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Abstract: Momordica charantia L. (Cucurbitaceae) is a plant known in Brazil as “melão de São Cae-
tano”, which has been related to many therapeutic applications in folk medicine. Herein, we describe
antibacterial activities and related metabolites for an extract and fractions obtained from the leaves of
that species. An ethanolic extract and its three fractions were used to perform in vitro antibacterial
assays. In addition, liquid chromatography coupled to mass spectrometry and the molecular net-
working approach were used for the metabolite annotation process. Overall, 25 compounds were
annotated in the ethanolic extract from M. charantia leaves, including flavones, terpenes, organic
acids, and inositol pyrophosphate derivatives. The ethanolic extract exhibited low activity against
Proteus mirabilis (MIC 312.5 µg·mL−1) and Klebsiella pneumoniae (MIC 625 µg·mL−1). The ethyl acetate
phase showed interesting antibacterial activity (MIC 156.2 µg·mL−1) against Klebsiella pneumoniae,
and it was well justified by the high content of glycosylated flavones. Therefore, based on the ethyl
acetate phase antibacterial result, we suggest that M. charantia leaves could be considered as an
alternative antibacterial source against K. pneumoniae and can serve as a pillar for future studies as
well as pharmacological application against the bacteria.

Keywords: glycosylated flavones; molecular networking; dereplication; antibacterial activity

1. Introduction

Clinical infections caused by resistant bacteria have become a major public health
concern worldwide, and approximately 700,000 deaths per year are caused by this type of
bacteria [1]. It is estimated that by 2050, there will be more than 10 million deaths/year
credited to ‘superbugs’, with the expectation of the highest rate being reported in developing
countries [2]. The demand for new antimicrobial agents has been growing at the same time
as the discovery and advancement of multi-resistant bacteria. Therefore, researchers have
been focusing a great effort on the search for new therapeutic alternatives against multidrug-
resistant bacteria [3]. In this sense, plant derivatives appear as potential sources of new
drugs that act in different ways to deactivate or block the growth of such pathogens [4].
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The Cucurbitaceae family includes several species widely distributed throughout
the tropical and subtropical regions. There are antimicrobial activities associated with
crude extracts and isolated metabolites of species from this family [5]. Among the species,
Momordica charantia L., popularly known as “melão de São Caetano”, is considered an inva-
sive plant in Brazil and can be found in different places in the country. It is frequently grown
in orchards and coffee plantations, or even on fences and debris in abandoned land [6], and
is composed of compound classes such as terpenoids, saponins, and flavonoids [5,7]. This
species can be highlighted due to its antimicrobial [5], nutraceutical and inflammatory prop-
erties [8], as well as healing of gastric ulcers [9], rheumatism [10], and so on. In developing
countries, M. charantia has been employed in folk medicine for several other pharmacologi-
cal purposes, such as to treat toothache, diarrhea, furuncle, cancer, hypertension, obesity,
bacterial and viral infections, diabetes, pneumonia, and even AIDS [11–16].

Although the chemical characterization of such plants can lead to new pharmaceu-
ticals, it remains challenging due to the presence of several components with different
physical–chemical properties, including many in relatively small quantities [17]. Nuclear
magnetic resonance (NMR) techniques provide valuable structural information used for
structure characterization and therefore, provide unequivocal identification. Liquid chro-
matography coupled to mass spectrometry (LC-MS) plays a crucial role as it is compatible
with chromatographic techniques that allow the separation of compounds in the sample,
leading to a deeper investigation of the whole chemical content due to the high sensitiv-
ity of MS that can detect metabolites of picomole to femtomole levels in some cases [18].
Furthermore, MS allows the detection of metabolites as ions in the form of mass to charge
ratio (m/z) [19], and also allows the fragmentation of the ions at the gas phase by collision-
induced dissociation (CID), providing MS/MS spectra that contain valuable information
to contribute to annotation of the chemical structure [20]. It is worth mentioning that the
acquisition of scan spectra by mass spectrometry is fast, and a single chromatographic
run can provide thousands of MS spectra. Therefore, methods that allow a fast and easy
analysis of such data are welcome in this field.

In this context, molecular networking, a tool from the Global Natural Products Social
Molecular Networking (GNPS) [21] infrastructure, allows the visualization of MS/MS data
by organizing it by spectral similarity. This is a very effective strategy, especially because
establishing a similarity relationship provides organization into molecular families (usually
related chemical structures), and, therefore, finds related metabolites in the dataset even
in small amounts. GNPS also contains a spectral library of known compounds, and the
molecular networking allows automatic searches in the spectral library, which contributes to
speed up the dereplication of known compounds, a phytochemical approach that has been
widely used in recent decades, including the modest contribution of these authors [22–26],
and which is also unknown by recognition of the analogs into the molecular families.

Based on the antimicrobial potential already reported for M. charantia, this study de-
scribes the evaluation of in vitro antibacterial activity for the ethanolic extract and fractions
from the leaves of M. charantia. In addition, liquid chromatography coupled to high-
resolution mass spectrometry (LC-HRMS) analyses allowed the chemical characterization
of the samples.
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2. Materials and Methods
2.1. Botanical Material and Extraction

Leaves of M. charantia were collected in the municipality of Soure (0◦23′50′ ′ S and
49◦27′02′ ′ W), Marajó Island, PA, Brazil. The botanical material was incorporated (voucher:
MFS009218) in the Prof. Dr. Marlene Freitas da Silva (MFS) Herbarium of the State
University of Pará. Permission to access the Brazilian genetic patrimony was provided by
SISGEN (A695619).

The leaves were washed with water from the Direct-Q5 system (Millipore, Darmstadt,
Germany) and decontaminated with sodium hypochlorite solution (NaOCl, 0.1%) acquired
from Dinâmica (Jaraguá do Sul, SC, Brazil). The samples were dried in an air circulation
oven (Quimis, Brazil) at 45 ◦C until constant weight. The dry material was crushed in ball
mills up to a granulometry of 60 to 100 µm, obtaining 146.54 g. The mass was subjected
to extraction with 1 L of ethanol (Tedia, Fairfield, OH, USA) at room temperature for
24 h (2×), and 35.30 g of crude extract was obtained after the solvent evaporation process.
Thus, 1 g of ethanolic extract (EE) was mixed with a hydroalcoholic solution, consisting
of 60 mL of ultra-pure water, 20 mL of ethanol, and 1 mL of hydrochloric acid (Dinâmica,
Indaiatuba, SP, Brazil). The resulting solution was subjected to liquid – liquid partition
(LLP) to obtain the hexane (PhHex), ethyl acetate (PhEA), and hydroalcoholic (PhWOH)
phases, respectively.

2.2. Liquid Chromatography-High Resolution Mass Spectrometry Analysis

The analyses were performed on a Xevo G2-S QqTOF mass spectrometer (Waters Corp.,
Milford, MA, USA) equipped with a LockSpray source. The instrument was calibrated
with a mass of reference (leucine-enkephalin) utilized for accurate mass measurements.
MassLynx 4.1 software was used for system control and data acquisition. The samples were
analyzed in a BEH C18 column (Waters Corp.; 50 mm; 2.1 mm; 1.7 µm particle size) using
ultra-pure water (solvent A) and acetonitrile (solvent B), both containing 0.1% formic acid.
The column temperature was maintained at 40 ◦C. Linear gradient elution was performed
with a flow of 300 µL/min and 5 – 95% of solvent B in 20 min. The injection volume of the
samples was 5 µL. The mass spectra data were recorded in a negative ionization mode (ESI)
for a mass range from m/z 50 to 1200. The source temperature was set to 120 ◦C with a cone
gas flow of 50 L/h. The desolvation gas flow was set to 600 L/h at a temperature of 150 ◦C.
The capillary was set at 3.0 kV with cone voltage at 40 V. The settings of the data-dependent
acquisition (DDA) experiments were: centroid format, number of ions selected 5 (Top5
experiment), the normalized collision energy (NCE) was set to 10, 20, 30, 40 and 50, scan
rate of 0.5 sec, charge states of +1 and +2, tolerance window of ±0.2 Da and peak extract
window of 2 Da, tolerance of deisotope ± 3 Da, extraction tolerance of deisotope 6 Da.

2.3. Mass Spectrum Data Treatment

The raw files of the EE and PhEA acquired in the Xevo G2-S QTof mass spectrometer
(Waters Corp., Milford, MA, USA) were converted into mzML format using the software MS
Convert of the ProteoWizard package [27] and were processed with the software MZmine
2.53 version [28]. The limit for the detection of ions in negative mode at the MS1 level
was set at 1.0 × 103 and MS2 at 5.0 × 101. Chromatograms were constructed using ADAP
with a minimum group number of 3 and a minimum group intensity limit of 1.0 × 103, a
min highest intensity of 3.0 × 103, and an m/z tolerance of 10.0 ppm. The local minimum
search algorithm was used to deconvolve the chromatogram, with an m/z tolerance of 0.5
for the pairing of MS2 and 0.2 min for RT. Isotopes were detected using a peak window
with a tolerance of 10.0 ppm, an RT tolerance of 0.5 min, a maximum charge of 1. For peak
alignment, the tolerance of m/z 10 ppm was used, scores for m/z of 75 and 25 for RT with a
tolerance of 0.2 min. The resulting list was filtered to remove duplicates and lines with no
associated MS2 spectrum. Then, gap filling was used to fill in the gaps in the peak list. The
resultant files were exported using FBMN-GNPS.
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2.4. Molecular Networks

The molecular network was built from the mgf and CSV files exported from MZmine.
We used metadata to organize metabolite information according to the online workflow
(available online: https://ccms-ucsd.github.io/GNPSDocumentation/, accessed on 30
January 2022) available on the GNPS website (available online: http://gnps.ucsd.edu,
accessed on 8 July 2022) [21]. The tolerance of m/z for the precursor ion was adjusted to
0.02 Da and for fragment ion to 0.02 Da. Minimum cosine score above 0.5 and the minimum
number of fragment ions were fixed on 4. The spectra on the network were then searched
in the GNPS spectral libraries. The database spectra were filtered with a minimum cosine
score above 0.6 and a minimum of 4 fragment ions correspondence. The job is available
online at the link: https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=4890e08934bb433
4b8738a346c10e7c4, accessed on 8 July 2022. The results were visualized and organized
using Cytoscape version 3.8.2 (Seattle, WA, USA) [29]. Lastly, the correlation between PhEA
and bioactivity score of the metabolites was obtained from NPAnalyst [30].

2.5. In Vitro Antibacterial Assay

Three strains of bacteria were used to evaluate the potential of the extracts: Staphylo-
coccus aureus ATCC 25923, and Klebsiella pneumoniae ATCC 700603, provided by Instituto
Evandro Chagas, Pará State (Brazil) and the bacteria Proteus mirabilis LACEN 8/7 (human
isolated) provided by the Central Laboratory of Pará State collection. These microorgan-
isms were selected for being common pathogens that can infect humans, animals or plants.
The pure cultures were maintained by routine sub-culturing at one-week intervals in BHI
broth (Brain Heart Infusion, Kasvi, Spain), incubated at 37 ◦C, and spiked for 24 h for
their metabolic activation. The minimum inhibitory concentration (MIC) and minimum
bactericidal concentration (MBC) were conducted using a method approved by the Clinical
and Laboratory Standards Institute in 96-well microtitration plates [31].

2.6. Determination of Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal
Concentration (MBC)

The antimicrobial susceptibility test was conducted using a method approved by the
Clinical and Laboratory Standards Institute [31]. The tests were carried out with a stock
solution of 5 mg·mL−1 of the crude extract/phases using the successive dilution method
to obtain the concentrations from 2500 to 78.1 µg·mL−1. Ciprofloxacin (Medley, Brazil)
and vancomycin (1 mg·mL−1 each) were used as positive controls and BHI (Brain Heart
Infusion) culture medium was used as negative control.

A total of 5 mg of extract/phases was dissolved in 100 µL of DMSO (Neon, Brazil)
contained in Eppendorf tubes. Then, 900 µL of sterile BHI was added and stirred for better
homogenization. In a 96-well microtitration plate (KASVI, Brazil), 100 µL of BHI broth was
added to each well. Then, 100 µL of solution containing the samples was added to the first
well of each column.

In each well, 5 µL of the bacterial suspension (104 Colony Forming Unit CFU/mL
as required by CLSI) was inoculated and adjusted to 0.5 McFarland Standard scale and
then the plates were incubated at 37 ◦C for 24 h. The results were read by adding 10 µL of
TTC (2,3,5-triphenyltetrazolic chloride, NEON, Brazil). To prepare the dye, 0.2 g of TTC
was added to the penicillin type flask containing 10 mL of sterile distilled water. The final
solution showed a translucent color, and when in contact with environments where there
are microorganisms presents a red color.

The type of activity presented in each concentration (bacteriostatic or bactericidal) was
checked. In the cavities where there was no red color caused by the reaction of TTC with
the bacteria, 5 µL of the volume contained in the wells was (re) inoculated in a Petri dish
containing BHI agar culture medium and incubated at 37 ◦C for 24 h. Wells where bacteria
grew indicated a bacteriostatic effect at that concentration and wells without bacteria
indicated a bactericidal effect.

https://ccms-ucsd.github.io/GNPSDocumentation/
http://gnps.ucsd.edu
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=4890e08934bb4334b8738a346c10e7c4
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=4890e08934bb4334b8738a346c10e7c4
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3. Results and Discussion
3.1. Antibacterial Activity

The EE and the PhEA of M. charantia showed antimicrobial activity and, therefore,
they were selected to be analyzed by LC-MS/MS. Both positive controls of vancomycin
and ciprofloxacin had a MIC of 7.8 µg·mL−1. The EE demonstrated a good bactericidal
effect against Klebsiella pneumoniae and Proteus mirabilis. The PhEA stands out for pre-
senting the best result with a MIC of 156.2 µg·mL−1 for the K. pneumoniae, suggesting
that this presents bioactive substances, possibly the glycosylated flavones, responsible for
such activity (Table 1). We highlighted the bactericidal effect of Klebsiella Pneumonie, and
Proteus Mirabilis, both Gram-negative strains. The literature [32] reports that the cell wall
of Gram-negative bacteria acts as a barrier to a number of substances, including antibiotics.
However, recently it was confirmed that quercetin derivatives have strong antibacterial
action against Gram-negative bacteria [33], and the ethyl acetate phase (PhEA, see Table 1)
described in this study showed high content of quercetin (16) derivatives, i.e., quercetin-
O-sambubioside (4), quercetin-O-glucoside (6), quercetin-O-glucosyl-6′ ′-acetate (9), and
quercetin-O-acetylpentoside (13). MIC values < 100 µg·mL−1 are considered significant
antimicrobials; moderate inhibitors present MIC in the range of 100 to 625 µg·mL−1; and
inhibitors with MIC > 625 µg·mL−1 are considered weak [34]. In this sense, the ethyl acetate
phase showed moderate activity (Table 1) against K. pneumoniae (MIC of 156.2 µg·mL−1),
while the ethanolic extract showed moderate activity against P. mirabilis (312.5 µg·mL−1)
and weak activity against K. pneumoniae and S. aureus (625 µg·mL−1). We emphasize that the
MIC value against K. pneumoniae is in the range moderate–significant, which characterize
PhEA, a source of candidate inhibitors of important hospital bacteria.

Table 1. Bacteria growth behavior in the presence of the extract and phases at different concentrations.

Concentration
(µg·mL−1)

EE PhHex PhEA PhWOH EE PhHex PhEA PhWOH EE PhHex PhEA PhWOH

Klebsiella pneumoniae Proteus mirabilis Staphylococcus aureus

2500 = + = + = + − + − + − +
1250 = + = + = + + + − + + +
625 = + = + = + + + − + + +

312.5 + + = + = + + + + + + +
156.2 + + = + + + + + + + + +
78.1 + + + + + + + + + + + +
39.0 + + + + + + + + + + + +

Note: NP: natural product; EE: ethanolic extract; PhHex: hexane phase; PhEA: ethyl acetate phase; PhWOH:
hydroalcoholic phase; = bactericidal effect; − bacteriostatic effect; + not active.

In previous reports, antimicrobial activity for leaves, fruits and seeds was reported against
some clinically important bacteria [20]. The extract of the leaves showed the main results
of being a potent inhibitor for Staphylococcus aureus, moderate for Staphylococcus epidermidis
and weak for Candida albicans. Studies with extracts of the seed showed interesting activities
against Escherichia coli, Salmonella typhi, and Staphylococcus aureus, but less activity against
Pseudomonas aeruginosa [35].

3.2. Identification of Chemical Constituents

The total ion profiles of the EE and PhEA were recorded from 50 to 1200 Da in 20 min
(Figure 1). The molecular formulas, main fragment ions, and putative names are shown in
Table 2. A total of 32 major metabolites were detected in the EE. Of these, 25 compounds
were annotated in level 2 and 3 of identification according to MSI [36] based on HRMS
and MS/MS data and the literature; most of these compounds have well characterized
fragmentation (MS/MS) profiles [37].
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Table 2. The identified or tentatively identified compounds of ethanolic extract and ethyl acetate phase from Momordica charantia by LC-HRMS.

Peak Rt (Min) Molecular
Formula

[M − H]− (m/z) Main Product
Ions (MS/MS) Annotated Compound EE PhEA

Calculated Accurate Error (ppm)

1 0.42 C13H24O13 387.1139 387.1129 2.6 341, 278, 179 melibiose x -

2 1.63 C12H14O8 285.0610 285.0602 2.8 153 dihydrobenzoic acid pentose x x

3 3.23 C20H32O10
a 431.1917 a 431.1910 1.6 385.1856 [M − H]−, 223, 205,

163, 119, 113

hydroxy-2,4,4-trimethyl-3-(3-
oxobutyl)-2-cyclohexen-1-

one glucoside
x x

4 3.71 C26H28O16 595.1299 595.1306 1.2 445, 300, 272, 251, 191, 178 quercetin-O-sambubioside x x

5 3.97 C27H30O16 609.1456 609.1458 0.3 463, 301 rutin x x

6 4.08 C21H20O12 463.0877 463.0869 1.7 301, 271, 179 quercetin-O-glucoside x x

7 4.14 C26H28O15 579.1350 579.1348 0.3 463, 399, 327, 285, 151, 109 kaempferol-O-glucoside-O-
pentoside x -

8 4.39 C27H30O15 593.1506 593.1511 0.8 547, 447, 357, 327, 285 luteolin-O-rutinoside x x

9 4.37 C23H22O13 505.0982 505.0980 0.4 300, 271, 255, 243, 178, 151 quercetin-O-glucosyl-6′ ′-
acetate x x

10 4.53 C21H20O11 447.0927 447.0926 0.2 327, 284, 255, 227 kaempferol-O-glucoside x x

11 4.65 C7H6O3 137.0239 137.0228 8.0 93 4-hydroxybenzoic acid x -

12 4.67 C22H22O12 477.1033 477.1035 0.4 431, 357, 315, 300, 285, 271,
151 isorhamnetin-O-glucoside x -

13 4.87 C23H22O12 489.1038 489.1033 1.0 285, 255, 227 quercetin-O-acetylpentoside x x

14 4.98 C20H34O9
a 417.2125 a 417.2113 2.9 371.2052 [M − H]−, 209, 161, icariside B6 x x

15 5.66 C18H32O7 359.2070 359.2061 2.5 343, 305, 287, 239, 227, 209,
197, 171 unknown x -

16 5.77 C15H10O7 301.0348 301.0341 2.3 273, 245, 193, 179, 151, 121 quercetin x x

17 7.14 C18H32O5 327.2171 327.2162 2.7 291, 229, 171 trihydroxy octadeca-
dienoic acid isomer x x

18 7.24 C18H32O5 327.2171 327.2160 3.3 291, 229, 171 trihydroxy octadeca-
dienoic acid isomer x x
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Table 2. Cont.

Peak Rt (Min) Molecular
Formula

[M − H]− (m/z) Main Product
Ions (MS/MS) Annotated Compound EE PhEA

Calculated Accurate Error (ppm)

19 7.64 C18H34O5 329.2328 329.2320 2.4 211, 171 trihydroxy octadecenoic acid x x

20 8.38 C37H60O11 679.4057 a 679.4053 0.6 633.3994 [M − H]−, 285 momordicoside L isomer x -

21 8.58 C18H28O4 307.1909 307.1903 2.0 289, 267, 235, 209, 185 unknown x -

22 9.06 C39H60O13
a 735.3956 a 735.3963 0.9 689.3918 [M − H]−, 667, 599,

527, 339
hederagenin base-2H + 1O,

O-AcetylHex x -

23 9.74 C39H62O12 721.4163 721.4156 1.0 675 [M − H]−, 633, 513, 275,
193 hederagenin-O-AcetylHex x -

24 9.18 C18H26O4 305.1753 305.1746 2.3 287, 249, 207 unknown x -

25 9.37 C37H60O11
a 679.4057 a 679.4060 0.4 633.4015 [M − H]−, 575, 549,

471, 343 momordicoside L isomer x -

26 9.92 C46H56O6 703.3999 703.4061 0.6 659, 633, 597, 482, 350 unknown x -

27 10.0 C30H60O16
a 675.3803 a 675.3735 10 629.3677 [M − H]−, 569, 467,

447, 339, 297 triterpene glycosides derivative x x

28 10.4 C37H60O11
a 679.4057 a 679.4052 0.7 633.4084 [M − H]−, 530, 339,

291, 137 momordicoside L isomer x -

29 11.51 C18H29O3 293.2117 293.2109 2.7 275, 235, 183, 121 unknown x -

30 11.56 C28H62O21 733.3705 733.3729 3.3 689, 554, 412, 364, 259, 175 unknown x -

31 12.0 C36H54O10 645.3639 645.3639 0.0 601, 559, 513, 407, 339, 243,
168, 127 unknown x -

32 14.9 C32H44O9 571.2907 571.2882 4.4 525, 481, 391, 325, 315, 255,
241, 153

1-Hexadecanoyl-sn-glycero-3-
phospho-(1′-myo-inositol)

isomer
x -

Note: a [M + HCOOH − H]−; EE: ethanolic extract; PhEA: phase ethyl acetate; x: presence; -: absent.
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3.3. Molecular Networking (GNPS Annotation)

The molecular networking created with EE and PhEA showed 224 parent ions after
removing the blank. Seven compounds (6, 7, 8, 10, 12, 23 and 32) including isomers were
annotated based on MS2 data available in the GNPS spectral libraries. A family of flavones
was reported, and the structure of the compounds is shown in Figure 2.
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The peak 6 [M − H]− of m/z 463.0869 with the main fragments m/z 301, 271, and 179
was annotated as quercetin-O-glucoside. The loss of the sugar unit [(M − H) − H2O]−

explains the fragment of m/z 301. However, the position of the hydroxyl groups in ring B,
as well as the glycosyl moiety, cannot be confirmed with only MS/MS data. The loss of H2O
following CO [(M − H) − H2O − CO]− justifies the m/z 271 [39]; lastly, the loss of C7H6O2
on the B ring by retrocyclisation [39] explains the fragment of m/z 179. The peak 7 [M − H]−

of m/z 579.1355 was annotated as kaempferol O-glucoside-O-pentoside (product ions: m/z
463, 399, 327, 285, 151, 109). The losses of C5H8O3 [(M − H) − C5H8O3]− and C7H16O5
[(M − H) − C5H8O3]− confirm the presence of two sugar units in the molecule, however,
as discussed before, the positions of the sugar moieties cannot be certainly confirmed.
Furthermore, characteristic fission from sugars (0,2 X1 mechanism) [40] suggests the m/z 327,
the ion of m/z 285, occurs by losses of two sugar units, and the loss of C8H6O2 referred to
the C ring [(M − H) − C8H6O2]− explains the ion of m/z 151. The base structure coumarin
is identified by loss of C9H4O4 to the B ring [(M − H) − C9H4O4]− characterizing the
fragment of m/z 109. The peak 8 [M − H]− of m/z 593.15 was annotated as luteolin-O-
rutinoside and this molecule showed main fragments of m/z 547, 447, 357, 327, 285. The
loss of C2H6O is very common in glycosylated flavones [41], which explains the fragment
of m/z 547. In addition, from m/z 593 to 447 loss of C6H10O4 [(M − H) − 146]− occurs
and from m/z 447 to 285 loss of another sugar unit occurs. Lastly, m/z 285 is confirmed
as the aglycone peak. The other fragments are very well discussed in the literature [40];
losses of C3H6O3 [(M – H) − 146 − 90]− and CH2O [(M − H) − 146 − 90 − 30]− suggested
the ions of m/z 357 and 327, respectively. The peak 10 [(M − H)]− of m/z 447.0926 was
annotated as kaempferol-O-glucoside and the fragments of m/z 327, 284, 255, and 227
are very well discussed in the literature [39,42]. In summary, fission of kind 0,2 X1 occurs
in the glycoside to the ion m/z 327, then, the aglycone (m/z 284) is confirmed by radical
cleavage [3Y0 − H]− followed by a loss of CH2O [3Y0 – CH2O]− and CO [3Y0 − CH2O
− CO]− to the fragments of m/z 255 and 227. The peak 12 [M − H]− of m/z 477.1035 was
annotated as isorhamnetin-O-glucoside. The loss of C2H6O in the glucoside [41] explains
the ion m/z 431 [(M − H) − 46]− and the 0,2 X1 mechanism confirms the loss of C4H8O4
[(M − H) − 120]− to the ion of m/z 357. The loss of glucoside occurs as m/z 315 [(M − H) −
C6H10O5]− followed by loss of radical CH3 from m/z 315 [(M − H) − C6H10O5 − CH3]•−.
Aglycone corresponds to the ion of m/z 285; ion of m/z 271 was formed by a loss of CO2 [(M
− H) − C6H10O5 − CO2]− and retro-Diels-Alder (RDA) from m/z 151 [43,44].

The peak 32 [M−H]− of m/z 571.2882 was characterized as 1-hexadecanoyl-sn-glycero-
3-phospho-(1′-myo-inositol), an important inositol pyrophosphates derivative present
in plants as a signaling metabolite [45–47]. While information about this new class of
molecules in plants is still scarce, the enzymes responsible for their synthesis have recently
been elucidated [48]. In this sense, 32 is being reported for the first time in the genus.
Despite the report of some sulfur-derived compounds in the M. charantia sample [49], they
were not observed in this work.

A molecular family of glycosylated terpene derivatives (Figure 3) was detected in the
EE. The ion of m/z 385.1856 is referent from peak 3, identified as hydroxy-2,4,4-trimethyl-3-
(3-oxobutyl)-2-cyclohexen-1-one glucoside, and the pathway of fragmentation has been
shown in previous reports [50]. The fragmentation of the ion m/z 385 generated an ion
at m/z 223, which refers to a neutral loss of a glycoside [(M − H) − 162]−. A loss of
H2O indicates the ion m/z 205 followed by losses C2H2O and C3H8 suggesting the ions
of m/z 163 [(M − H) − 42]− and 119 [(M − H) − 42 − 44]−, respectively. Lastly, m/z 113
is explained by ring fission and loss of C7H10O [(M − H) − 110]−. This compound is
included in the monoterpenes class and derivatives already reported in the literature from
the Cucurbitaceae family [51].
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clusters in ethanolic extract using MS/MS in negative ionization mode.

According to Figure 2, the compounds 3, 22, 25, and 27 showed the presence of gly-
coside. In this sense, following the chemosystematic from the genus, for example, the
compound 25 was characterized as momordicoside L isomer, a cucurbitane-type triter-
penoid already reported for the species [52]. According to the literature [52], the most
intense product ion of m/z 471 corresponds to the aglycone after the loss of glycoside [(M −
H) − Glc]−, and in addition a loss of C3H6O (propan-2-one) in C-5 characterized the ion
of m/z 575 [(M − H) − 58]− following loss of C2H2 to the fragment of m/z 549. Lastly, the
ion of m/z 343 occurs by loss of C8H16O [(M − H) − Glc − 128]− from the aglycone. Fur-
thermore, this highlights that the cucurbitane is related to the genus [53,54] and confirms
the chemosystematic possibility that this study has found an isomer of momordicoside L.
The peak 22 showed a match in the GNPS library and it was annotated as hederagenin
base-2H + 1O, O-AcetylHex. Peak 27 was suggested as a triterpene glycoside derivative,
and we believe it has the same base structure of momordicoside L based on the molecular
network. Furthermore, compound 27 has a difference of 4 Da concerning momordicoside
L, suggesting two unsaturated bonds. Finally, the compound 23 [M − H]− of m/z 721.4172
was annotated as aederagenin-O-acetyl-hex.

3.4. Bioactivity and Structure

Previous studies reported that flavonoids have antimicrobial activity [55,56]. These
stand out even more because of their antibacterial properties, especially against strains
of Gram-negative bacteria, which are responsible for serious opportunistic infections and
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are resistant to common therapies. In this sense, the study of plants with high flavonoid
content should be highlighted [57]. Thus, our study focused on the ethyl acetate phase (MIC
156.2 µg·mL−1) against K. pneumoniae, which stands out for its ability to develop enzymatic
resistance mechanisms and is considered to be largely responsible for several infectious
diseases [58]. The PhEA proved to be rich in flavones, for instance quercetin-O-glucoside
(6) and luteolin-O-rutinoside (8) (Figure 4), which confirms the correlation of the observed
antimicrobial activity, as well the EE.
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Our chemical prospecting data summarize chemical constituents that have in common
a structural core of flavones, well known for a variety of activities [25]. Furthermore,
isolated flavonols such as quercetin and kaempferol already show promising results as
antimicrobials [59] as well against K. pneumoniae (MIC > 256 µg·mL−1) [60] and are the base
structures of the main protagonists of the PhEA in this study. We emphasize carefully that
the nominal results have a much more expressive value than many works given the same
biological answer; perhaps the answer may be even more significant if the studies aim at
obtaining isolated compounds. However, we emphasize that the rapid annotation provided
using the LC-MS/MS technique does not require isolation, but shows an understanding
of the active extension of the extract, directing more objective studies to that specific
class. In addition, the literature [61] treats enriched phases as the main drivers for more
specific studies, not to reach the main compounds responsible for the activity but to exclude
those who may be acting as deterrents of the activity. In this sense, we are not being
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categorical in pointing only to these substances as active, but we are presenting a more
interference-free sample.

4. Conclusions

This study showed the extract and phase ethyl acetate from M. Charantia leaves as an
antibacterial agent. A total of 32 major compounds were detected, and, of these, 25 were
annotated based on mass spectrometry data. Compounds including flavones, terpenes,
organic acids, and inositol pyrophosphate derivatives are reported for the first time for
the genus Momordica. The ethanolic extract exhibited low activity against Proteus mirabilis
and Klebsiella pneumoniae. However, the phase ethyl acetate enriched with flavones showed
interesting antibacterial inhibition against K. pneumoniae. Hence, we show that the leaves
are a renewable antibacterial source and can serve as a pillar for future studies.
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