regulatory
elements. The predictive ability of openness and GC content
are varied in different cell types. For example, the AUC for
openness prediction in DNMT3A for MCF-7 is 0.82, but only 0.53
in Dnmt3b for mouse E14. The AUC for GC content in Dnmt3b
for E14 is 0.85, but only 0.59 in Dnmt3l for mouse E14. Then we
compared the GC content between Dnmt3b and Dnmt3l bind-
ing regions and without any methyltransferase binding regions
in E14. Compared with Dnmt3l, the difference of GC content
between the Dnmt3b binding regions and DNMT nonbinding
is larger (Supplementary Figure 27). This indicates that Dnmt3b
prefers to bind to regions with higher GC content. For DNMT3B,
three feature performance are different in E14 mESC, human
foreskin keratinocyte and HepG2 cells. This illustrates that the
same DNA methyltransferase had a distinctive binding pattern
in different cell types.

GuidingNet improves binding prediction

Our GuidingNet holds the promise to accurately predict DNMTs’
binding and provide biological mechanism in different cellular
contexts. We systematically evaluated the performance in pre-
diction and feature selection for the above five scenarios. As
indicated in Figure 2, ROC curves of the GuidingNet prediction
on these five scenarios show better performance, i.e. averagely
84% area under the curve. Importantly, GuidingNet is better than
the predictions based on unitary feature. This demonstrated the
importance of integrative multi-omics data for predicting DNA
methyltransferase binding.

We collected independent data to further validate our pre-
dictions from the following three aspects. First, we used the
ChIP-seq data of Guiding TF to validate the Dnmt3b’s binding
prediction in E14. The rationale is that DNMT’s binding sites are
expected to largely overlap with cofactor’s ChIP-seq region. We
collected ChIP-seq of 3 Guiding TFs, Nanog, Pou5f1 and Sp1 in
E14 from Cistrome database. In Dnmt3b for E14 dataset, there are
259, 2723 and 8513 genomic regions with Nanog, Pou51 and Sp1
binding, respectively. For Nanog binding regions in Dnmt3b for
E14 dataset, there are 249 and 10 genomic regions, respectively,
predicted by our model as the Dnmt3b’s binding and nonbinding
region. This gives the ratio of Nanog 24.90 (Pou5f1 and Sp1 are
4.12 and 10.11, respectively, in Supplementary Table 7). Those
ratios are far larger than 1 and demonstrate that the GuidingNet
significantly predict the correct binding sites. Second, we used
WGBS data to classify genome regions into methylated regions
and unmethylated regions. The rationale is that methylation is
the result after the DNMT’s binding. When we used WGBS data
as gold-standard positive data in Dnmt3b for E14 and applied
our model in this dataset. The AUC value predicted by Guid-
ingNet is 0.89 (Supplementary Figure 23). Third, we performed
additional cross validation to further show the reliability of our
tool (Supplementary Figure 24).

GuidingNet reveals biological meaningful TF cofactors
to enhance interpretability

The GuidingNet performs a two-step feature selection and
shows good performance. As shown in Figure 3A–D, the
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Figure 2. Every single feature is predictive and GuidingNet outperforms single features for predicting DNMTs’ binding.

ROC curves of single feature and GuidingNet prediction of binding for DNMT3A in human MCF-7 cells, DNMT3B in human HepG2 cells, DNMT3B in human foreskin ke

ratinocyte, and Dnmt3b and Dnmt3l in E14 mESC.

candidate GuidingNet includes fewer TFs than protein–protein
interaction network, and the cutoff set was 0.1 for mouse and
0.7 for human cells. The cutoff value is chosen by controlling the
balance between prediction accuracy and feature selection of
model (see Supplementary Materials and Supplementary Figure
28). For example, the candidate GuidingNet of DNMT3A for the
MCF-7 cells included approximately one-quarter of TFs in the
protein–protein interaction network. Then we further filtered
the candidate GuidingNet when fitting the network regularized
logistic regression. Our method selected 20.8%, 15.6%, 16.8%,
53% and 16.3% TFs of protein–protein interaction network and
80%, 81%, 75%, 82% and 50% TFs of the candidate GuidingNet
in DNMT3A for human MCF-7 cells, DNMT3B for human HepG2
cells and foreskin keratinocyte and Dnmt3b and Dnmt3l for
E14, respectively (Figure 3A–D). Comparing with ordinary logistic
regression (OLR) using openness, GC content and PPI network in
Figure 3A–D (Supplementary Figure 2), GuidingNet’s accuracy
remains but used far fewer TFs for prediction. For example, our
method used one-fifth TFs of OLR for DNMT3B binding in the
human HepG2 cells.

The cofactors in the output GuidingNet can help us interpret
the mechanism of how cofactor assist DNA methyltransferase
binding to regulatory elements. For example, Nanog is a member
of Dnmt3b’s guiding network (GN) in E14 and Dnmt3b and Nanog
bind to the genome region chr7: 118,740,617–118,741,016 in E14.
WGBS data of E14 shows that this region is methylated. The
possible mechanisms for Dnmt3b’s binding to genome region
chr7: 118,740,617–118,741,016 is to be guided by Nanog. In other
words, Nanog binds to this region by recognizing specific DNA

motifs and recruits Dnmt3b by protein interaction propensity.
Then Dnmt3b methylates cytosines in this region. To validate
those predicted guiding TFs, we preformed motif enrichment in
the ChIP-seq of DNMT3 proteins by HOMER software. As shown
in Figure 3A–D, indeed the identified guiding TFs enriched in
the ChIP-seq of corresponding DNMT3, for example, Nanog, Sp1,
Brca1, Sin3a and Zic3 in Dnmt3b for E14. In addition, literature
search shows that a number of studies have linked our pre-
dicted guiding cofactors to DNA methyltransferase. For example,
TRIM28-mediated recruitment of de novo DNMT3A that leads to
cytosine methylation at CpG dinucleotides can control human
endogenous retroviruses [18]. In total, 24 guiding cofactors were
validated to be associated with DNA methyltransferase binding
by literature (Supplementary Table 3). We note that the guiding
cofactors may play an important role in development and many
diseases. Uncovering the cofactor’s mechanisms to regulate DNA
methyltransferase binding may be useful in the production of
therapeutic targets.

We performed upstream and downstream analysis of the
obtained network from our model. For 14 TFs of Dnmt3b’s
guiding network (GN) in E14, we searched for regulatory
elements in the range of 100 kb around each TF gene. And
we found a total of 67 regulatory elements. We did TF
motif enrichment in these regulatory elements by HOMER
and identified 20 enriched motifs with significant p-value
(Supplementary Table 4). More importantly, enriched TFs
including CTCF, Sox2 and Pou5f1 have high expression levels
in E14. We identified 249 genomic regions bound with Nanog
and Dnmt3b in E14 by ChIP-seq data. We searched for effector
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Figure 3. GuidingNet selects less TF co-factors and enhances interpretability.

(A–D) Comparison of protein–protein interaction networks (included first-order and second-order TFs interacting with the DNMT3 family protein), the candidate

GuidingNet, and the GuidingNet of DNMT3A in human MCF-7 cells, DNMT3B in human HepG2 cells, DNMT3B in human foreskin keratinocyte, Dnmt3b in E14 mESC

and Dnmt3l in E14 mESC. The blue nodes in protein–protein interaction networks indicate the DNMT. The red edges indicate the direct interaction between the DNMT

with TFs. The width of the edge in the candidate GuidingNet indicates its weight. The wider the width of the edge, the greater its weight. Bar plot indicates the number

of TFs in the PPI network (PPI), the candidate GuidingNet (CGN) and the GuidingNet (GN). The red box indicates TFs having motif enriched in the DNMT’s ChIP-Sep

peaks. (E) Venn diagram shows the number of shared TFs among the GuidingNet of DNMT3A in MCF-7, DNMT3B in HepG2 and DNMT3B in foreskin keratinocyte.

genes within 5 kb downstream of each region. We found a total
of 324 effector genes, then we preformed Gene Ontology (GO)
term enrichment analysis (Supplementary Figure 26). The most
significant term is ‘chromatin organization,’ which is consistent
with the CTCF and two pluripotent master regulators’ biological
function.

Then we compared the GuidingNets of these DNMT3 family
proteins across different cellular contexts. It is interesting that
the GuidingNets of DNMT3A and DNMT3B in human cells shared
most of the guiding TFs (Figure 3E). Previous studies have shown
that DNMT3A and DNMT3B are structurally similar and appear
to have redundant functions overall [19]. One possible reason is
that DNMT3A and DNMT3B are recruited by the same TFs. In
summary, GuidingNet shows superior performance in predicting
DNMTs’ binding in both mouse and human and revealing their
cofactors.

GuidingNet’s genome-wide prediction is validated by
WGBS data

We used the whole genome bisulfite sequencing (WGBS) data
in mESC E14 to validate GuidingNet’s binding prediction. Given
a certain region, we can quantify the methylation level for this
region by a simple fold change score, which is calculated as
the number of methylated cytosine in this region by comparing
with the total number of cytosine in this region. As indicated
in Figure 4A, the methylation level of Dnmt3b binding regions
is higher than non-binding regions in E14 mESC. Figure 4B
shows that the higher the methylation level of this region, the

higher the probability that this region is a Dnmt3b binding site.
The Pearson correlation coefficient between our binding
probability of Dnmt3b to the region and the methylation
level of this region is 0.816, indicating that our predic-
tion results are consistent with the independent measured
WGBS data.

Across-tissue predicting Dnmt3b’s binding

To further evaluate our model performance, we performed
across-tissue prediction of Dnmt3b’s binding by GuidingNet.
As shown in Figure 5A, we trained the model in E14 mESC then
predicted which open regions are Dnmt3b’s binding sites at
7 time points (E11.5, E12.5, E13.5, E14.5, E15.5, E16.5 and P0)
of the liver during embryo development. We used the WGBS
data to validate the Dnmt3b’s binding prediction. As indicated
in Figure 5B, the methylation level of Dnmt3b’s predicted
binding regions is higher than non-binding regions. This is
consistent with the results of the WGBS data validation in
E14 mESC. These results suggest that our method can apply
in across-tissue prediction of Dnmt3b’s binding. Interestingly,
the methylation level of the predicted binding region in E14.5
is higher than other time points. We ask the question that
whether the better prediction of E14.5 is related to the right
guiding TFs. We compared predicted binding regions between
E14.5 and E13.5, then extracted the 11,494 unique binding
regions of E14.5 (Supplementary Figure 16A). We did TF motif
enrichment in these regions by HOMER and identified 8 motifs
as enriched guiding TFs (Nanog, Sp1, Smc3, Zic3, Zfp281, Esrrb,

keratinocyte
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa245#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa245#supplementary-data
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Figure 4. DNA methylation data validate Dnmt3b’s binding prediction in mESC.

(A) Methylation level in Dnmt3b’s predicted binding regions is significantly higher than non-binding regions (defined as the open region not covered Dnmt3b’s binding

region) in E14 mESC. (B) The scatter plot of the probability of GuidingNet output for Dnmt3b’s binding versus the methylation level for a given region.

Figure 5. GuidingNet predicts Dnmt3b’s across-tissue binding.

(A) Schematic of training the model and across-tissue predicting. (B) Comparison of methylation level between Dnmt3b’s predicted binding regions and non-binding

regions.

Pou5f1, Rest). Importantly, Smc3, Sp1, Zfp281 and Rest have
high expression levels in E14.5 (Supplementary Figure 16B).
In addition, the distance between predicted binding regions
and the transcription start site (TSS) at E14.5 is shorter than
other time points (Supplementary Figure 17). This may indicate
that our method trained in mouse E14 is more accurate in
the promoter regions. We expect to train our model in more
tissue and cell types, and consequently, we could predict the
DNMT binding for a new tissue and cell type that has not been
studied yet.

GuidingNet can predict other chromatin regulators’
binding in human and mouse

We ask whether our model has the predictive power in other
chromatin regulators’ binding. The ChIP-seq datasets for 4
CRs (Ep300, Ezh2, Setdb1 and Suz12) in mouse E14 and 6
CRs (EP300, EZH2, HDAC2, SMARCC2, SMARCE1 and SUZ12)
in human HepG2 cells are collected form Cistrome database
and utilized as gold-standard positive data. We evaluated our
predictions of the binding of these CRs. Figure 6A and 6B shows

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa245#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa245#supplementary-data
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Figure 6. GuidingNet predicts other CR’s binding in human and mouse.

(A) ROC curves of prediction of 4 CRs’ binding in mouse E14. (B) ROC curves of 6 CRs’ binding in the human HepG2. (C and D) The GuidingNet of Suz12 in mouse E14

mESC and SUZ12 in human HepG2, respectively.

that good performances (74–94% AUC) have been achieved for
these CRs. We also assessed the predictive power of openness,
TF information and GC content (Supplementary Figures 4 and
9). TF information showed the superior performance for all
these CRs, and GC content had weak predictive power. The
predictive ability of openness varies for different CRs. In
addition, our method showed outstanding performance in TF-
related feature selection (Supplementary Figures 5–8 and 10–
15). In particular, our method had shown superior accuracy
in predicting SUZ12’s binding in both mouse and human. The
AUCs are 0.91 and 0.94, respectively. In addition, a total of 7
TFs (BRCA1, YY1, STAT3, NFATC1, SMC3, POU2F1 and NANOG)
are shared in the GuidingNet of human HepG2 (Figure 6C) and
mouse E14 (Figure 6D). These TFs are conserved from mouse
to human, suggesting that they play an important role in
guiding SUZ12 binding to the regulatory elements. The revealed

GuidingNets of these CRs in E14 mESC and HepG2 cells are
biologically reasonable (Supplementary Figures 5–8 and 10–15).
The strong performance both in prediction accuracy and TF
selection suggests that GuidingNet is useful in other chromatin
regulators’ study.

Discussions and conclusions
We introduce GuidingNet, a network-regularized logistic regres-
sion framework, to integrate gene expression data, chromatin
accessibility data, DNA sequence information and protein–
protein interaction data for modeling DNMTs’ binding. Our
major contribution is to propose a network regularization to
choose TF-related feature weights in the adaptive lasso base
on TF protein–protein interaction and co-expression network.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa245#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa245#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa245#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa245#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa245#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa245#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa245#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa245#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa245#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa245#supplementary-data
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Through comprehensive validation, our method shows superior
performance, and the generated GuidingNet helps us to interpret
DNMTs’ binding mechanism in different cell types and different
species. Although GuidingNet’s prediction cannot substitute
ChIP-seq data, it can provide a powerful reference for the actual
binding site information of DNMTs on the genome, especially in
those tissues or cell lines that still missing ChIP-seq data.

In addition to sensitivity analysis to show every feature is
predictive, we have performed uncertainty analysis for model
inputs. Three types of data including openness, TF expression
and gold-standard data may have noise. To simulate different
noise levels in each type of data, we randomly selected 100 times
5%, 10%, 15% and 20% of the data and added noise. Then we
applied our model on the data after adding noise and recorded
prediction accuracy. As shown in Supplementary Figure 18–22,
different degrees of noise in openness and TF expression data
have little effect on model prediction accuracy. As the degree
of noise added to gold-standard data increases, the prediction
accuracy of our model decreases drastically.

We compared our model with other four classification meth-
ods: naive Bayes, SVM, CART and random forest in five scenar-
ios. As shown in Supplementary Figure 25, the prediction per-
formance of GuidingNet consistently outperforms naive Bayes
in five scenarios. This can be expected since logistic regres-
sion doesn’t require the conditional independence assumption
among features. The prediction accuracy of GuidingNet is also
higher than that of SVM, except for Dnmt3l (E14). GuidingNet has
achieved better predictive performance for DNMT3B (HepG2),
DNMT3B (Foreskin) and Dnmt3b (E14) compared to the CART.
The prediction performance of nonlinear model, random forest,
is slightly better than our GuidingNet model in five scenarios.
The difference of AUC values between GuidingNet and random
forest are within 0.06, except for Dnmt3l (E14). This indicate
nonlinear model has potential to improve accuracy. However,
GuidingNet selected biological meaningful features and used
far fewer TFs for prediction. Our method used 20.8%, 15.6%,
16.8%, 53% and 16.3% TFs of random forest in DNMT3A (MCF-7),
DNMT3B (HepG2), DNMT3B (Foreskin), Dnmt3b (E14) and Dnmt3l
(E14). Taken together, logistic regression is a better choice in
practice balancing the biological interpretation and prediction
accuracy.

Our approach is outstanding for predicting DNMTs’ binding
in the following aspects. First, GuidingNet integrates TF protein–
protein network and co-expression across tissue and cell types
to generate the weight of features in an unsupervised manner.
This is different with existing procedures to select weights by
computing an initial estimate using the response variable. Sec-
ond, our method has a strong ability to select features by (i)
setting cutoff in the GuidingNet and (ii) fitting the regularized
logistic regression. Third, we provide further biological insights
into the different binding mechanism of DNMTs in different cell
types. Fourth, our method is capable of making across-tissue
predictions validated by independent WGBS data. Last, Guid-
ingNet is general enough to predict other chromatin regulators’
binding both in the human and mouse and shows outstanding
performance.

Our model can further be improved from many aspects.
First, the missing of gold-standard data limits us from training
models in more tissues and cell types. Second, several studies
have demonstrated that DNMT3 binding is closely related to
chromatin histone modification, such as DNMT3B preferentially
targets gene bodies marked with H3K36me3 [20, 21]. Many of
the ChIP-seq of histone modification are available. Integrating
other histone modification information in our model may

benefit the prediction accuracy. Third, histone methyltrans-
ferases and demethylase also play an important role in mammal,
such as KMT and KDM family are associated with embryo
development and cancer occurrence and progression [22, 23].
Fourth, GuidingNet can be extended to time-series data and
multiple tissue data. We can assume that DNMTs’ binding
at adjacent time points or in similar tissue are similar. Then
continuous constraints can be applied to model parameters
to borrow information. Integrating the correlation information
between different time points and tissues into our model and
performing joint prediction of DNMT binding in time-series or
multiple tissue data may improve the prediction accuracy. Last,
alterations in DNA methylation patterns have been implicated
in embryo development and tumorigenesis in many studies [24–
26]. We look forward to deciphering the regulatory mechanism of
mediating DNA methylation status alteration and how it impacts
these important biological processes.

Key Points
• We propose a network regularized logistic regression

model, GuidingNet, for predicting DNMTs’ genome-
wide binding by integrating gene expression, chro-
matin accessibility, sequence and protein–protein
interaction data.

• We reconstruct TF protein–protein network and co-
expression network for regularization, to choose
weights efficiently in adaptive lasso, and to improve
prediction accuracy and biological interpretability.

• GuidingNet outputs a TF network assisting DNMTs’
binding and allows us to interpret the mechanism of
DNMTs’ binding in different tissues and cell types.

• GuidingNet can be generalized to predict other CR
binding sites in human and mouse and has achieved
good performance in prediction accuracy and feature
selection.

Supplementary data

Supplementary data are available online at https://academic.
oup.com/bib.
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