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Abstract: DNA replication can encounter blocking obstacles, leading to replication stress and genome
instability. There are several mechanisms for evading this blockade. One mechanism consists of
repriming ahead of the obstacles, creating a new starting point; in humans, PrimPol is responsible for
carrying out this task. PrimPol is a primase that operates in both the nucleus and mitochondria. In
contrast with conventional primases, PrimPol is a DNA primase able to initiate DNA synthesis de
novo using deoxynucleotides, discriminating against ribonucleotides. In vitro, PrimPol can act as a
DNA primase, elongating primers that PrimPol itself sythesizes, or as translesion synthesis (TLS)
DNA polymerase, elongating pre-existing primers across lesions. However, the lack of evidence for
PrimPol polymerase activity in vivo suggests that PrimPol only acts as a DNA primase. Here, we
provide a comprehensive review of human PrimPol covering its biochemical properties and structure,
in vivo function and regulation, and the processes that take place to fill the gap-containing lesion
that PrimPol leaves behind. Finally, we explore the available data on human PrimPol expression in
different tissues in physiological conditions and its role in cancer.
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1. Introduction: PrimPol, a New Enzyme Working on DNA Replication

In human cells, DNA replication is initiated by the primosome [1,2]. This latter consists
of a primase (composed of catalytic and regulatory subunits) and a DNA polymerase α
(also composed of catalytic and regulatory subunits). Primases start the synthesis by
catalyzing the formation of RNA primers, which are 8–9 nucleotides in length in both
strands (Figure 1A). This limited length is due to the continued interaction of the first 5′

ribonucleotide with the regulatory subunit, during the formation of the full primer and
its inherent conformational change; once the RNA primer is an 8/9-mer, it is transferred
to the other member of the primosome, Pol α (Figure 1B). This DNA polymerase is able
to elongate the small RNA primers with dNTPs, making longer and hybrid primers of 30
nucleotides with a 5′ portion of RNA and a 3′ portion of DNA (Figure 1C) [3–5]. This step is
required for the replicative DNA polymerases, which prefer to elongate DNA primers over
RNA primers (Figure 1D). DNA replication enzymes only synthetize in the 5′–3′ direction,
which implies an inherent asymmetry of this process. The semi-discontinuous model of
DNA replication [6,7] establishes that the leading-strand requires the priming event for the
primosome and elongation for the replicative DNA polymerase Pol ε (Figure 1A–D) [8,9].
However, the lagging-strand is synthesized discontinuously in small pieces, which are
initiated by the primosome (Figure 1E) and elongated by the replicative DNA polymerase
Pol δ (Figure 1F). Therefore, the primases, Pol α and Pol δ, are recurrently involved in
lagging-strand synthesis [9,10]. The fragments synthetized from the lagging-strand are
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called Okazaki fragments (Figure 1F,G) [11], and are subsequently joined to complete a
duplex DNA.
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Figure 1. DNA replication in human cells. Leading-strand: (A) The synthesis of DNA is initiated
on both strands by the primase (composed by the catalytic and regulatory subunits) catalyzing the
synthesis of RNA primers of 8–9 nucleotides in length. (B) The RNA primer is transferred to the
DNA polymerase Pol α (C) to elongate it with dNTPs, making primers composed of a 5′ portion
of RNA and a 3′ portion made of DNA. Primosome: primase + DNA polymerase α. (D) Then, the
replicative DNA polymerase Pol ε carries out the following elongation. Lagging-strand was (E)
synthesized discontinuously in small pieces initiated by the primosome and (F) elongated by the
replicative DNA polymerase Pol δ. (G) Okazaki fragments are synthetized in a recurrent manner
during lagging-strand synthesis.
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For many years, it has been accepted that the DNA replication of the leading strand
only required one unique and single priming event performed by the primosome [6].
This is formally true in the absence of obstacles in the elongation step by the replicative
DNA polymerase Pol ε. However, when obstacles arise and Pol ε stalls, a solution is
required to continue synthesis, repriming being one of these solutions. In human cells,
this latter is carried out by a single and specific DNA primase called PrimPol [12–15], an
enzyme discovered in 2013 that provides a more “ergonomic” solution compared with the
primosome.

2. Similarities and Differences among Polymerizing Enzymes of DNA Replication:
RNA Primases, DNA Polymerases, and PrimPol

RNA Primases, DNA polymerases, and PrimPol are enzymes that catalyze the same
chemical reaction: the nucleotidyl transferase reaction using a two-metal ion mecha-
nism [16]. This reaction is a nucleophilic substitution type 2 (SN2), in which the 3′OH
group attacks the α phosphorus of the incoming nucleotide, releasing a pyrophosphate
(phosphates β and γ of the incoming 3′ nucleotide) (Figure 2A,B) [17–21]. Nevertheless,
these three enzymes have the following particularities.
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α of the incoming nucleotide is attacked and the pyrophosphate composed of the phosphate β and γ
is the displaced group. However, (A) primases possess a pocket with a high positive charge (depicted
in blue) to capture the triphosphate of the nucleotide bound at the 5′ site, allowing the use of NTPs
as primers. The preference for a priming site is conferred by the stabilization of the 5′ nucleotide
by the preceding base in the template (called cryptic base), which is bound by a specific residue (in
purple). The positive charge pocket is absent in (B) DNA polymerases; therefore, NTPs cannot be
used at 5′site and require a pre-existent primer, such as a DNA primer similar to the primer depicted.
Moreover, DNA polymerases possess steric gate residues to discriminate the sugar of the 3′-incoming
nucleotide. These steric gate residues (depicted in pink) impose steric clashes to the 2′OH group of
incoming NTPs, blocking their binding, and thus favoring dNTPs. The tree carboxylates responsible
for coordinating the two metal ions are colored in red.

2.1. RNA Primases

RNA primases (classically called DNA primases) are classified in two major groups [22,23].
One group comprises bacterial and phage primases with a structural similarity to E. coli
DnaG primase; a second group comprises archaeal and eukaryotic primases (AEP), which
also includes the primases of viruses. Both groups differ in their structure and in the
relationship with other proteins at the replication fork. DnaG-like primases are associated
with the helicase, whereas canonical AEPs are associated with Pol α, as described above
for human cells. Nevertheless, both groups of primases perform a de novo synthesis of
small pieces of RNA. These RNA primers are initiated by the binding of two nucleoside
triphosphates that are selected by two bases in the ssDNA template, and then a dimer is
formed by the general nucleotidyl transferase reaction. Primases can use a single NTP as
the molecule that provides the attacking 3′OH group as these enzymes possess a pocket,
which contains a highly positive charge, to harbor the triphosphate of the nucleotide at the
5′ site (the priming site) [3,5] (Figure 2A). The efficiency of this initiating reaction is quite
low in comparison to normal polymerization [24]. To facilitate this limiting step, primases
recognize a neighboring base adjacent to the base that selects the 5′ nucleotide, which is
called the cryptic base (Figure 2A). In the case of the human RNA primase p49, the specific
Histidine303 interacts with the cryptic base making a “fake base pair” that stabilizes the
binding and selection of the 5′-nucleotide [3,5]. Moreover, these canonical RNA primases
improve their efficiency by using NTPs since they are a highly abundant substrate in cells
compared to dNTPs [22,23,25]. As explained above, the action of RNA primases takes
place at the beginning of replication on both leading and lagging strands and in a recurrent
manner on lagging strands for each Okazaki fragment, being fundamental for initiating the
synthesis. RNA primers catalyzed by canonical RNA primases can be easily and accurately
removed based on their RNA nature in further replication steps [26–28].

2.2. Polymerases

Conversely to RNA primases, DNA polymerases are not able to initiate de novo DNA
synthesis [29], as they need an elongating starting point different to the single nucleotide
that provides the first attacking 3′OH group. Therefore, DNA polymerases are only able
to catalyze elongation with dNTPS from DNA or RNA primers. Mostly, this 3′OH group
is provided to DNA polymerases by RNA primers made by RNA primases [3,5,30,31],
but also by specific amino acids in the so-called “priming proteins” [32]. This group can
also be provided by a DNA end, as is the case in the nicks and gaps [33] or double-strand
breaks [34] (Figure 2B). This requirement is explained by the lack of polymerases in the
positive-charged pocket, which harbor the triphosphate of the nucleotide at the 5′ site,
impeding the binding of these substrates at this position.

DNA polymerases, especially in the case of those that carry out the synthesis of the
bulk of DNA, discriminate in an efficient manner against the incorporation of NTPs due
to their potential hazards, as NMPs embedded in DNA can alter the helix and impair
its proper functions [35,36]. The structural basis for this discrimination is called “steric
gates”, which are usually formed by residues with bulky side chains, such as tryptophan or
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tyrosine, which impede the entrance of NTPs into the active site by steric clashing with the 2′

hydroxyl group (2′OH) [37,38] (depicted in Figure 2B). Nevertheless, even considering the
efficiency of this step, the exclusive use of dNTPs by DNA polymerases is not guaranteed,
mainly due to the low abundance in cells of dNTPs compared to NTPs [39]. Recent
studies demonstrate that replicases, which are highly efficient in sugar discrimination
in vitro, incorporate NTPs at high rates in vivo (e.g., in the case of yeast Pol ε, around 1 per
1 kb) [40]. In fact, it was recently determined that, in general, ribonucleotides are the most
common incorrect nucleotides incorporated in DNA [41].

DNA polymerases are classified by their structure into different families. In human
cells, there are 16 different DNA polymerases that perform different functions, mainly
defined by their active site. Those who carry out the replicative task have a tight active
site, which allows only the base pair C:G or A:T to be harbored (Watson and Crick base
pairs). This fact implicates that replicative DNA polymerases perform a high-fidelity
synthesis since they only allow correct base pairing, rendering them unable to carry out non-
canonical reactions [29]. Replicative DNA polymerases such as Pol ε (leading-strand) and
Pol δ (lagging-strand) are highly accurate at copying DNA. In addition to a high insertion
fidelity, replicases have proofreading abilities, based on an evolutionarily conserved 3′-5′

exonuclease activity [42]. In human cells, the primosome component Pol α is the exception
of a replicative DNA polymerase with a lower fidelity, which lacks the proofreading [43]
that is apparently needed for its function in extending the RNA primers made by the
primase, since the proofreading ability could erase the primers before its elongation [44].
In any case, its insertion fidelity is enough for its limited participation in elongation;
moreover, it was shown that errors eventually made by Pol α may be removed by 3′-
5′exonuclease activity of Pol δwhen the synthesis is continued [45] or by the DNA mismatch
repair pathway [46,47]. Moreover, Pol α DNA initiators are partially removed during the
Okazaki fragment maturation, a process in which the strand displacement activity of
Pol δ [48,49] is involved. Other proteins such as FEN1, DNA2 and DNA ligase [49–51]
also participate. Considering all three of these processes, it is estimated that the final
contribution of Pol α in DNA synthesis is 1.5% of the genome [52]. Mutations that alter the
nucleotide misincorporation or proofreading abilities of Pol ε or Pol δ have been described
in multiple cancer types [53–55]. Accordingly, a genetically engineered mouse model with
a deficient Pol ε proofreading function, suffers an increase in mutation burden and cancer
incidence [56].

DNA polymerases that are able to cause trans-lesion synthesis (TLS) have a laxer
active site. TLS DNA polymerases, who normally carry out non-replicative functions [57],
are capable of carrying out this task, but with the detriment of having a more error-prone
action than the replicative polymerases; due to their open active sites, they can also harbor
non-Watson and Crick base pairs. Thus, once TLS polymerases make their contribution
tolerating the DNA damage, they must finish their function and be replaced by replicative
DNA polymerases in order to avoid higher rates of mutagenesis [29,58]. Human cells
have several TLS polymerases such as the Y-family members Pol η [59,60], Pol ι [61], Pol
κ [62,63] and Rev1 [64–66], the B-family member Pol ζ [67], X-family members Pol λ [68],
Pol µ [69,70] and A-family member Pol θ [71].

2.3. PrimPol

The most recently discovered polymerizing enzyme of human DNA replication is Prim-
Pol, a novel primase-polymerase that belongs to the archaea–eukaryotic primases (AEP)
superfamily and localizes in both mitochondria and the nucleus of human cells [12,72].
PrimPol is the first DNA primase characterized in human cells [12,72]; whereas the common
primases start the synthesis using ribonucleotides in both priming and elongation site (5′

and 3′ sites, respectively), PrimPol is able to start the synthesis using dNTPs at the elonga-
tion site discriminating against NTPs. In vitro, PrimPol can use both NTPs and dNTPs at
the 5′ nucleotide binding site (priming site); therefore, it is very likely that an NTP initiates
PrimPol-made primers in vivo due to the abundance of NTPs. Conversely, the second
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and next nucleotides of the primer made by PrimPol are made from dNTPs (Figure 3A).
Moreover, in vitro, PrimPol is able to elongate pre-existing primers with dNTPs acting as
DNA polymerase (Figure 3B). Recently published research determined that, when acting
as DNA polymerase, PrimPol is also able to carry out a gap filling reaction in vitro and
possesses strand displacement activity [73].
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this PrimPol trait is Tyr100 (Figure 4, left panel), which has been found to mutate in cancer. 
Notably, cancer-associated missense mutation Y100H unleashes PrimPol ability to use 
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Figure 3. In vitro and in vivo activities of the human PrimPol. (A) Primase activity of PrimPol.
(B) Polymerase activity of PrimPol. Both panels are broken down into polymerization with un-
damaged templates or damaged templates with both readable and non-readable lesions. Only the
primase activity of PrimPol was shown both in vitro and in vivo. Polymerase activities are shown
only in vitro and their relevance in vivo remains unclear. dNMPs are colored in blue, NTPs in green
and DNA lesions in red. G-quadruplex are depicted as G4 in red, the 8oxodG lesion is depicted as an
8 colored in red (readable lesion), and the abasic site is depicted as AP colored in red (non-readable
lesion). Asterisks indicate lesions.

PrimPol possesses a steric gate that discriminates against NTPs at the elongation (3′site)
site in both primase and polymerase activities, the same sugar discriminator element used
by DNA polymerases and explained earlier [74]. The residue that determines this PrimPol
trait is Tyr100 (Figure 4, left panel), which has been found to mutate in cancer. Notably,
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cancer-associated missense mutation Y100H unleashes PrimPol ability to use NTPs at the
elongation site by dismantling their steric gate (Figure 4, right panel) [74]. Moreover, Y100H
over-expression in PrimPol-deficient cells leads to an increased tolerance to depletion of
the dNTP pool levels in the S-phase using hydroxyurea [74]; this scenario is proposed as a
model for the early stages of tumorigenesis [75].
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PrimPol is also able to act as a TLS polymerase by directly reading lesions (Fig-
ure 3B) such as 8-Oxo-2′-deoxyguanosine (8oxodG), which can be copied both with dCTP
(error-free) or with dATP (error-prone) [12,74,76–80], O6-methylguanine (O6-me-G) [78],
5-formyluracil (fU) [78], 5-Methyl-2′-deoxycytidine (mC) [81], 5-hydroxymethyl-2′-cytidine
(hmC) [81] and 1,2-intrastrand cisplatin cross-link (1,2-GG CisPt CL) lesions [82]. In addi-
tion, PrimPol is capable of acting as TLS polymerase by realigning primers ahead of lesions
that cannot be read directly by this enzyme (Figure 3B), such as abasic sites (AP) [12,76,78]
and the UV-induced lesions: cyclobutane pyrimidine dimers (CPD; T = T) and (6–4) pp
photoproduct [13,76]. Nevertheless, these TLS DNA polymerase capabilities have only
been demonstrated in vitro. However, the PrimPol ability to prime downstream of a lesion
has only been demonstrated in vivo, which makes this enzyme the first DNA primase with
this function to be discovered [13]. PrimPol is able to catalyze the synthesis of de novo
primer downstream of a readable lesion or an unreadable lesion (Figure 3A). Considering
the in vitro abilities of PrimPol, it is probable that in vivo PrimPol uses its abilities to be
proficient as a DNA primase involved in restarting stalled replication forks. In summary,
PrimPol is a primase able to catalyze long DNA primers ahead of lesions with its regular
DNA primase activity. Yet, only in vitro, PrimPol is able to use its TLS capability when
polymerizing in two different ways: on the one hand, by directly reading lesions, such
as 8oxodG; and, on the other hand, by skipping non-readable lesions, such as AP sites,
realigning the nascent primer ahead to continue the synthesis (Figure 3B).

Traditionally, it has been speculated that the reason why PrimPol catalyzes the synthe-
sis of DNA primers could be easily explained by the fact that DNA primers are suitable
substrates for replicative DNA polymerases [74]. The fact that RNA primers catalyzed by
RNA primases are easily eliminated, minimizing mutagenesis during replication, while
DNA primers catalyzed by PrimPol, could be more difficult to be erased is also a matter of
discussion [74]. Thus, it has been suggested that this special feature of PrimPol is required
for its TLS polymerase activity [74].

3. PrimPol: A New Player Alleviating Replication Stress

DNA replication eventually faces obstacles that can block the replication fork, such as
base damages in the template, non-canonical structures or low availability of dNTPs. This
leads to replication stress, a major source of genome instability [83,84]. To minimize the
impact of replication stress, the DNA replication process has several ways to tolerate these
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problems. Among all of the pathways contributing to alleviate DNA replication stalling,
the simplest mechanism is repriming ahead of the obstacle, providing a new starting point
to the fork and allowing the replication to continue on its path [85–87]. Frequent repriming
naturally occurs on the lagging strand. The obstacles on this strand could compromise the
completion of a given Okazaki fragment, but not the synthesis of the recurrent new primers
that are coupled to the helicase action and fork advance [88] (Figure 5A). In other words,
it does not represent a setback that a given Okazaki fragment is blocked by an obstacle,
because another new Okazaki fragment is initiated ahead of the lesion. Therefore, obstacles
on the lagging strand have minimal impact in replication fork progression.
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(A) Obstacles (red asterisk) on the lagging strand are avoided by regular repriming. (B) Obstacles (red
asterisk) on the leading strand are avoided by different ways: fork reversal and PrimPol-mediated
repriming.
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On the leading strand, the intrinsic continuity of its replication requires the unsched-
uled activation of different mechanisms when an obstacle is found. One of the mechanisms
used to alleviate replisome stalling is fork reversal (FR) [89], catalyzed by several en-
zymes such as ZRANB3, HLTF, SMARCAL1, FBH1, RECQ1, RECQ5, BLM, WRN and
FANCM [89,90]. FR is characterized by the so-called “chicken foot” structure: a backwards
movement of the newly synthesized lagging strand, which melts from its template to
serve as an alternative template for the blocked leading strand, resuming fork progression
(Figure 5B). This pathway could also stabilize and protect the replication fork until other
mechanisms are activated to complete the synthesis of this DNA region, i.e., activating
a proximal replication origin [89,91], interstrand-crosslink (ICL) repair [92] or template
switch [91]. Nevertheless, several aspects about the enzymology and the mechanism of fork
reversal in vivo remain unknown. Anther mechanism used to alleviate replisome stalling is
repriming [85,88]. In human cells, PrimPol is the enzyme specialized in repriming at stalled
forks (Figure 5B), both in the nucleus [12,13,72] and mitochondria [12,93–95]. In vivo,
PrimPol uses its DNA primase activity to mediate a fork restart in response to different
replication obstacles such as UV lesions [13,96], G-quadruplexes (Figure 3A) [97], chain
terminating nucleotides [96] or R-loops [98]. Moreover, PrimPol promotes resistance to
several genotoxic external agents such as hydroxyurea (HU) [13,15,74,96], methylmethane
sulfonate (MMS) [96] tenofovir [99], enzo[a]pyrene diol epoxide (BPDE) [100,101], cis-
platin [96,102], or mitomycin C (MMC) [102]. Nevertheless, although PrimPol-mediated
repriming mechanisms on the leading strand are very suitable mechanisms for a fork restart,
the enzymology and mechanics of this proposed process are not yet well understood. Cis-
platin and MMC are agents responsible for generating DNA ICLs. PrimPol also facilitates
replication traverse of ICLs by priming downstream of the lesion [102] (Figure 6). Several
aspects about PrimPol-mediated replication traverse remain unknown. Furthermore, Prim-
Pol repriming is shown to be highly relevant in DNA replication even in the absence of
external disturbances [13], likely due to the endogenous obstacles encountered in the path
of DNA replication. The pathway choice in cells between fork reversal and repriming is
under study. In human BRCA1-deficient cells, the most frequent event to deal with single
cisplatin dose treatment is fork reversal, whereas this mechanism is replaced by PrimPol
repriming as an adaptive response to treatment with multiple doses of cisplatin [103]
(Figure 5B). In addition to this, the suppression of fork reversal triggers unrestrained DNA
replication, partially mediated by PrimPol [104], and promotes more repriming [105]. Al-
together, these data reveal that human cells prioritize fork reversal over repriming as the
initial response to DNA replication disturbance. However, PrimPol repriming activity is
key as an alternative mechanism to maintain DNA replication in certain circumstances,
such as the cumulative ICL induced by multiple cisplatin dose treatments. The fine-tuned
understanding of adaptive responses to DNA damage clearly hold a therapeutic value, as
they may lead to synthetic lethality strategies for cisplatin-resistant cancer cells.
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4. Structure and Regulation of Human PrimPol

Human PrimPol is composed of an AEP core that contains a single active site at
the N-terminal of the protein and a Zn finger [12,72], as well as an RPA binding domain
(RBD) at the C-terminal region (Figure 7A) [106]. A solution to the AEP core structure, in
complex with a DNA template/primer and incoming dNTP, was found in 2016 [107]. The
active site of PrimPol has the following conserved key residues (compiled in Figure 7A
and Table 1) that have been studied in vitro: the three conserved carboxylates D114, E116,
and D280, which are the residues that cause the covalent binding of the two-metal cations
used to carry out the above mentioned nucleotidyl transferase reaction [12,79,107]. Mn2+

is the preferred metal for PrimPol activities in vitro [12,77,79,108–110], despite having
lesser fidelity than with Mg2+ [77,109,110]. Mutations of the three carboxylates for alanine
erase primase and polymerase activities [12,79]. Interestingly, E116 plays a crucial role in
favoring the use of Mn2+ since the mutation E116D of PrimPol impairs this ability [79].
H169 [12,107] and R291 [107,111] are the key residues needed to stabilize the incoming
nucleotide. Mutation of R291 [111] to alanine highly impair primase and polymerase
activities. Y100 plays the abovementioned role as a “steric gate”, impeding the entrance
of ribonucleotides in the 3′position by clashing with their 2′-OH groups [74]. R47 and
R76 contact the DNA template, and their mutations to alanine highly impair PrimPol
activities [107,112]. The C-terminus of the protein, the structure of which has not yet been
determined, is essential for priming activity since its removal erases the primase activity,
while maintaining polymerase activity [13]. In this region, C419, H426, C446, and C451

residues coordinate with the covalent binding of Zn2+ of the Zn-finger domain [12,113].
Some of these residues are mutated in cancer (compiled in Genomic Data Commons
Data Portal, GDC [114] and Catalogue of Somatic Mutations in Cancer, COSMIC [115]
databases, Table 1), suggesting that these mutations alter the PrimPol function. In fact,
specific mutations found in tumors, such as R76H and R76C mutations, likely impair
PrimPol activity, as it has been previously shown for the Y100H mutation, which disables
the entrance of dNTPs in favor of NTPs [74].

Solving the structure of PrimPol has shed light on why this enzyme is able to directly
copy some lesions and not others. On one hand, the AEP core of the human PrimPol
structure was determined in complex with a DNA template containing 8oxodG, a lesion
readable by PrimPol. Moreover, the structure was determined in different experimental
conditions: in order to see the error-free and error-prone copying of the lesion, with a
primer and an incoming dCTP or dATP in front of 8oxodG [80]. These structures show
that the active site of PrimPol has a cleft that can harbor the 8oxodG lesion in the template
paired with both dCTP or dATP, without any impediment in both cases [80], in contrast
with the previous data showing that human PrimPol prefers dCTP over dATP for tolerating
8oxodG [77,78]. They discussed that this is most likely due to the pair 8oxodG/dCTP,
which is more thermodynamically stable than 8oxodG/dATP. Moreover, in order to see
8oxodG elongation once it is copied, the structure was also determined using a primer with
a final nucleotide of dCMP or dAMP, which was paired with 8oxodG at the template, and
an incoming nucleotide. This structure showed structural changes that make this extension
less favorable than elongating the primer termini with dCMP paired with 8oxodG [80], in
agreement with the previous studies [77]. Altogether, these structures showed that PrimPol
can directly copy 8oxodG as it is able to accommodate this lesion in its active site to be
copied and continue with the synthesis afterwards.
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Figure 7. Structure of human PrimPol. (A) Linear representation of the structure. AEP domain is
colored in blue and C-terminal region in light blue. In motifs (A–C) (which contain the carboxylates
used to coordinate the metals and the key histidine to stabilize the incoming nucleotide), the Zn finger
and the RPA binding domain (RBD) are highlighted. (B) Model structure obtained from AlphaFold
v2.0 protein structure database and modeled in complex with DNA template and 3′dNTP by software
fitting with PDB ID 7JKP, and 5′NTP by manual fitting with PDB ID: 7JKP. AEP domain is colored in
blue and C-terminal region in light blue, which contains the Zn-finger domain and RPA binding sites,
which are colored in black. The template is colored in orange, and 5′NTP and 3′dNTP are colored
with CPK code. The key residues are shown in sticks: D114, E116, and D280 colored in red, H169 in
purple, Y100 in dark purple, and R47, R76, R291, and R417 in blue. (C) Surface representation of the
PrimPol structure model showing in detail the 5′NTP pocket.
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Table 1. Key residues of human PrimPol. Function, activity and cancer-related mutations compiled
in COSMIC or GDC databases are indicated. Residues frequently mutated in cancer are indicated by
an asterisk. The AEP domain is colored in blue and C-terminal region in light blue.

Residue Function Activity Involved [Ref.] Somatic Mutations in Cancer
(COSMIC Database)

R47 Contact the DNA template Primase/polymerase
[107,112] -

*R76 Contact the DNA template Primase/polymerase
[107,112] R76H and R76C

Y100 Steric gate (sugar selector) Primase/polymerase [74] Y100H

D114 Cation ligand (Mn2+ or Mg2+)
Primase/polymerase

[12,79,107] -

E116 Cation ligand (Mn2+ or Mg2+)
Primase/polymerase

[12,79,107] -

H169 Stabilize the 3´ nucleotide Primase/polymerase
[12,107] -

L200-S260 PolDIP2 binding Primase?/polymerase
[116]

G201D, E203K, D204G, A208S, A208T,
H214Y, P217S, P217L, H218Y, F219L,
S220L, Q226L, K232T, M233I, T235R,

W243S, T244A, G254W, SS59R

D280 Cation ligand Primase/polymerase
[12,79,107] -

R291 Stabilize the 3´ nucleotide Primase/polymerase
[107,111] R291W

*R417 - - R417L, R417W and R417Q
C419, H426, C446 and

C451 Zn2+ ligand
Primase
[12,113] H426N and H426R

D519/F522 and
D551/I554 Binding of RPA Primase/polymerase

[117] F522V

On the other hand, the structure of PrimPol showed that the active site cleft cannot
harbor UV-induced DNA lesions [107], in agreement with the previous results, which
demonstrate that human PrimPol skips this kind of lesions by realigning primers ahead to
continue the synthesis (see Figure 3B) [13,76].

As already mentioned, the entire human PrimPol structure, with the Zn finger and
RBD in addition to the AEP core, is not yet clear. The Zn-finger region of PrimPol is
needed for its primase activity [13], since it binds the 5′NTP or dNTP and contributes to
recognizing the cryptic base dG [113]. Therefore, the entire structure of human PrimPol
could reveal how this enzyme performs priming. Recently, a new powerful method for
protein structure prediction called AlphaFold was developed [118]. We decided to model
the entire structure of PrimPol predicted with AlphaFold in complex with a DNA template,
an NTP at the 5′position and a dNTP at the 3′position, as well as with the two metal ligands
that coordinate these two nucleotides and a cation located at the Zn finger (see details of
modeling in Appendix A) as if it were in the moment of priming. The first step of priming
is the binding of single-stranded DNA (ssDNA). Our model shows that the C-terminal
Zn-finger-containing domain, which includes the key residue for priming R417, is predicted
to be located close to the DNA template (Figure 7B), in agreement with its function. Priming
activity also requires the binding of a 5′nucleotide, but in the model this region is located
too far away from the 5′NTP. This can be explained by the fact that the protein structure
is predicted without taking DNA and nucleotides into account. It is possible to see that
the AEP and the C-terminal domain are connected by a loop, which means that these two
domains may have mobility between each other, as previously predicted [113]. Therefore,
the C-terminal domain is likely located closer to the 5′ nucleotide when priming. Using this
model, we also show the location in the space with respect to the different nucleotides of
all the key residues of the RBD and the active site exposed above (Figure 7B). In the latter,
it is possible to see that each residue is located in the structure in accordance with each
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of its functions. Furthermore, it is possible to see that the active site has sufficient room
to accommodate an NTP at the 5′ position without any impediment (Figures 4 and 7B).
This is something that can be clearly observed in a surface representation of the PrimPol
structure model (Figure 7C). As explained earlier, this pocket is a very special feature of the
primases.

Proteins that operate in DNA damage responses are thoroughly regulated with dif-
ferent strategies, such as post-translational modifications or binding partner proteins
for activity modulation [119]. PrimPol is not an exception to this rule. Regarding the
post-translational modifications, PrimPol was found to be polyubiquitinated in cells [120]
(depicted in Figure 8, left top panel). This post-translational modification tags the protein
for degradation and, therefore, limits PrimPol abundance in cells. Deubiquitinase USP36 ac-
tively counteracts PrimPol polyubiquitination, reducing protein turnover [120]. Moreover,
USP36 participates in replication stress response in a PrimPol-dependent manner [120]
(Depicted in Figure 8, middle panel). The abundancy in cells of PrimPol is also limited by
Werner helicase-interacting protein 1 (WRNIP1) [121]. Moreover, it was recently shown
that PrimPol is phosphorylated by Polo-like kinase 1 (PLK1) at S538, located at its RBD,
which is regulated throughout the cell cycle to prevent the aberrant recruitment of PrimPol
to DNA [122] (Depicted in Figure 8, left bottom panel). PrimPol is dephosphorylated in
response to DNA damage [122] (Depicted in Figure 8, middle panel). The responsible
phosphatase remains unknown.
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Regarding binding proteins for activity modulation, human PrimPol has several part-
ners. Human PrimPol binds to RPA [15,106] (Depicted in Figure 8, right panel) by its RBD,
which is divided in two regions (RBD A and RBD B with D519/F522 and D551/I554 as key
residues, respectively) [117]. This interaction enhances the primase, polymerase [123] and
strand displacement activities of RBD [73]. It has been demonstrated that this interaction
takes place upon HU or irradiation (IR) treatment, co-localizing both proteins in the nu-
cleus [15], and that it is essential to recruit PrimPol in the vicinity of ICLs [102]. Moreover,
human PrimPol binds in vitro to PolDIP2, enhancing its TLS polymerase activity across
8oxodG [124] and 1,2-intrastrand cisplatin cross-link (1,2-GG CisPt CL) lesions [82] and
its strand displacement activity [73]. This interaction is via a flexible loop in PrimPol (aa
200–260, Table 1) and an arginine cluster in PolDIP2 (R282 and R297) [116]. The biological
meaning of the interaction between PrimPol and PolDIP2 has not yet been discovered
in vivo. Nevertheless, it is possible to hypothesize that this interaction could take place dur-
ing replication stress (depicted in Figure 8, right panel), since PolDIP2 is a partner of other
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TLS-polymerases [125,126] and is recruited to nuclear speckles upon UV irradiation [127].
PrimPol also associates with two mitochondrial proteins, highlighting the relevance of this
enzyme in mitochondria: the mitochondrial DNA replicative helicase Twinkle [128], demon-
strated in vitro, and mtSSB, the mitochondrial homologous to RPA [106], demonstrated
in vivo.

5. Lesion-Containing Gap Filling after the Repriming of PrimPol

The repriming action leaves a lesion-containing gap that needs to be filled. After Prim-
Pol action, it is demonstrated that when the gap contains bulky lesions, such as BPDE-DNA
adducts, it is filled by template switching in a post-replicative way [101]. In this process,
initiated by the exonucleases EXO1 and Mre11 (Figure 9, bottom left panel), the nascent
sister chromatid is invaded by the stalled primer, mediated by RAD51, and is normally
used as a template by replicative polymerases (Figure 9, bottom right panel), providing an
error-free method of damage tolerance [101]. Moreover, it was demonstrated in the S phase
that the TLS polymerase complex REV1-Pol
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1. Introduction: PrimPol, a New Enzyme Working on DNA Replication 
In human cells, DNA replication is initiated by the primosome [1,2]. This latter con-

sists of a primase (composed of catalytic and regulatory subunits) and a DNA polymerase 
α (also composed of catalytic and regulatory subunits). Primases start the synthesis by 
catalyzing the formation of RNA primers, which are 8–9 nucleotides in length in both 
strands (Figure 1A). This limited length is due to the continued interaction of the first 5‘ 
ribonucleotide with the regulatory subunit, during the formation of the full primer and 
its inherent conformational change; once the RNA primer is an 8/9-mer, it is transferred 
to the other member of the primosome, Pol α (Figure 1B). This DNA polymerase is able 
to elongate the small RNA primers with dNTPs, making longer and hybrid primers of 30 
nucleotides with a 5′ portion of RNA and a 3′ portion of DNA (Figure 1C) [3–5]. This step 
is required for the replicative DNA polymerases, which prefer to elongate DNA primers 
over RNA primers (Figure 1D). DNA replication enzymes only synthetize in the 5′–3′ di-
rection, which implies an inherent asymmetry of this process. The semi-discontinuous 
model of DNA replication [6,7] establishes that the leading-strand requires the priming 
event for the primosome and elongation for the replicative DNA polymerase Pol ε (Figure 
1A–D) [8,9]. However, the lagging-strand is synthesized discontinuously in small pieces, 
which are initiated by the primosome (Figure 1E) and elongated by the replicative DNA 
polymerase Pol δ (Figure 1F). Therefore, the primases, Pol α and Pol δ, are recurrently 
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carried out the filling of PrimPol-dependent
gaps with UBC13 and RAD51 as partners [129]. A more direct method, but one that is
more error-prone, is to fill the gaps that PrimPol leaves behind, implying the participation
of polymerases that perform a trans-lesion synthesis (TLS) across damages (summarized
above, [130]). In fact, it seems that the work of polymerases in lesion-containing gaps is
their major role [131]. It was demonstrated that the TLS polymerase complex REV1-Pol
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novo using deoxynucleotides, discriminating against ribonucleotides. In vitro, PrimPol can act as a 
translesion synthesis (TLS) DNA primase, elongating primers that PrimPol itself sythesizes, or as 
TLS DNA polymerase, elongating pre-existing primers across lesions. However, the lack of evidence 
for PrimPol polymerase activity in vivo suggests that PrimPol only uses its TLS abilities to facilitate 
priming across lesions in cells, thus acting as a TLS DNA primase. Here, we provide a comprehen-
sive review of human PrimPol covering its biochemical properties and structure, in vivo function 
and regulation, and the processes that take place to fill the gap-containing lesion that PrimPol leaves 
behind. Finally, we explore the available data on human PrimPol expression in different tissues in 
physiological conditions and its role in cancer. 𝜁  
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1. Introduction: PrimPol, a New Enzyme Working on DNA Replication 
In human cells, DNA replication is initiated by the primosome [1,2]. This latter con-

sists of a primase (composed of catalytic and regulatory subunits) and a DNA polymerase 
α (also composed of catalytic and regulatory subunits). Primases start the synthesis by 
catalyzing the formation of RNA primers, which are 8–9 nucleotides in length in both 
strands (Figure 1A). This limited length is due to the continued interaction of the first 5‘ 
ribonucleotide with the regulatory subunit, during the formation of the full primer and 
its inherent conformational change; once the RNA primer is an 8/9-mer, it is transferred 
to the other member of the primosome, Pol α (Figure 1B). This DNA polymerase is able 
to elongate the small RNA primers with dNTPs, making longer and hybrid primers of 30 
nucleotides with a 5′ portion of RNA and a 3′ portion of DNA (Figure 1C) [3–5]. This step 
is required for the replicative DNA polymerases, which prefer to elongate DNA primers 
over RNA primers (Figure 1D). DNA replication enzymes only synthetize in the 5′–3′ di-
rection, which implies an inherent asymmetry of this process. The semi-discontinuous 
model of DNA replication [6,7] establishes that the leading-strand requires the priming 
event for the primosome and elongation for the replicative DNA polymerase Pol ε (Figure 
1A–D) [8,9]. However, the lagging-strand is synthesized discontinuously in small pieces, 
which are initiated by the primosome (Figure 1E) and elongated by the replicative DNA 
polymerase Pol δ (Figure 1F). Therefore, the primases, Pol α and Pol δ, are recurrently 
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carries out this task in BRCA1/2 deficient cells, a scenario involving the accumulation
of DNA gaps due to PrimPol-mediated repriming (Figure 9 top right panel) [132]. This
mechanism, dependent on RAD18, takes place during the G2 phase [129]. It might be
interesting to know in future research whether other TLS-polymerases are also able to carry
out this task, in order to know if each polymerase is necessary, depending on the lesion to
be tolerated or the step of the cell cycle.
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Then, RAD51 coats a filament of ssDNA, which invades the other duplex to use it as error-free
template. Pol δ copy the donor template, and finally, the single strand returns to its starting site to
continue the synthesis ahead of the lesion by Pol ε. (Top right panel): translesion synthesis (TLS)
made by specialized polymerases, which tolerate the lesions. Red asterisks indicate lesions.

6. Expression of Human PrimPol in Different Tissues

Altogether, research suggests that PrimPol is a highly relevant enzyme in human
cells. To note, this enzyme is highly conserved across organisms and species such as: Mus
musculus (mice) [12,13], Gallus gallus (chicken) [14], the plant Arabidopsis thaliana [133],
the archaea Pyrococcus furiosus [134,135] and the bacteria Thermus thermophilus [136,137],
highlighting the relevance of this enzyme. Nevertheless, there are organisms such as
Saccharomyces cerevisiae (yeast) that do not have PrimPol, in which the PrimPol action is
carried out by other enzymes or complexes [88].

In order to infer the value of this enzyme in each tissue in humans, whose gene is
located at chromosome 4 (GRCh38), we analyzed the PrimPol expression data deposited
in GTEx Portal (Figure 10, The Genotype-Tissue Expression (GTEx) Project data portal,
Gencode ID ENSG00000164306.10) [138,139]. Remarkably, tissues with the higher PrimPol
expression were those that require high turnover rates, such as female reproductive system
tissues (uterus, cervix, ovary, and fallopian tube) (Figure 10) [140], and tissues with lower
PrimPol expression were those with low turnover rates, such as the liver, pancreas, heart
and brain (Figure 10). The same pattern is observed for the expression of PCNA according
to the data deposited in GTEx Portal (data not shown). PCNA is a key protein for DNA
replication [141,142], and it is commonly used as a marker of cell proliferation [143,144].
These data support the relevance of PrimPol in DNA replication.

Some interesting exceptions are the tibial nerve, brain cerebellar hemisphere, and
cerebellum (Figure 10), which show a relatively high PrimPol expression compared with
other tissues, even with low turnover rates [140]. Therefore, it is possible that the PrimPol
role in these tissues is replication-independent. In fact, replication-independent roles were
shown for bacterial PrimPols. PrimPols from Marinitoga piezophila and Dysgonamonadaceae
bacterium, physically interact with Cas proteins, suggesting a function in CRISPR-Cas
adaptation [145]. Moreover, PrimPol from Thermus thermofilus [136] plays a role in conjuga-
tion [137]. It could be interesting to explore if PrimPol has replication-independent roles in
human cells. On the other hand, the stomach tissue, which is the tissue with the highest
turnover rate, shows a low expression of PrimPol compared with other tissues (Figure 10).
This could mean that the repriming process is carried out by the primosome and not by
PrimPol, as happens in organisms that do not possess PrimPol, such as Saccharomyces cere-
visiae [88], or maybe this pathway is supplied in this tissue by other pathways. The further
investigation of the relevance of repriming in different tissues could produce interesting
clues regarding the DNA damage tolerance and repair choices in each of them.
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lower expressions are liver, pancreas, heart and brain. Data and graph were obtained from The
Genotype-Tissue Expression (GTEx) Project data portal (ENSG00000164306.109).

7. Role of PrimPol in Cancer and Its Potential Therapeutic Implication

The role of replicative [55,146,147] or non-replicative polymerizing [57,146,148,149]
enzymes in cancer has been widely studied. It has been reported in breast cancer that
tumors with deficient PrimPol expression have a higher mutation burden [150]. Thus, we
decided to analyze the data deposited in GDC Portal [114] and COSMIC data base [115] for
PrimPol copy number variations (CNV, in GDC) and mutations (in GDC and COSMIC),
in order to understand its possible role in other cancer types. We observed that cancers
with higher PrimPol alteration rates (CNV Figure 11A, or mutations Figure 11B) were those
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involving tissues related to the female reproductive system, which are the tissues with
higher PrimPol expressions in physiological conditions. Altogether, these data suggest that
the perturbation of PrimPol could have an effect on cancer development.
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Figure 11. CNV and mutation of PrimPol in different types of cancer. (A) The cancer types with the
higher percentage of cases affected by either gain or loss of CN are OV, CHOL and SARC. (B) The
cancer types with the higher frequency of PrimPol mutations are uterine corpus endometrial carci-
noma (UCEC), colon adenocarcinoma (COAD), and stomach adenocarcinoma (STAD). (C) CN gain
of PrimPol is found frequently in esophageal carcinoma (ESCA), ovarian serous cystadenocarcinoma
(OV), and uterine carcinosarcoma (UCS). (D) CN loss of PrimPol is found frequently in cholangio-
carcinoma (CHOL), sarcoma (SARC) and ovarian serous cystadenocarcinoma (OV). (E) Missense
mutations predicted to impair PrimPol activity were compiled in GDC data portal and COSMIC.



Biomolecules 2022, 12, 248 18 of 26

Specifically, we observed cancer types with a recurrent copy number (CN) gain of Prim-
Pol locus (Figure 11C), suggesting that this genomic alteration could confer an advantage to
these tumors. In this sense, cancer cells are characterized by an increased genome instabil-
ity [151] and PrimPol could alleviate an excess of this trait, maintaining genome instability
under the critical threshold that compromises cell viability (Figure 12B). Another scenario,
in which cancer cells could show high PrimPol activity, is in the presence of inactivating
mutations in genes that negatively regulate PrimPol. This is the case for tumors with muta-
tions in BRCA1, BRCA2, or RAD51. These three proteins downregulate PrimPol, and their
dysfunction triggers more PrimPol-dependent repriming (Figure 12C) [103,132,152,153].
Nevertheless, in all these scenarios, where PrimPol is overacting, cells accumulate a high
number of gaps that need to be filled. If cells are unable to fill all of these gaps, genomic
instability will increase. Therefore, the over-repriming action of PrimPol is a double-edged
sword, as it can limit fork stalling (Figure 12B) but at the cost of increasing the number of
gap-containing lesions to be filled (Figure 12C), which could lead to genomic instability.
In this regard, recently published research showed that the homologous recombination of
defective cells is more sensitive to complex REV-Pol ζ inhibitors, leading to a gap accumu-
lation [129,132]. Therefore, it is tempting to suggest that PrimPol-over-acting cancer cells
could be treated with REV-Pol ζ inhibitors. Moreover, in the hypothetical case of patients
with cancer cells that are REV-Pol ζ deficient, the action of PrimPol could be exacerbated by
the administration of several cisplatin doses [103]. This would cause a synthetic lethality,
in which the gaps generated by PrimPol repriming in response to the action of cisplatin are
not filled due to the lack of REV-Pol ζ, triggering an intolerable genomic instability.
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On the other hand, taking into account that several cancer treatments are based in
their genotoxicity, PrimPol over-action could be responsible for developed resistance. This
could be the situation with several doses of cisplatin [103], since BRCA-deficient cells
subjected to this treatment do not show fork degradation due to the over-expression of
PrimPol. In this case, it was suggested that it could be possible to eliminate this resistance
by targeting PrimPol with inhibitors [102]. In this regard, PrimPol inhibition has already
been demonstrated in vitro with different aptamers [154], a kind of molecule used in cancer
therapy [155]. In the next few years, we will see if this strategy is therapeutically viable.

Finally, the over-action of PrimPol in cancer cells, as well as cancer cells that have more
PrimPol dependency due to the defective status of other genes [150], could be exploited
by administrating nucleotide analogs that are already used by PrimPol in vitro in order to
generate genotoxicity. Some good examples of this are the anti-cancer drugs, cytarabine
(Ara-CTP) and gemcitabine (dFdC) [109], or the nucleoside reverse transcriptase inhibitors
(NRTIs) used normally as the anti-virals ddATP, ddCTP, zidovudine triphosphate (AZT-TP),
and tenofovir diphosphate CBV-TP [156].

However, there are cancer types with a PrimPol CN loss (Figure 11D) or likely a loss
of function mutations, such as those at residue R76 (Table 1). In fact, this residue is a
mutation hotspot (Figure 11E). PrimPol alterations in tumors could mimic some features of
the PrimPol-deficient phenotype observed in cell models: increased replicative stress and
genomic instability compared to WT cells [13,94] (Figure 12D). Therefore, it is tempting to
suggest that these patients could benefit from radiotherapy or chemotherapy treatments to
which PrimPol-deficient cells have already been shown to exhibit hypersensitivity, such as
the interstrand crosslink agents cisplatin [96,102,103] and mitomycin C [102], or even the
combined treatment of camptothecin (CPT) or etoposide with olaparib. The rationale for
this latter treatment is based on the fact that the poisoning of topoisomerase I by CPT results
in PARP-mediated replication fork reversal [157], which could be suppressed by PARP
inhibitors, such as olaparib. Therefore, the treatment of PrimPol-deficient cells with both
the topoisomerase I poison CPT and the PARP inhibitor olaparib may be highly detrimental
to their viability, as these cells have a natural absence of repriming activity, and thus lack
an alternative mechanism to face genotoxicity.

In addition, PrimPol could also be an enzyme considered in pharmacogenomics,
since its activity or deficiency in patients could be a contraindication for certain types of
treatments. This seems to be the case regarding an HIV+ patient treated with tenofovir
who harbored the PrimPol mutation D114N [99], a mutation that inactivates the primase
activity of PrimPol. PrimPol-deficient cells are hypersensitive to tenofovir treatment, which
could explain the patient’s toxicity [99].

8. Concluding Remarks

The discovery of PrimPol, the first DNA primase discovered in human cells, was a
breakthrough in the DNA replication field [12]. PrimPol provides the option of repriming
ahead of obstacles during DNA replication [13], leaving behind a gap that will be filled by
template switching [101] or TLS polymerases [129,132] (depicted in Figure 12A). Moreover,
in vitro studies uncovered that PrimPol is able to use its TLS abilities when polymeriz-
ing [12,13], acting as a TLS DNA polymerase. In vivo, PrimPol DNA primase activity
has been demonstrated; however, PrimPol TLS DNA polymerase action has not yet been
probed. To carry out its priming activity, PrimPol possesses a Zn-finger domain that plays
a key role in this function [113]. Here, we show by structure modeling that this domain is
theoretically located close to the template, which is in accordance with the function of this
domain since the ssDNA binding is the first step for this activity.

The relevance of PrimPol to perform an efficient DNA replication, and thereby cell
proliferation, becomes evident when noticing that the human tissues with the highest
expression of PrimPol are those with higher turnover requirements. On top of that, PrimPol
could have an impact in cancer development, progression and resistance to genotoxic
agents, and consequently, it is a clear target of future therapies.
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Beyond the relevance of PrimPol in DNA replication, the amazing capabilities of
PrimPol were studied for biotechnology purposes: PrimPol from Thermus thermophilus is
used in the method TruePrime for whole-genome amplification from single cells. This
method is based on the primase activity of PrimPol, which provides real primers instead of
random hexamers, which is the basis of other more common and up-to-date methods [136].

Considering the versatility and relevance of PrimPol in DNA replication, new studies
that shed light on the biochemistry and in vivo activity of this enzyme will have an impact
on cancer therapy and other applications.
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Appendix A. Structure Modeling of Human PrimPol

The model of the entire structure of human PrimPol predicted with AlphaFold [118]
was modeled in complex with a DNA template, a dNTP at the 3′position and the two
metals for the nucleotidyl transferase reaction by fitting with PDB ID: 7JKP (a PrimPol
structure with these elements) [80] using ChimeraX [158,159]. Moreover, an NTP at the
5′position from PDB ID: 2IRX [160] was also manually fitted with the last nucleotide of the
primer from PDB ID: 7JKP [80], leaving only the NTP from PDB ID: 2IRX. Finally, a cation
of zinc was manually fitted at the Zn finger of the PrimPol model from PDB ID: 1RNI [161],
which attempted to place the four residues that covalently bind the zinc cation in PDB ID:
1RNI [161] in the same position as the four homologous residues in PrimPol, leaving only
the zinc cation. ChimeraX [158,159] was used to visualize the resulting complex model
(entire PrimPol structure, DNA template, 5′ribonucleotide, 3′deoxynucleotide, two metals
for the nucleotidyl transferase reaction and zinc cation at Zn finger).
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