
Published online 4 August 2022 Nucleic Acids Research, 2022, Vol. 50, No. 18 e108
https://doi.org/10.1093/nar/gkac653

Efficient detection and assembly of non-reference
DNA sequences with synthetic long reads
Dmitry Meleshko1,2, Rui Yang1,2, Patrick Marks3, Stephen Williams3 and
Iman Hajirasouliha 2,4,*

1Tri-Institutional PhD Program in Computational Biology and Medicine, Weill Cornell Medical College, NY 10021,
USA, 2Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine of
Cornell University, NY 10021, USA, 310x Genomics Inc., Stoneridge Mall Road, Pleasanton, CA 94566, USA and
4Englander Institute for Precision Medicine, The Meyer Cancer Center, Weill Cornell Medicine, NY 10021, USA

Received April 27, 2022; Revised June 10, 2022; Editorial Decision July 12, 2022; Accepted August 01, 2022

ABSTRACT

Recent pan-genome studies have revealed an abun-
dance of DNA sequences in human genomes that
are not present in the reference genome. A lion’s
share of these non-reference sequences (NRSs) can-
not be reliably assembled or placed on the reference
genome. Improvements in long-read and synthetic
long-read (aka linked-read) technologies have great
potential for the characterization of NRSs. While syn-
thetic long reads require less input DNA than long-
read datasets, they are algorithmically more chal-
lenging to use. Except for computationally expen-
sive whole-genome assembly methods, there is no
synthetic long-read method for NRS detection. We
propose a novel integrated alignment-based and lo-
cal assembly-based algorithm, Novel-X, that uses the
barcode information encoded in synthetic long reads
to improve the detection of such events without a
whole-genome de novo assembly. Our evaluations
demonstrate that Novel-X finds many non-reference
sequences that cannot be found by state-of-the-art
short-read methods. We applied Novel-X to a diverse
set of 68 samples from the Polaris HiSeq 4000 PGx
cohort. Novel-X discovered 16 691 NRS insertions of
size > 300 bp (total length 18.2 Mb). Many of them are
population specific or may have a functional impact.

INTRODUCTION

Long-read sequencing technologies such as PacBio and Ox-
ford Nanopore are able to improve genome-wide structural
variant (SV) characterization and de novo assembly (e.g. (1–
4)). Both PacBio and Oxford Nanopore require high input
DNA amounts (at least 100 ng but ideally micrograms of
DNA). For some real-world applications, the high input re-
quirements limit the use of long-read protocols. In particu-

lar, for the whole-genome sequencing of clinical tumor sam-
ples, we may not have enough DNA material to leverage
long-read sequencing.

Low-cost, low-input (i.e. only 1–5 ng) and highly accu-
rate synthetic long-read technologies such as the 10x Ge-
nomics system (5), BGI Long Fragment Reads (stLFR) (6)
and Universal Sequencing Technology (UST TELL-Seq)
(7) have recently emerged to improve the ability of standard
short-read sequencing technologies in characterizing whole
genomes and metagenomes. In synthetic long-read sequenc-
ing, DNA molecules are sheared into long fragments (i.e.
10 to a few hundred thousand base pairs), and barcoded
short reads from these long fragments are produced in such
a way that reads from a long fragment share the same bar-
code. Such reads are referred to as linked-reads and the
barcodes provide additional long-range linkage informa-
tion about the target genome being sequenced. For more
details of the synthetic long-read sequencing process and
related protocols, we refer the reader to (5). 10x Genomics
introduced one of the first commercial platforms for syn-
thetic long-read sequencing and gained popularity in just
three short years. Thousands of whole genomes have re-
cently been sequenced using 10x Genomics linked-reads in-
cluding the InPSYght Consortium which has sequenced a
schizophrenia case/control cohort of 545 individuals. While
10x Genomics has since discontinued (as of June 30, 2020)
shipment of their kits due to patent issues with Bio-Rad
Laboratories, several other technologies such as Single Tube
Long Fragment Read (stLFR) from BGI-MGI and Trans-
posase Enzyme Linked Long-read Sequencing (TELL-Seq)
from Universal Sequencing have recently made similar syn-
thetic long-read sequencing platforms commercially avail-
able. Indeed the single-tube approach for generating syn-
thetic long reads in stLFR and TELL-Seq eliminates the
need for a 10x Chromium-like instrument. This made the
cost of synthetic long-read sequencing even cheaper than
10x Chromium linked-reads and only slightly more than the
typical Illumina cost (6,7).
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Synthetic long reads have proven to be useful in multiple
applications including but not limited to genome assembly
(8,9), genome phasing (5,10), metagenomics (7,11–13), or
large-scale SV detection or general novel adjacencies (14–
18). The contribution of synthetic long reads to SV detec-
tion is, however, still limited to large structural variations
(i.e. at least several thousand base pairs) and only certain
classes of SVs, because the techniques for detecting SVs
using synthetic long reads mainly rely on quantifying bar-
code similarity of aligned reads between distant pairs of ge-
nomic locations to identify novel adjacencies in a sequenced
genome. Therefore, virtually none of the available SV detec-
tion algorithms attempts to characterize and assemble non-
reference sequences, i.e. DNA sequences present in a given
sequenced sample but missing in the reference genome. The
latest attempts at resolving the full spectrum of genome
variations using synthetic long reads does not include inser-
tions (7,19), and less sensitive whole-genome de novo assem-
bly methods for this purpose (9,20,21) are computationally
expensive.

Non-reference sequences (NRSs) refer to new DNA se-
quences that are missing in the reference genome but present
in a sequenced sample. This type of insertion is distinct
from repeat insertions such as mobile element insertions.
NRSs may contain functional elements and are of great in-
terest for human genome diversity (22). Without accurate
detection and precise placement of these NRSs, it is im-
possible to build new human reference genomes and cor-
rect misassemblies in existing references. Despite several at-
tempts in recent years, insertion events remain poorly char-
acterized because of the limitations of short-read and syn-
thetic long-read technologies. The main focus of large-scale
whole-genome consortium projects (e.g. the 1000 Genomes
Project) was to detect deletions. However, pan-genome as-
sembly projects show a substantially large number of NRS
insertions in sequenced human genomes not present in the
reference genome (22–24). In particular, a recent paper de-
scribing the assembly of a pan-genome from deep sequenc-
ing of 910 humans of African descent (22) claimed that close
to 300 Mbp of DNA sequence in 125 715 distinct contigs are
missing from the reference genome but are present in the
pan-genome. The vast majority of these contigs, however,
could not be placed on the reference genome because of the
limitations of short reads. Only 1548 (total length 4.4 Mb)
of the contigs were placed on the reference genome, which
is < 1.5% of the new sequences found.

Several approaches attempted NRS detection using stan-
dard short-read sequencing without whole-genome de novo
assembly. For example, NovelSeq (25) was developed to
characterize these insertions using high coverage ultra
short-read datasets (reads of length 35–41 bp). This algo-
rithm was applied to the high coverage samples in the 1000
Genomes pilot phase, and a total of 128 NovelSeq calls
were reported and validated (26, 27). Subsequent short-
read methods for this problem such as MindTheGap (28),
ANISE and BASIL (29), PopIns2 (30) or Pamir (31) ap-
pended population-based techniques (e.g. pooling multiple
low-coverage samples from the same population) or used
additional whole-genome signals such as split reads for bet-
ter breakpoint resolution. All of these short-read meth-
ods are based on the idea of assembling reads that are not

aligned to the reference genome and connecting these as-
sembled sequences with potential insertion breakpoints on
the reference genome using paired-end information. Nov-
elSeq (25) was the first algorithm that capitalized on this
idea. NovelSeq identifies unaligned paired-end reads with
a single-end read aligned (i.e. One-End-Anchor reads) and
performs a local assembly of those One-End-Anchor reads
that clustered around the same positions on the reference.
Sequence contigs assembled in this way are simply called
‘anchors’ and we use this term throughout this manuscript
as well. An anchor represents a piece of sequence that can
be located on the reference genome and can be used to
find the breakpoint of a potential NRS insertion. NovelSeq
then uses a de novo assembler such as ABySS (32) to as-
semble those reads where none of their ends mapped to the
reference (called orphan reads) and finally merges assem-
bled contigs from the orphan reads with anchors using a
greedy matching algorithm. MindTheGap (28) uses a novel
k-mer-based signature to find insertion sites on the refer-
ence genome, while ANISE (29) employs a new algorithm
for resolving certain repeat copies. PopIns2 (30) is an alter-
native algorithm that uses information from several whole-
genome samples to find NRS insertions common to an an-
cestral population. Pamir (31) also generalizes NovelSeq’s
approach for handling several low-coverage genomes from
the same population. Moreover, the accuracy and number
of NRS insertion discoveries were improved due to split-
read signature usage and a non-greedy approach to match
NRSs with their anchors.

All of the existing short-read methods fail to correctly as-
semble and locate the vast majority of insertions that are
> 300 bp. The sensitivity of short-read methods is limited
to smaller insertions. Also, short-read libraries dramatically
reduce our ability to locate an inserted sequence on the ref-
erence genome because the size of anchors is limited by the
small insert size of the library and is usually less than the size
of common repetitive elements. In light of these challenges,
our main contribution here is a novel technique that can
leverage barcodes and long fragment information encoded
in synthetic long-read sequencing to achieve much longer
anchors. Our technique allows determination of the unam-
biguous location of non-reference sequences on the refer-
ence even inside certain repetitive regions, a major limita-
tion of short-read methods (see Supplementary Figure S1
for a demonstration).

Indeed it is possible to leverage de novo assembly of syn-
thetic long reads for NRS detection. For example, NUI
(20) calls NRS insertions specifically using synthetic long-
read data. It assembles the whole dataset with SuperNova
(9), aligns poorly aligned reads into assembled contigs to
identify insertion sequences and then aligns contigs with
an insertion to the reference genome to find the position of
breakpoints. However, whole-genome assembly is a compu-
tationally expensive task. Additionally, assembly of repeti-
tive regions is extremely challenging, and insertions in those
regions are likely to be overlooked due to fragmentation.
In this study, we introduce an integrated mapping-based
and assembly-based algorithm using synthetic long reads,
which is substantially more accurate than existing methods
for NRS insertion discovery and placing the insertions on
the reference genome. In addition, our method is computa-
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tionally more efficient compared with those synthetic long-
read approaches that use whole-genome de novo assembly
such as (9,20) because we only process a very small frac-
tion of informative linked-reads and not the whole target
genome sequencing data. Our synthetic long-read method
is able to characterize one of the most challenging classes
of SVs with a reasonable additional cost to standard short-
read sequencing. Here we evaluated our method on several
cohorts of synthetic long reads sequenced on 10x Genomics,
TELL-Seq and stLFR platforms. Our method can also be
applied to other types of synthetic long-read data when they
become widely available.

Our method can especially handle insertions longer than
300 bp, a major limitation of existing methods, and we
show that our method is highly sensitive when tested on
both simulated data and real data including several well-
characterized haploid and diploid human genomes. We also
present the findings of our method when applied on 68 hu-
man whole-genome samples as part of the Polaris PGx co-
hort.

MATERIALS AND METHODS

In this section, we describe our method, Novel-X, for de-
tection of NRSs using synthetic long-read sequencing. This
method is based on a novel idea that the barcode informa-
tion encoded in synthetic long reads can be used to recon-
struct long anchors that can be unambiguously placed on
the reference genome. This allows us to find exact break-
point positions on the reference even in certain repeat re-
gions. Our approach is based on the local assembly of mul-
tiple barcodes originating from the same genomic loci.

The input for Novel-X is a reference genome (e.g.
GRCh38) and a BAM file produced by aligning barcoded
linked-reads to the reference genome. For aligning 10x
Genomics barcoded reads, the standard LongRanger pack-
age (https://support.10xgenomics.com/genome-exome/
software/downloads/latest) or EMA (33) can be used.
We refer to the set of the reads from the input BAM file
as original reads and to the BAM file itself as original
BAM. A pre-processing step in Novel-X is the extraction
of paired-end reads from the original BAM that cannot be
aligned to the reference genomes or have poor alignments.
Intuitively, NRSs should consist of reads that do not align
anywhere on the reference. The number of such insertions is
typically not high. Therefore, in contrast to whole-genome
de novo assembly methods, we filter out a majority of reads
which have high-quality alignments to make the pipeline
computationally effective. We choose paired-end reads
with at least one end not aligned to the reference genome,
or aligned but with a mapping quality below 10, or that
have > 20% of soft-clipped bases. We believe that such
reads are likely to contain a large portion of insertion
sequences, and therefore are important for identification of
NRS insertions. Additionally, we choose only reads with
the average base quality score > 20. We collectively call
this set of unaligned reads U . Reads from U correspond to
NRS insertions and contain parts of anchor sequences.

Novel-X is comprised of four steps, taking as input the
reads in U and generating as output a list of candidate

NRS sequences. (i) NRS insertion assembly––assembly of
all reads in U . As the result of this step we obtain a set of
NRS candidates. (ii) Barcode list extraction––for each in-
sertion candidate we find barcodes with at least one read
aligned to this insertion. (iii) Insertions reassembly––we re-
assemble reads with barcodes found in the previous step
to obtain anchors for each insertion. (iv) Location of in-
sertions on the reference––we locate these anchors on the
reference genome and find the exact position of each
insertion.

We describe each step in detail below. An overview of our
technique is also shown in Figure 1.

NRS insertion assembly

We first use the Velvet assembler (34) to assemble reads
in U . Velvet is an assembler of choice for our purpose
because other assemblers often have specific assumptions
about the data such as diploidy or contiguity of a fully se-
quenced genome. In our experiments, other assemblers pro-
duce worse results on the simulated data (see Supplemen-
tary Table S2). Note that, de novo assembly of all reads in
a high-coverage whole-genome sample is a computation-
ally expensive task. However, U consists of a small fraction
of the total reads (usually 2–3%) and can be assembled ef-
ficiently. Ideally, the resulting assembly contigs would be-
long to sequences of novel insertions but could also be the
results of misassembly or originate from non-human con-
taminant sequences. If needed, we can perform a contam-
ination removal procedure similar to what was previously
done in Pamir (31), i.e. perform a BLAST search against
an nt/nr database and filter out all contigs that align to
non-human references. We implemented this contamination
removal procedure as an option in our software because
it may also remove some known viral sequences (e.g. hu-
man herpesvirus sequence) that can be of interest for certain
users. Similar to the analogy in (25), we call the remaining
contigs orphan contigs.

Barcode list extraction

For each orphan contig c, we first align the reads in U to c
and filter read alignments with low-quality scores or with
a large fraction (≥ 20%) of soft-clipped or hard-clipped se-
quences. Note that the exact definition of soft- and hard-
clipped reads is aligner specific. Intuitively, soft-clipped and
hard-clipped read parts represent the part of a read that can-
not be aligned together with the remainder of the read due
to a lack of sequence similarity. Let R(c) be the set of fil-
tered barcoded reads aligned to c. We denote B(c) as the set
of all barcodes in R(c). We extract and store every read from
the set of original reads whose barcode is in B(c). The infor-
mation about barcodes of remaining reads is, however, ex-
tracted and aggregated separately for each orphan contig.
Each contig that recruits less than t barcodes is discarded
since the joint assembly of a limited number of barcodes is
very unlikely to produce long anchors during the next step
of the algorithm. In our software, we set the parameter t to
5 as default, but this parameter can also be defined by the
user.

https://support.10xgenomics.com/genome-exome/software/downloads/latest
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Figure 1. Novel-X outline. (A) Schematic original BAM filtering, NRS insertion assembly and barcode read extraction steps. At the end of these steps, we
get n contigs with the barcode lists. (B) For each contig from the previous step, we pool aligned and unaligned reads, assemble them and call insertions
from the reassembled contigs.

Insertion reassembly

In order to assemble NRSs together with their anchors, for
each barcode list B(c) we search the original BAM and ex-
tract the reads that have a barcode from B(c). Both aligned
and unaligned reads are extracted during this stage. Then,
we reassemble extracted reads for each B(c) separately. By
default, we use SPAdes (35) with k=77 (that empirically
works better than other standard single k-mer lengths) and
cov-cutoff = 3 (to remove low-covered spurious sequences),
though usage of other assembler options might also be fea-
sible. One confounding factor is that multiple genomic frag-
ments can share the same barcode, which means that reads
from different loci might be inappropriately recruited to
assemble NRS anchors. However, because of lower cover-
age of recruited reads in regions other than NRS anchors,
SPAdes interprets these inappropriately recruited reads as
sequencing errors or contamination, and edges made from
these reads will be deleted from the assembly graph (see Fig-
ure 2).

In order to support this claim, we create a simple model
and calculate the probability of the assembly of a random
region under this model. Based on given parameters associ-
ated with a synthetic long-read experiment, we can indeed
model the genome as a set of non-intersecting regions and
calculate the probability of aligning underlying long frag-
ments in regions of no interest. In Supplementary text A:
‘Proof: A random region has a low coverage’, we combina-
torially proved that the probability of getting a significant
number of long fragments in a given region is small and its
assembly is unlikely.

After the reassembly step, we only perform downstream
analyses of reassembled contigs that have a best match with
an existing orphan contig. This match is found using Min-
imap2 (36) alignment. Ideally, the result can be presented
as a single contig with ‘left anchor–insertion sequence–right
anchor’ structure.

Location of insertions on the reference

The last step of our pipeline is finding the positions on the
reference genome where the novel insertions can be placed.
We use Minimap2 for aligning the resulting contigs from the
previous step to the reference genome. It allows us to align
any number of candidate sequences to the human genome

in a reasonable time with high accuracy. Since Minimap2 re-
sults contain a large portion of short spurious alignments,
we use a filtering procedure that resembles the QUAST (37)
procedure, i.e. choosing best alignment subsets from a given
alignment set that maximizes the number of continuously
covered base pairs. The remaining alignments that are adja-
cent with respect to the reference genome are analyzed for
insertion signatures. If the distance between adjacent an-
chor alignments is small on the reference but large on the
contig, then the contig probably contains an NRS. Other-
wise, the contig is discarded. The insertion content can be
found as a subsequence on the contig between these align-
ments. We only output insertions longer than 300 bp with
the sum of the anchors’ lengths exceeding 300 bp to prevent
false calls. All identified insertions are stored in a vcf (Vari-
ant Call Format) file. Placed insertions that do not satisfy
the conditions above (e.g. smaller insertions) are stored in a
separate file as described in our documentation.

RESULTS

Evaluation on simulated data

We first developed a simulation scenario to evaluate Novel-
X in a fully controlled setting. We inserted 2000 randomly
generated DNA sequences between 50 and 6000 bp in
length into the GRCh38 reference genome. Synthetic long
reads were simulated using LRSIM (38) with 65× sequence
coverage. We evaluated Novel-X, PopIns2 (30), NUI (20)
and Pamir (31) on these data. Because Pamir is not able to
work directly with synthetic long-read data, we simulated
matching standard short-read data of the same coverage
from the same genome using ART (39). We also tried Manta
(40) as a popular tool for the general short-read data SV
calling. However, Manta was not able to detect any novel
insertions longer than 300 bp.

For the purpose of comparison, we consider a pair of
insertions called by two different methods the same event
if their breakpoint positions on the reference genome dif-
fer by no more than 100 bp and their length differs by no
more than 5%. Table 1 shows the number of NRS insertions
found by different methods and their sizes. Our simulations
demonstrate that Novel-X has a high recall and precision,
especially for longer insertions which are more challenging
to detect. While NUI’s results were comparable with those
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Figure 2. Underlying long fragment alignment to regions of interest (i.e. novel insertion site) and some distant genomic region and subsequent assembly.
Every barcode extracted from the barcode list recruits some underlying long molecule aligning to the insertion site. Long molecules with the same barcode
can be recruited to align to the offsite genomic region but the probability of recruiting multiple long molecules in the same bin is small and assembly of
such regions into contiguous sequences is unlikely.

Table 1. Length breakdown of insertions found by different methods in the simulated dataset

Length (bp) 50–299 300–499 500–999 1000–1999 2000–4999 ≥5000 Total TP FP

Total 83 73 148 361 1023 312 2000
Novel-X 47 68 137 336 928 273 1789 1
PopIns2 3 60 124 299 860 242 1588 1
Pamir 76 56 99 213 616 179 1239 278
NUI 73 60 131 313 902 271 1750 3

Novel-X found a majority of insertions longer than 300 bp and had the best performance.

of Novel-X, PopIns2 had a lower recall. Pamir had the low-
est recall overall and had far from perfect precision, but
achieved the highest recall for insertions from the 50–299
bin. Novel-X achieved the almost perfect precision of 0.999,
NUI 0.997, PopIns2 0.999 and Pamir 0.817. Overall, Novel-
X has the best performance, while NUI has the second best.
We checked if the sequence content of the predicted inser-
tions matched the ground truth sequences by using a global
sequence alignment and a nucleotide identity threshold of
80%. All sequence contents of Novel-X, PopIns2 and Pamir
insertions matched, and NUI produced only 48 incorrect se-
quences (< 3%).

Low-coverage genomes. To show the utility of our method
on low-coverage synthetic long-read genomes, we also stud-
ied the effect of downsampling the sequencing data on
Novel-X performance. From the original 65× coverage,
we downsampled the simulated dataset with the ratios 0.8
(52×), 0.6 (39×), 0.4 (26×) and 0.2 (13×). We evaluated
Novel-X, PopIns2 and NUI performances on these datasets
(see Supplementary Table S1). NUI and Novel-X have a
stable performance with 26× coverage and above. The per-
formance only dropped when we tested it with the 13× se-
quence coverage. In that case, the very low coverage pre-
vented the assembly of long anchors and insertion place-
ment. PopIns2 seems to have the highest requirement for
data coverage, because its performance worsens gradually
with every downsample step.

Choice of assemblers. The Novel-X method uses differ-
ent assemblers for different tasks. Using simulated data, we
were able to confirm that Velvet v1.2.10 (34) for the assem-
bly of unaligned reads, and SPAdes v3.15 (35) for insertion
reassembly, are the best practice (see Supplementary Table
S2). SuperNova is not suitable for the insertion reassembly
step, because it has a prohibitive running time. Each Super-
Nova run requires minutes even with a small subsample of

only a few thousands reads. Velvet and SPAdes also provide
a reasonable running time.

Evaluation on real datasets

In order to evaluate the utility of Novel-X on real data,
we performed experiments with several synthetic long-
read datasets from different platforms (10x, Tell-Seq and
stLFR). We observed that different synthetic long-read
platforms have different properties. In particular, the aver-
age long molecule length, the number of barcodes or the
average coverage with short reads differ from one platform
to another. Figure 3 shows a comparison of the molecule
length distribution and the molecule coverage distribution
of different synthetic long-read platforms on the NA12878
genome. stLFR and 10x platforms have almost identical
molecule length distribution with a higher density of longer
molecules compared with Tell-Seq. The molecule cover-
age distribution has distinct patterns for each technology.
The majority of Tell-Seq molecules have coverage below
0.3×. The peaks of molecule coverage distribution for 10x
and Tell-Seq have similar values, but the 10x molecule cov-
erage distribution has a higher density tail. The peak of
stLFR’s molecule coverage distribution is very high, ∼0.4×.
In stLFR and 10x, some of the molecules have a coverage
of > 1. The maximum coverage of a molecule for stLFR is
1.6× and for 10x is 7.6×.

In total, we used nine synthetic long-read whole-genome
datasets in our experiments with real data (Table 2). These
datasets were chosen because high coverage long-read
datasets and/or integrated benchmark callsets (example
from the Genome in a Bottle study (41)) were available as
ground-truth callsets.

LongRanger is the standard aligner for synthetic long-
read platforms. TELL-Seq datasets can be aligned to the
reference genome using LongRanger with an altered bar-
code list file (7). stLFR datasets can also be converted to a
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Figure 3. Synthetic long-read properties of different platforms on the NA12878 dataset are shown. Long molecule length (left) is the distance between the
leftmost and the rightmost alignment of the reads with the same barcode within the same genomic region. Long molecule coverage (right) is the coverage
of the genomic region by the reads with the same barcode.

Table 2. Overview of real synthetic long-read datasets used for bench-
marking in this study

Dataset Number of Reference Validation
(Platform) Coverage barcodes genome set

HG002 10x 59× 3956724 GRCh37 (41)
HG002 TELL-Seq 42× 10543778 GRCh37 (41)
HG002 stLFR 35× 4653424 GRCh37 (41)
NA12878 10x 60× 3956724 GRCh38 (42)
NA12878 TELL-Seq 41× 15198586 GRCh38 (42)
NA12878 stLFR 40× 3962939 GRCh38 (42)
NA19240 10x 73× 4155776 GRCh38 (43)
CHM1 10x 40× 2758147 GRCh38 (44)
CHM13 10x 40× 2701721 GRCh38 (44)

LongRanger-compatible format using the stlfr2supernova
pipeline. After these steps, LongRanger BAM files can be
used in the Novel-X pipeline directly.

We aimed to run every tool on every dataset, but
we were faced with certain limitations. NUI-pipeline and
SuperNova/Paftools require whole-genome assembly made
by SuperNova, which is a diploid assembler. Therefore, they
do not work with our CHM1 or CHM13 haploid datasets.
The short-read tool Pamir is not designed to handle se-
quencing data in which the two ends of paired-end reads
have different lengths. This is because the mrsFast aligner
used inside Pamir requires both ends to be of the same
length. In Tell-Seq and 10x data, the ends often have differ-
ent lengths, so only stLFR technology provides paired reads
with equal length ends. In order to run Pamir on additional
datasets, and match the synthetic long-read dataset cover-
age for CHM1 and CHM13 genomes (50×) to WGS dataset
coverage, we downsampled the synthetic long-read datasets
at a rate of 0.8, therefore all data that we use have 40×
coverage. After examining Pamir’s results on these datasets,
we decided not to match NA19240, NA12878 and HG002
datasets because results were much worse than Novel-X,
NUI and SuperNova for all processed datasets.

In order to validate calls, we matched them against cor-
responding long-read and the GIAB integrated SV callsets,
that were previously published (see Table 2 for references).
These callsets include all types of SVs, while Novel-X,
PopIns2, NUI and Pamir call only unique NRS insertions.

In order to filter other insertion calls such as repeat in-
sertions from the SMRT-SV callset, for each sample, we
aligned the unaligned portion of the reads from bam-file
to SMRT-SV insertion sequences and kept only insertions
with an average coverage of ≥20× and 85% of covered
bases.

The comparison results of different tools on the nine
chosen datasets are presented in Figure 4. Our results
show that Novel-X achieves better recall and precision
on 10x datasets, except NA19240-10x. For the NA19240-
10x dataset, compared with SuperNova/Paftools, Novel-
X achieved a slightly better precision (59% versus 56%),
but a slightly lower recall (37.0% versus 37.4%). For
Tell-Seq and stLFR datasets, Novel-X achieved signifi-
cantly higher precision compared with other tools, while
SuperNova/Paftools and NUI-pipeline achieved a better
recall. Here we conclude that Novel-X is the tool of choice if
downstream application demands higher precision. Novel-
X performs differently on different synthetic long-read tech-
nologies. The 10x platform results typically have a higher
recall but a lower precision compared with Tell-Seq and
stLFR platforms.

We present comparison results of different tools in more
detail in Supplementary Table S3, which includes NRS
insertion length breakdown. We were also interested in
whether insertions that were called are repetitive or not. In
order to test this hypothesis, we compared benchmark re-
sults against non-filtered validation sets. The comparison
against non-filtered datasets is presented in Supplementary
Table S4. These results show that the majority of insertions
that were called by NUI-pipeline were not unique. Novel-
X, Pamir, PopIns2 and SuperNova/Paftools also increased
their precision up to 40% due to insertions that are repeti-
tive. This fact hints that most of the unmatched called inser-
tions are real, though repetitive. After we relaxed the NRS
insertion length condition, we found that an additional 15–
30% PopIns2 calls have correct insertion positions. How-
ever, the reported length of insertions and therefore content
is usually incorrect, significantly lowering both the precision
and recall in our benchmarks.

We also performed additional experiments on the
CHM1-10x dataset that allowed us to orthogonally confirm
our results and analyze sequence content around NRSs. We



PAGE 7 OF 11 Nucleic Acids Research, 2022, Vol. 50, No. 18 e108

Figure 4. Benchmark overview. Results show that Novel-X consistently has higher precision regardless of the technology used. Supernova/Paftools and
NUI have the highest recall on different datasets. For 10x datasets Novel-X performance is strictly better compared wit other tools, while Tell-Seq and
stLFR datasets show example of a trade-off where Novel-X has the best precision but Supernova/Paftools and NUI have better recall on different datasets.
S/P refers to SuperNova/Paftools.

were interested in whether there were NRS locations in-
side repetitive regions. Novel insertion detection tools for
the short-read data produce anchors that are limited by the
short insertion size (e.g. only 300 bp for an anchor). Map-
ping such short sequences to repetitive regions is often a
challenging task that cannot be resolved unambiguously,
while longer anchor size can resolve this problem spanning
through the repetitive region. In order to show that inser-
tion sites are common inside repeats, we extracted the se-
quences of the regions 300 bp upstream and downstream
of insert sites from the CHM1-10x dataset and searched
these sequences for repeats using RepeatMasker (http://
www.repeatmasker.org). In total, from the callset produced
by Novel-X, 40 insertions were located in repetitive regions
of the reference genome. We confirmed these results using
UCSC mappability tracks. For k100 and k50 Umap Mul-
titrack, we found 24 and 93 insertions in repetitive regions.
PopIns2 and Pamir were able to call only one and three in-
sertions identified with k100 Umap Multitrack, respectively.

As an alternative way of validating our CHM13 inser-
tions, we compared the list of barcodes associated with ev-

ery insertion call with all the barcodes aligned to the vicin-
ity of the reported insertion breakpoint on the reference
genome. For each insertion breakpoint, we extracted bar-
codes in a 10 kbp window around it. We found that the bar-
code lists for the majority of the insertions are completely or
almost completely included in the corresponding barcode
list for their insertion sites. This fact gives additional sup-
port that our insertions are correctly placed on the reference
genome (see Supplementary Figure S2).

The CHM13 genome provides a unique opportunity to
check how well Novel-X calls align with whole-genome
assembly. We validated our Novel-X calls using the re-
cent T2T consortium (45) assembly (v2.0) of the CHM13
genome. To obtain this high-quality assembly, the T2T
Consortium used HiFi PacBio reads for the initial assem-
bly and ONT Ultra-Long reads for the polishing step. We
aligned this assembly to the GRCh38 reference genome
using Minimap2, extracted long insertions from the vcf
file and compared these insertions with Novel-X calls. We
found that 78% of Novel-X calls are confirmed with the T2T
assembly.

http://www.repeatmasker.org
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Finally, we also checked if Novel-X CHM1 NRSs over-
lap with known genes and their coding sequences. We com-
pared our reported breakpoint positions on the reference
with GENCODE annotation v.24 (46). A total of 111 out
of 226 insertions fall inside known gene sequences, but only
two of those fall into the exonic region of known protein-
coding genes. In these data, it appears that NRS insertions
may contain novel exons or important non-coding regions,
but they do not necessarily disrupt known exonic sequences.

Computational resource requirements

We measured Novel-X runtime and memory consumption
on Intel Xeon Gold 6230 2.1-3.9GHz processors using 32
cores on the HG002 GIAB genome using Snakemake inter-
nal tools. Novel-X took 22 h and the peak memory usage
was 246 Gb of RAM during assembly of unmapped reads.
PopIns2 requires only 2 h 15 min to finish, with a peak
memory of 119 Gb. While the Novel-X approach runs more
slowly than existing short-read methods (e.g. PopIns2), it is
able to find substantially more novel insertions confirmed
with PacBio data. An alternative is to use whole-genome
assembly (such as NUI or SuperNova/Paftools). However,
whole-genome assembly requires significantly more com-
putational resources than Novel-X. SuperNova assembly
of the HG002 dataset itself with the same parameters re-
quires 107 h with a peak memory of 373 Gb. Later steps
of NUI and the SuperNova/Paftools pipeline require ad-
ditional running time, though they are incomparably faster
than genome assembly.

Novel-X enables discovery of novel insertions in a diverse co-
hort

We ran our method on 68 whole-genome SLR datasets
from diverse human populations. These samples are
originally a part of the HapMap and 1000 Genomes
Projects. Populations include Caucasian (1 sample),
Finnish (1), Italy/Toscani (1), Southern Han Chinese
(2), Han Chinese (8), Japanese (9), Puerto Rican (1),
USA/Mexican (1), Utah/Mormon (20), USA/African
(5) and Yoruba/Nigerian (19 samples). The samples were
prepared on the 10x Genomics Chromium platform and
Illumina sequenced on HiSeq 4000 systems as part of the
Polaris PGx cohort. Note that they are also among the
samples from the Centers for Disease Control and Preven-
tion’s Genetic Testing Reference Materials Coordination
Program (GeT-RM) and were previously characterized for
clinically important mutations (47).

Novel-X found 16 691 insertion events larger than 300 bp
across all genomes, with the longest insertion length of
85 908 bp and a total length of 18.2 Mb. Chromosome
2 contained the largest number of insertions (2749), fol-
lowed by chromosome 1 with 2442 insertions. We removed
short contigs of < 300 bp in length for downstream anal-
ysis and divided the genome into 10 kbp bins. Insertion
spots falling into the same 10 kbp bins were identified as
the same unique insertion site (UIS). Accordingly, across
all samples, we have 16 691 insertions in total, distributed
among 2405 UISs. An overview of population-specific UIS
locations is shown in Figure 5. Samples were projected into

Figure 5. 3D UMAP projection of insertion sites for each sample, colored
by ancestry group. Left: all samples. Right: only samples from Asian and
African ancestry groups. UMAP projection shows a clear separation be-
tween the two ancestry groups.

Figure 6. Distribution of numbers of unique insertion sites for each popu-
lation. The x-axis denotes populations, while the y-axis shows the number
of unique insertion sites for all samples in each population.

3D UMAP space based on their UISs. The panel on the
left shows the projection of all samples colored by popu-
lations, while the panel on the right specifically compares
African and Asian populations. Novel-X was able to iden-
tify population-specific insertions. For each insertion, we
further calculated the percentage of samples in each ances-
try in which the insertions occur. Insertions which occur in
< 80% of samples in one ancestry group are filtered out.
Then for each frequent insertion, we count the number of
ancestries in which it arises. Insertions that occur in a spe-
cific ancestry group were marked as ancestry-unique inser-
tions. For example, insertion on chromosome 4, in the 156
847 000–156 848 000 region occurred in most of the sam-
ples of African ancestry, but in none of the other samples.
A list of 237 ancestry-unique insertions is available in Sup-
plementary Table S5.

The distribution of UIS counts for all samples in each
population is shown in Figure 6. The Japanese population
in our cohort has an average highest number of UISs, while
the largest variance in the number of UISs was observed in
the USA/African population. Different samples may share
the same insertion sites, and an accumulative number of
UISs identified by all samples is shown in Figure 7. Samples
are ranked with a decreasing number of UISs. As more sam-
ples were included, the number of UISs observed plateaued.

Previously, we have shown that synthetic long reads allow
us to place more contigs into the reference genome. Inserted
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Figure 7. Accumulative number of unique insertion sites by including
more samples. Samples are shown on the x-axis ranked by the descending
order of number of unique insertion sites. Colors represent the population
category of each sample.

contigs are identified by Novel-X, with the distribution of
contig length shown in Supplementary Figure S3. Inser-
tions in chromosomes 3, X and 21 show longer sequences,
with an average length of 1641, 2021 and 3093 bp, respec-
tively. Anchor length distribution is also shown in Supple-
mentary Figure S3, with a median length of 1601 bp.

To further understand the biological effects of insertions,
we annotated all insertion loci using SnpEff v4.3T (48), and
checked whether the insertions overlap with coding regions
and known genes. For each insertion, a putative impact
was calculated to measure the level of disruption. There are
four categories of impact: high, moderate, low and modifier.
High impact refers to variants that have a disruptive impact
on the protein, possibly causing protein truncation, or loss
of function. The moderate effect refers to a non-disruptive
variant that may change protein effectiveness. Low impact
refers to variants that are mostly harmless, while modifiers
refer to variants affecting non-coding genes or with no evi-
dence for impact. As we expected, the majority of insertions
would have only low to modifier effects. Among 7490 inser-
tions which fall into the transcript region, 7238 of them have
a modifier effect, while only 182 have a high impact. Among
the genes located in the region with high impact insertions,
29 of them were predicted as frameshift or stop codons in-
troduced by the insertion.

We also compared these highly disruptive insertions with
insertion hotspots (see Figure 8; Supplementary Figure S4),
and identified four highly disrupted genes overlapping with
insertion hotspots as we have defined above (≥30 samples
with insertion around the hotspot). They are ZP4 from
Chr1, RNPEPL1 from Chr2, TH from Chr11 and OGFR
from Chr20. As an example, in Supplementary Figure S5,
we show the effect on RNPEPL1.

DISCUSSION

We have described a novel strategy for assembly of multi-
ple barcodes originating from the same genomic loci. This
strategy has the potential to be used in the assembly of other
classes of complex SVs and we are planning to explore this
in future work. Such a strategy greatly decreases the com-
plexity of genomic loci assembly even with a complex repeat

Figure 8. Fraction of samples in each population with highly disruptive
gene insertions.

composition because these repeats can be distinguished us-
ing the encoded barcode information.

One of the problems we faced during development of our
method was the choice of an assembler. Most of the al-
gorithms that use assembly-based techniques employ Vel-
vet (34) as the assembler of choice. We also used Velvet for
this study because it is a reliable and conservative choice.
Note that SuperNova 2.1, a newer release of the original
SuperNova software developed by a team at 10x Genomics
(9), can also be an alternative choice. In the case of Su-
perNova assembler, however, the user has no control over
any assembler parameters, and default parameters are max-
imally tuned for whole human genome diploid assembly.
From our experience with SuperNova with default param-
eters, we believe that some viable novel insertion candidates
were dropped during the assembly phase due to low cover-
age. A future direction would be to develop a specific local
assembler designed for SV detection tasks in synthetic long-
read data.

Note that, while our analysis focuses on insertions longer
than 300 bp, our method can indeed detect and report
smaller insertions too (i.e. in the 50–300 bp range). How-
ever, for such small insertions, we do not recommend Novel-
X because the long-range information used in Novel-X
would not be helpful. In order to successfully assemble a
novel insertion, Novel-X needs a substantial number of dis-
tinct barcodes to be associated with it. For small insertions,
the number of associated barcodes is usually small and the
coverage is not sufficient for a successful anchor assem-
bly. Given the current read length and short fragment sizes
of standard Illumina sequencing, short-read techniques al-
ready have good performances for detecting these small
events.

We applied our method to the Polaris HiSeq 4000 PGx
10x Genomics cohort and demonstrated that Novel-X en-
ables large-scale discoveries. Our results can be used as a
resource for the broader genomics community. We are plan-
ning to use Novel-X in other large-scale projects in the near
future. There are already thousands of genomes sequenced
on synthetic long-read platforms including a large cohort
the InPSYght Consortium that can be screened using our
method.
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DATA AVAILABILITY

The source code is freely available at https://github.com/
1dayac/novel insertions. The supplementary data including
VCFs that were used for benchmarks are available at https:
//github.com/1dayac/novel insertions supplementary. In-
structions on how to run the comparisons are available in
Supplementary text B: ‘Supplementary repository’.

The Polaris HiSeq 4000 PGx 10x Genomics Cohort can
be obtained from NCBI SRA (Accession: PRJEB26950
ID: 474329). A link to these data is also available at
the Polaris project GitHub repository: https://github.com/
Illumina/Polaris/wiki/HiSeqX-PGx-Cohort. The CHM1,
CHM13, NA12878, NA19240 and HG002 genomes can
be downloaded from https://support.10xgenomics.com/de-
novo-assembly/datasets. CHM1 and CHM13 WGS Il-
lumina data are available through ERX1413366 and
ERX1413367 SRA accessions, respectively.

CHM1 and CHM13 callsets can be downloaded
from http://eichlerlab.gs.washington.edu/publications/
Huddleston2016/structural variants/. The NA19240
callset can be download from http://www-rcf.usc.edu/∼
mchaisso/hgsvg/CombinedVCFs/NA19240.sv calls.vcf.gz.
The NA12878 callset can be download from
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/
NA12878 PacBio MtSinai/. The HG002 callset can be
downloaded at ftp://ftp-trace.ncbi.nlm.nih.gov/giab/
ftp/release/AshkenazimTrio/HG002 NA24385 son/
NIST SV v0.6/. The CHM13 T2T assembly v2.0.
used for CHM13 calls validation can be found at
https://github.com/nanopore-wgs-consortium/chm13.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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