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Current toxicology studies frequently lack measurements at molecular resolution to enable a more mechanism-
based and predictive toxicological assessment. Recently, a systems toxicology assessment framework has been pro-
posed, which combines conventional toxicological assessment strategies with system-widemeasurementmethods
and computational analysis approaches from the field of systems biology. Proteomic measurements are an integral
component of this integrative strategy because protein alterations closelymirror biological effects, such as biological
stress responses or global tissue alterations. Here, we provide an overview of the technical foundations and high-
light select applications of proteomics for systems toxicology studies. With a focus on mass spectrometry-based
proteomics, we summarize the experimental methods for quantitative proteomics and describe the computational
approaches used to derive biological/mechanistic insights from these datasets. To illustrate how proteomics has
been successfully employed to address mechanistic questions in toxicology, we summarized several case studies.
Overall, we provide the technical and conceptual foundation for the integration of proteomic measurements in a
more comprehensive systems toxicology assessment framework. We conclude that, owing to the critical impor-
tance of protein-level measurements and recent technological advances, proteomics will be an integral part of
integrative systems toxicology approaches in the future.

© 2014 Titz et al. Published by Elsevier B.V. on behalf of the Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Conventional toxicological assessment of chemical substances relies
heavily on in vitro assays and animal studies to test and identify expo-
sure doses at which relevant apical endpoints are adversely affected.
These apical endpoints measure major effects on animal physiology
including gross developmental defects or reduction of body weight.
Based on these results, recommendations for human exposure limits
are derived. Although this conventional toxicological approach has
clearly proven its value, more recent discussions on the future require-
ments for toxicological assessment have highlighted some of its short-
comings and emphasized the need to further evolve toxicology
assessment with new tools and approaches (e.g., through the Tox21
and EPA ToxCast™ initiatives) [1,2]. The challenges faced by the current
toxicological assessment approach include the recent explosive growth
of required tests (e.g., for approximately 300 new chemicals per year in
the U.S. alone), the need for new endpoints such as endocrine modula-
tion, and the need to evaluate the effect of chemical mixtures [1]. Most
important, however, is the urgent need for deeper insights into toxico-
logical mechanisms as the basis for improved toxicity predictions for
different human exposure scenarios. An important challenge in this
endeavor is the selection of the right assay systems to conduct predic-
tive studies. While we are witnessing the development of in vitro sys-
tems of increasing relevance and complexity, they can still not fully
replace animal studies. This is a second reason to focus our attention
on mechanistic understanding of toxicity as this opens two routes for
developing more predictive assessment tools. First, mechanistic under-
standing allows for the identification of key events which can be repli-
cated as discrete assays in vitro. Second, mechanistic understanding
allows identifying which portion of animal biology translates to
human biology and is thus adequate for toxicology testing. Related to
this is the notion that the quantitative analysis of a discrete number of
toxicological pathways that are causally linked to the apical endpoints
could improve predictions (Pathways of Toxicity, POT) [3]. These con-
cepts were recently summarized in a systems toxicology framework [4]
where the systems biology approach with its large-scale measurements
and computational modeling approaches is combined with the require-
ments of toxicological studies. Specifically, this integrative approach
relies on extensive measurements of exposure effects at the molecular
level (e.g., proteins and RNAs), at different levels of biological complexity
(e.g., cells, tissues, animals), and across species (e.g., human, rat, mouse).
These measurements are subsequently integrated and analyzed compu-
tationally to understand the causal chain of molecular events that leads
from toxin exposure to an adverse outcome and to facilitate reliable pre-
dictive modeling of these effects.

Importantly, to capture the full complexity of toxicological responses,
systems toxicology relies heavily on the integration of different data
modalities to measure changes at different biological levels—ranging
from changes in mRNAs (transcriptomics) to changes in proteins and
protein states (proteomics) to changes in phenotypes (phenomics).
Owing to the availability of well-established measurement methods,
transcriptomics is often the first choice for systems-level investigations.
However, protein changes can be considered to be closer to the relevant
functional impact of a studied stimulus. Although mRNA and protein ex-
pression are tightly linked through translation, their correlation is limited,
and mRNA transcript levels only explain about 50% of the variation of
protein levels [5]. This is because of the additional levels of protein regu-
lation including their rate of translation and degradation. Moreover, the
regulation of protein activity does not stop at its expression level but is
often further controlled through posttranslational modification such as
phosphorylation; examples for the relevance of post-transcriptional
regulation for toxicological responses include: the tight regulation of
p53 and hypoxia-inducible factor (HIF) protein-levels and their rapid
post-transcriptional stabilization, e.g., upon DNA damage and hypoxic
conditions [6,7]; the regulation of several cellular stress responses
(e.g., oxidative stress) at the level of protein translation [8]; and the
extensive regulation of cellular stress response programs through pro-
tein phosphorylation cascades [9–11].

This review is intended as a practical, high-level overview on the
analysis of proteomic datawith a special emphasis on systems toxicology
applications. It provides a general overview of possible analysis ap-
proaches and lessons that can be learned. We start with a background
on the experimental aspect of proteomics and introduce common com-
putational analyses approaches. We then present several examples of
the application of proteomics for systems toxicology, including lung pro-
teomics results from a subchronic 90-day inhalation toxicity study with
mainstream smoke from the reference research cigarette 3R4F. Finally,
we provide an outlook and discuss future challenges.

1.1. Experimental and computational approaches for the quantitative
analysis of proteomic alterations

1.1.1. Experimental approaches for quantitative proteomics

1.1.1.1. Gel-based liquid chromatography mass spectrometry (LC MS/MS)
approaches. Two-dimensional polyacrylamide gel electrophoresis
(2DGE) is used to assess perturbations on the proteome based on
changes in protein expression (Fig. 1A). The 2DGE workflow relies on
the separation of proteins based on their pH (charge) as well as their
size and has the capability to separate and visualize up to 2000 proteins
in one gel. The first dimension, which is known as isoelectric focusing
(IEF) separates the proteins by their isoelectric point (pI), i.e. the pH
at which they exhibit a neutral charge. The second dimension further
separates the proteins by their mass. State-of-the-art image acquisition
and analysis software such as SamSpots (TotalLab) allow the simulta-
neous comparison of control and treated samples to identify the differ-
entially regulated proteins by their relative intensity in a label-free
approach. A variant of 2DGE is difference gel electrophoresis (DIGE)
which is based on labeling of proteins with fluorescent cyanine dyes
(Cy2, Cy3 and Cy5) of different samples resulting from e.g. different
treatments. The characteristics of these dyes allow for the analysis of
up to three pools of protein samples simultaneously on a single 2D gel
to detect differential variances in proteins between samples [12]. The
most challenging aspect of this approach has been the development of
algorithms that can address gel distortion (warping). Investigators
now account for gel warping by running several gels per sample and
analyzing gels by principal component analysis to determine which
should be excluded from further analysis [12].

Although 2DGE is a powerful tool to identify many proteins using
well-established protocols and detection of posttranslational modifica-
tions (PTMs) in proteins, the approach has its limitations. Themajor lim-
itation is that not all proteins can be separated by IEF, such asmembrane,
basic, small (b10 kDa) and large (N100 kDa) proteins. Hence, they cannot
be detected by 2DGE and require a separate approach based on mem-
brane protein purification protocols and one-dimensional gel electropho-
resis. The second limitation is that less abundant proteins are often
masked by the abundant proteins in the mixture [13,14].

1.1.1.2. Gel-free liquid chromatography mass spectrometry (LC MS/MS)
approaches. Protein fractionation is crucial to simplify mixtures before
analysis by mass spectrometry (MS). Liquid chromatography (LC) is the
most commonly used method for protein fractionations in this context
(Fig. 1A). The LC approach takes advantage of differences in the physio-
chemical properties of proteins and peptides, i.e., size, charge, and hydro-
phobicity. 2D-LC can be used to fractionate protein mixtures on two
columnswith different physiochemical properties and therebymaximize
the separation of proteins and peptides in complex mixtures [15].

Mass spectrometry iswidely considered to be the central technology
platform for toxicoproteomics. MS has brought many advantages to the
advancement of toxicoproteomics including unsurpassed sensitivity,
improved speed and the ability to produce high throughput datasets.
Owing to the high accuracy of MS, peptides in the femtomolar (10−15)
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to attomolar (10−18) range can be detected in tissues and biological
matrices with an accuracy level of less than 10 ppm [16]. This is greatly
beneficial in comparative analysis where simultaneous comparisons be-
tween control and treated samples are a key to increasing understanding
of how stimuli affect the proteome and the subsequent identification of
potential biomarkers [15].

The two approaches that are widely used for differential protein
quantification are label-free and label-based quantitation. In the label-
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free approach, proteins or peptides of each sample are separated by LC
and subsequently analyzed byMS. Themain advantages of this approach
are: 1) comparison of multiple samples is possible (no restriction in sam-
ple number), 2) it covers a broad dynamic range of concentrations, and
3) no further sample treatment is required. This approach is, however,
error-prone and requires long analysis time and large computational
power to perform the data analysis. In the label-based approach, samples
aremodified prior to analysis. One of themost common label-based tech-
niques is the use of isobaric tags with the iTRAQ or TMT method. The
main advantages of isobaric-tag based quantification are: 1) simulta-
neous comparison of large numbers of samples (up to eight for iTRAQ,
up to ten for TMT) 2) reduction of requiredMS runs (reductionof analysis
time) as samples are pooled beforeMS analysis, and 3) low probability of
introducing experimental errors during analysis due to pooling. The lim-
itations of the technique are the limited dynamic range and the fact that
the protein profiles must be similar [17].

In summary, the major advantages of the gel-free approaches are:
1) lower sample volumes can be analyzed, 2) less abundant proteins
can be detected, 3) high-throughput sample analysis and data genera-
tion are possible, and 4) different classes of the proteins can be analyzed.

1.1.1.3. Targeted mass spectrometry (LC MS/MS) approaches. Because
system biology requires accurate quantification of a specified set of
peptides/proteins across multiple samples, targeted approaches have
been developed for biomarker quantification (Fig. 1B). Selected reaction
monitoring (SRM) was developed to reliably deliver precise quantitative
data for defined sets of proteins, across multiple samples using the
unique properties of MS. SRM measures peptides produced by the
enzymatic digestion of the proteome as surrogates to their corresponding
proteins in triple quadrupole MS.

An SRM-based proteomic experiment workflow begins with the se-
lection of a list of target proteins, derived from previous experimental
datasets and/or prior knowledge such as a pathway map or literature.
This step is followed by: 1) selection of the proteotypic target peptides
(at least two) that optimally and uniquely represent the protein target
(e.g., using the SRMAtlas [18]), 2) selection of a set of suitable SRM tran-
sitions for each target peptide, 3) detection of the selected peptide tran-
sitions in a sample, 4) optimization of SRM assay parameters if some of
the transitions cannot be detected, and 5) application of the assays to
the detection and quantification of the proteins/peptides [19].

The major advantages of the SRM technique are: 1) multiplexing of
tens to hundreds of proteins that can be monitored during the same
run, 2) absolute and relative quantification is possible, 3) the method
is highly reproducible, and 4) the method yields absolute molecular
specificity. The limitations of this technique include: 1) only a limited
number of measurable proteins can be included in the same run (the
system cannot monitor thousands of proteins per run or analysis) and
2) even with its high sensitivity it cannot reach all the proteins present
in an organism (limit of detection is at the attomolar level) [20].

A newMS-based targeted approach called parallel reactionmonitor-
ing (PRM) has been developed that is centered on the use of next-
generation, quadrupole-equipped high-resolution and accurate mass
instruments (mainly the Orbitrap MS system) (Fig. 1B). This approach
is closely related to SRM, but allows for themeasurement of all fragmen-
tation products of a given peptide in parallel. The major advantages over
SRMare: 1) the generated data can be easily interpreted, and the analysis
can be automated, 2) higher dynamic range, and 3) quantitative informa-
tion can be determined fromdatasets of complex samples resulting in ex-
traction of high-quality data [21].

1.1.1.4. Posttranslational modifications. Posttranslational modifications
(PTMs) represents an important mechanism for diversifying and regu-
lating the cellular proteome. PTMs are chemical modifications that
play a role in functional proteomics, by regulating activity, localization
and interactions with other cellular biomolecules. The identification
and characterization of protein substrates and their PTM sites are very
important to the biochemical understanding of the PTM pathways and
to provide deeper insights into the possible regulation of the cellular
physiology induced by PTM. Examples of PTMs include phosphoryla-
tion, glycosylation, ubiquitination, nitrosylation, methylation, acetyla-
tion, lipidation and proteolysis [22].

During the past decade, MS-based proteomics has demonstrated
that it is a powerful technique for the identification and mapping of
PTMs that replaces the traditional biochemical techniques such as
Western blots, using radioactive isotope-labeled substrates and protein
microarrays. The MS-based approaches took great advantage from the
advancement in MS instrumentation that allow for higher sensitivity,
accuracy and resolution for the detection of less abundant proteins.
For the scope of this review, only 2 PTMs will be discussed, which are
the most commonly studied in disease research.

1. Analysis of phosphorylation changes
Phosphorylation represents an important posttranslational modifica-
tion of proteins; in eukaryotes, approximately 30% of cellular proteins
contain covalently bound phosphate. It is involved in most cellular
events in which the complex interplay between protein kinases and
phosphatases strictly controls biological processes such as prolifera-
tion, differentiation, and apoptosis. Phosphorylation is a key mode of
signal transduction, a central mechanism in themodulation of protein
function that is capable of regulating almost all aspects of cell life. De-
fective or altered signaling pathways often result in abnormalities
leading to various diseases including cancer [23,24], emphasizing the
importance of understanding protein phosphorylation. The impor-
tance of protein phosphorylation is illustrated by the hundreds of
protein kinases and phosphatases present in eukaryotic genomes
[25].
2DGE was commonly used for assessing wide-scale changes in phos-
phorylation. However, because of the many limitations of the ap-
proach, MS approaches were developed as an alternative to 2DGE to
overcome the limitations and increase the sensitivity of the detection
of phospho-proteins. Today,most phospho-proteomic studies are con-
ducted byMS strategies in combinationwith phospho-specific enrich-
ment (Fig. 1C).
Because of sensitivity issues phospho-peptides need to be separated
from non-phosphorylated peptides before analysis. A commonly
used phospho-peptide enrichment strategy is using TiO2, which is
highly selective for phospho-peptides. It is extremely tolerant toward
most buffers and salts, and thus is a robustmethod for the enrichment
of phospho-peptides. The enriched peptides are then analyzed using
MS for identification and phosphorylation site determinations [26].

2. Analysis of ubiquitylation changes
Modification of proteins by ubiquitylation is a reversible regulatory
mechanism that is well conserved in eukaryotic organisms. The role
of ubiquitylation is extensively studied in the ubiquitin proteasome
system (UPS) as well as in cellular process such as DNA damage re-
pair, DNA replication, cell surface receptor endocytosis, and innate
immune system [27–29]. The clinical use of the proteasome inhibitor
bortezomib, and the ongoing clinical trials of several other inhibitors
illustrate the importance of ubiquitylation for human health [30,31].
The experimental procedure is similar to the phospho-proteomics
approach (Fig. 1C). The major difference is that for the enrichment
step di-Gly-lysine-specific antibodies are used [32]. Direct immunoen-
richment of ubiquitylated peptides, together with high resolution LC
MS/MS allows for the in-depth analysis of putative ubiquitylation
sites.

1.1.2. Computational approaches for quantitative proteomics
Following the acquisition of the mass spectrometry data, the first

goal of a quantitative proteomics experiment is to derive a protein ex-
pression matrix (proteins vs. samples) and identify differentially
expressed proteins between selected sample groups. The path to
achieve this goal can be divided into three steps: 1) peptide/protein
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identification, 2) peptide/protein quantification, and 3) identification of
differentially expressed proteins.

1.1.2.1. Software for processing mass spectrometry data. Several software
packages support these tasks including the freely available Trans-
Proteomic Pipeline [33], the CPAS system [34], the OpenMS framework
[35], and MaxQuant [36] (Table 1). Each of these packages has their ad-
vantages and shortcomings, and a detailed discussion goes beyond the
scope of this review. For example, MaxQuant is limited to data files
from a specific MS manufacturer (raw files, Thermo Scientific), whereas
the other software solutions work directly or after conversion with data
from all manufacturers. An important consideration is also how well
the employed quantification approach is supported by the software (for
example, see Nahnsen et al. for label-free quantification software [37]
and Leemer et al. for both label-free and label-based quantification tools
[38]). Another important consideration is the adaptability of the selected
software because processing approaches of proteomic datasets are still
rapidly evolving (see examples below). While most of these software
packages require the user to rely on the implemented functionality,
OpenMS is different. It offers a modular approach that allows for the
creation of personal processing workflows and processing modules
thanks to its python scripting language interface, and can be integrated
with other data processing modules within the KNIME data analysis
system [39,40]. In addition, the open-source R statistical environment
is very well suited for the creation of custom data processing solutions
[41].

1.1.2.2. Identification of peptides and proteins. The first step for the analysis
of a proteomic MS dataset is the identification of peptides and proteins.
Three general approaches exist: 1) matching of measured to theoretical
peptide fragmentation spectra, 2) matching to pre-existing spectral
libraries, and 3) de novo peptide sequencing.

The first approach is the most commonly used. For this, a relevant
protein database is selected (e.g., all predicted human proteins based
on the genome sequence), the proteins are digested in silico using the
cleavage specificity of the protease used during the actual sample diges-
tion step (e.g., trypsin), and for each computationally derived peptide, a
theoreticMS2 fragmentation spectrum is calculated. Taking themeasured
(MS1) precursor mass into account, each measured spectrum in the
datasets is then compared with the theoretical spectra of the proteome,
and the best match is identified. The most commonly used tools for this
step include Sequest [42], Mascot [43], X!Tandem [44], and OMSSA [45].
The identified spectrum to peptide matches provided by these tools are
associated with scores that reflect the match quality (e.g., a cross-
correlation score [46]), which do not necessarily have an absolute mean-
ing. Thus, it is critically important to convert these scores into probability
p-values. After multiple testing correction, these probabilities are then
used to control for the false discovery rate (FDR) of the identifications
(often at the 1% or 5% level). For this statistical assessment, a commonly
used approach is to compare the obtained identification scores for the
actual analysiswith results obtained for a randomized (decoy)proteinda-
tabase [47]. For example, this approach is taken by Percolator [48,49]
combined with machine learning to best separate true from false hits
based on the scores of the search algorithm. Although the estimation of
false-discovery rates is generally well established for peptide identifica-
tion [50], protein FDR estimates are less mature [51,52] and constantly
evolving (e.g., [53,54]). Another question is how the results fromdifferent
search engines can be effectively combined toward higher sensitivity,
while maintaining the specificity of the identifications (e.g., [51,55]).

The second group of algorithms, spectral library matching (e.g., using
the SpectralST algorithm), relies on the availability of high-quality spec-
trum libraries for the biological systemof interest [56–58]. Here, the iden-
tified spectra are directly matched to the spectra in these libraries, which
allows for a highprocessing speed and improved identification sensitivity,
especially for lower-quality spectra [59]. The major limitation of spectra-
library matching is that it is limited by the spectra in the library.
The third identification approach, de novo sequencing [60], does not
use any predefined spectrum library but makes direct use of the MS2
peak pattern to derive partial peptide sequences [61,62]. For example,
the PEAKS software was developed around the idea of de novo sequenc-
ing [63] and has generated more spectrum matches at the same FDR-
cutoff level than the classical Mascot and Sequest algorithms [64]. Even-
tually an integrated search approaches that combine these three different
methods could be beneficial [51].

1.1.2.3. Quantification of mass spectrometry data. Following peptide/
protein identification, quantification of the MS data is the next step. As
seen above, we can select from several quantification approaches (either
label-dependent or label-free), which pose bothmethod-specific and ge-
neric challenges for computational analysis. Here, we will only highlight
some of these challenges. Data analysis of quantitative proteomic data
is still rapidly evolving, which is an important fact to keep in mind
whenusing standardprocessing software or derivingpersonal processing
workflows. An important general consideration is which normalization
method to use [65]. For example, Callister et al. and Kultima et al. com-
pared several normalization methods for label-free quantification and
identified intensity-dependent linear regression normalization as a gen-
erally good option [66,67]. However, the optimal normalization method
is dataset specific, and a tool called Normalizer for the rapid evaluation
of normalization methods has been published recently [68].

Computational considerations specific to quantification with isobaric
tags (iTRAQ, TMT) include the question how to cope with the ratio com-
pression effect and whether to use a common reference mix. The term
ratio compression refers to the observation that protein expression ratios
measured by isobaric approaches are generally lower than expected. This
effect has been explained by the co-isolation of other labeled peptide ions
with similar parental mass for the MS2 fragmentation and reporter ion
quantification step. Because these co-isolated peptides tend to be not dif-
ferentially regulated, they generate a common reporter ion background
signal that decreases the ratios calculated for any pair of reporter ions.
Approaches to cope with this phenomenon computationally include
filtering out spectra with a high percentage of co-isolated peptides
(e.g., above 30%) [69] or an approach that attempts to directly correct
for themeasured co-isolation percentage [70]. The inclusion of a common
reference sample is a standard procedure for isobaric-tag quantification.
The central idea is to express allmeasured values as ratios to the common
reference sample to cancel out differences in ionization efficiencies and
between sample runs. However, recently it has been demonstrated that
this reliance on a single sample can increase the overall variance and
that alternatively, it is beneficial to use the median of all measured
reporter ions for spectrum normalization [71]. Importantly, when
applying this approach to diverse sample sets (e.g., human patient
samples) the comparability of these median values need to be ensured.
Similarly, other quantification methods come with their own challenges,
e.g., label-free approaches based on peak integration are dependent on a
reliable run-to-run alignment and consistent integrations (e.g., [72,73]).

1.1.2.4. Identification of differentially expressed proteins. The results of
these efforts are a protein-by-sample expression matrix, and the next
analysis step often aims to identify differentially expressed proteins.
Here, important considerations involve the selection of the protein-
level statistics for differential abundance and how multiple hypothesis
testing is taken into account. For example, Ting et al. tested a fold change
approach, Student's t-test, and empirical Bayes moderated t-test as the
protein-level statistics [74]. The authors also used the common approach
in RNAmicroarray experiments to construct linear models that captured
the relevant experimental factors. They concluded that applying the em-
pirical Bayes moderated t-test in the linear model framework resulted in
a high-quality list of statistically significant differentially abundant pro-
teins. A summaryof the essentialmultiple hypothesis correctionmethods
to control the FDR is given in [75]. Of these, the most commonly used
method is likely the Benjamini–Hochberg approach [76].
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1.1.2.5. Comparison ofmethods.Aswehave observed,many software and
processing options are available for the analysis of MS data. As argued
by Yates et al., it is vital to define benchmarking standards and more
extensively compare the available tools [77] to allow for an evidence-
based selection of the available software tools. A few comparative studies
for quantitative proteomics are already available. For example, Altelaar
et al. compared SILAC, dimethyl and (isobaric tag) TMT labeling strategies
and found that all methods reach a similar analysis depth; TMT resulted
in the highest ratio of quantified-to-identified proteins and the highest
measurement precision, but ratios were most affected by ratio compres-
sion [78]. Similarly, Li et al. compared label-free (spectral counting),
metabolic labeling (14N/15N), and isobaric tag labeling (TMT and iTRAQ)
and found the isobaric tag-based approaches to be the most precise and
reproducible [79].

1.1.2.6. Computational resources for data processing.All steps of proteomics
computational analysis, including protein identification, protein quantifi-
cation and identification of differentially expressed proteins, require an
access to high performance computational resources [80]. Software
tools that match peptide masses to genome-based protein databases or
spectra to spectral libraries directly can often be run in a parallelized
mode to accelerate the data analysis. Classical parallelization solutions
such as computing clusters are widely used and more cutting edge
implementations such as cloud computing [81] or graphics processing
unit (GPU) servers [82] are on the rise. The latter work demonstrated
acceleration of the peptide searches within proteome database up to
60-fold compared to conventional CPU-based architecture and reflects a
recent trend of using GPU-based clusters in computational systems
biology.

After generation of a reliable quantitative proteomic dataset, the
main challenge is to turn the data into biological knowledge. In the
next section, we focus on four categories of computational approaches
(protein-by-protein, functional module-based, biological network-
based, and through data integration), which taken together support a
comprehensive biological interpretation of the results (Fig. 2).

1.2. How to derive biological insights from proteomic data

1.2.1. Deriving insights protein-by-protein
In many cases, the first result obtained when analyzing a quantitative

proteomics dataset is a list of differentially expressed proteins in the con-
dition of interest. Initially, these proteins are often only sparsely annotat-
ed, and expansion of this annotation is a helpful first step for biological
interpretation and filtering. Protein annotations can be directly derived
from databases (e.g., UniProtKB) or dynamically generated for a specific
biological question through text-mining approaches.

1.2.1.1. Protein databases. The UniProt Knowledgebase (UniProtKB) is
the central resource for protein-centric information [83]. It consists of
a high-quality, manually reviewed section (UniProtKB/Swiss-Prot) and
an automatically generated, unreviewed section (UniProtKB/TrEMBL).
The available data include protein functions, catalytic activity, pathway
information, and associated phenotypes and diseases. UniProt facilitates
the annotation of protein lists through its own ID mapping service,
batch retrieval tools, and by supporting more extensive and automated
queries through BioMart [84]. For human proteins, UniProt is extended
by the neXtProt knowledgebase, which is still under development [85],
which provides an extended view of the proteins by incorporating addi-
tional data sources such as high-throughput protein expression and
protein localization experiments. Although these databases offer exten-
sive coverage of overall protein function, the functional information for
specific protein modifications is sparse. Thus, more dedicated databases
are advantageous when analyzing proteomic datasets of posttranslation-
al modifications such as phosphorylation. For example, the PhosphoSite
database offers extensive annotations of phosphorylation sites for
human, mouse, and rat [86], and NetPhorest allows for predictions of
potential upstreamkinases [87]. In addition, for toxicological assessments
it can be revealing to investigate the links between the identified proteins
and chemicals and chemical toxins. The STITCH database is an extensive
database of protein–chemical interactions and provides convenient data
access through downloadable files and an application programming
interface [88]. The toxin and toxin target database (T3DB) is specifically
focused onmechanisms of toxicity and targets and currently contains in-
formation for approximately 3000 toxins [89].

1.2.1.2. Text-mining approaches. The annotations derived from these
sources depend on the specific scope and curation depth of these data-
bases. To associate the identified protein list with the most up-to-date
information andwith specific biology/disease concepts (e.g., the disease
under investigation), text-mining approaches are worth considering
[90,91]. The iHOP database provides a precomputed network of
protein–protein and protein-concept interactions, and is derived through
automated textmining of the scientific literature [92]. Itsmain strength is
to comprehensively and concisely collect up-to-date information on a
given protein. However, it does not allow querying specific concepts
and biological contexts. This is supported by specific text-mining tools
such as EBIMed [93], SciMiner [94], and PolySearch [95]. EBIMed and
SciMiner accept free literature queries as the input and automatically
identify and associate the proteins, functions, and drugs reported in the
identified literature. PolySearch more specifically handles associative
queries such as “given a disease/protein/drug, find all associated
diseases/proteins/drugs”. For example, PolySearch was used to support
the identification and annotation of toxin-target relationships in the
T3DB [89]. All three tools are especially useful when evaluating the dis-
covered differentially regulated proteins in the context of what is already
known about the process under study.

1.2.2. Deriving insights through functional modules
Although these protein-level annotations support the manual

systematic interpretation of a dataset, they do not allow for a direct statis-
tical assessment of the affected biological functions. Given a list of differ-
entially expressed proteins, we often ask, “What are the functional
categories/modules/pathways that are significantly enriched for differen-
tially expressed proteins?” The basis for these analyses is the modular
organization and regulation of biological systems [96–98]. For example,
upon a certain cellular stress such as oxidative stress,we can expect to ob-
serve the coordinated up-regulation of a specific stress response protein
module or the activation of a particular signaling pathway [99]. Three
main components are needed to identify functional modules that are
significantly enriched for affected proteins: 1) a metric to score the level
of perturbation for each protein (protein-level statistic), 2) a database of
relevant protein modules/sets, and 3) an algorithm to score and evaluate
the statistical significance of the module enrichment (module-level
statistic).

1.2.2.1. Protein-level statistics. Threshold-based approaches can, for
example, be based on a multiple testing corrected t-test p-value (see
above). Threshold-free approaches rely on continuous protein-level sta-
tistics such as the fold-change, a t-score, or the signal-to-noise ratio. An
important consideration for the selection of the protein-level statistics is,
whether up- and down-regulation ofmodule components are considered
together or as distinct effects [100].

1.2.2.2. Gene/protein set databases. Several functional module (gene/
protein set) databases are available. The most prominent is the mSigDB
database from the Broad Institute [101]. Here, the functional sets are
grouped in different categories that range from canonical pathways
(e.g., the KEGG and Reactome database [102,103]) to gene ontologies
[104]. Other functional module databases include GeneSigDB [105],
which contains manually extracted signatures/modules from the litera-
ture, and PAGED [106], which combines these and other functional mod-
ule databases. However, depending on the analyzed biological context,
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more specialized gene set databases—such as the liver-cancer related da-
tabase, Liverome [107], or even self-defined databases—can be beneficial.

1.2.2.3. Three classes of enrichment algorithms. Finally, algorithms to
evaluate module enrichment are needed. These can be grouped into
three categories: 1) over-representation analysis (ORA) approaches, 2)
functional class scoring (FCS) approaches, and 3) pathway topology
(PT) approaches [108].

ORA approaches depend on a threshold to select a list of differentially
expressed proteins for the conditions of interest. Subsequently, the over-
lap between this protein list and each functional module in the database
is calculated and statistically assessed (e.g., using the Fisher exact test and
multiple hypothesis correction). The advantages of ORA are simplicity,
relatively quick run times, and availability (e.g., through theDAVID Bioin-
formatics Resources [109] or Enricher tool [110]). Because thesemethods
rely on afixed threshold, they disregard differences in the extent of differ-
ential regulation and do not consider weakly, but consistently regulated
proteins/genes.

The second class of algorithms are FCS approaches. The most prom-
inent of these methods is the traditional and still commonly used gene
set enrichment analysis (GSEA) [111]. Here, the proteins are ranked
based on a continuous protein-level metric (such as fold-change or
SNR), and the enrichment of the functional modules in the database
at the top or the bottom of the ranked list is statistically evaluated.
Beyond the classical assessment of enrichment by the GSEA algorithm,
several alternative module-level statistics have been employed
(e.g., Kolmogorov–Smirnov statistic, sum, mean, or median, and the
maxmean statistic) [108]. The advantages of FCS methodologies are that
they do not rely on fixed thresholds and the correlation structure (be-
tween genes) can be taken into account by the employed permutation-
based significance tests, depending on the null hypothesis under
consideration.

The third type of approach, PT, goes beyond the FCS approach by
taking the actual topology of the pathways/modules into account. For
example, the signaling pathway impact analysis (SPIA) combines two
types of evidence to assess the perturbation of a signaling pathway: a
classical overrepresentationmeasure and a topology-dependentmeasure
of the abnormal perturbation of the pathway, which takes the actual
wiring of the pathway into account. A second PT algorithm, the network
perturbation amplitude (NPA) approach scores the activation of a given
causal biological network model [112]. Here, the employed causal net-
work models consist of two tiers. The upper tier (backbone) is similar
to a classical pathway diagram causally describing a specific biological
process (e.g., NF-kB activation). The nodes in this network are causally
linked to downstream gene expression nodes in the lower tier. These
links describe the causal effect (positive/negative) of a given backbone
node on the gene expression of a lower tier node. For the actual calcula-
tion of NPA scores, the observed gene expression changes are mapped
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onto the lower tier. The topology of the backbone network is then consid-
ered together with the direction of the links between the tiers to quanti-
tatively summarize whether the expression changes of the downstream
nodes are overall consistent with pathway activation, inactivation, or no
change. For example, this approach could closely recapitulate the exper-
imentally measured activation of NF-kB in TNFα-stimulated human
bronchial epithelial cells. The increased availability of high-quality,
context-specific network models will broaden the applicability of these
PT approaches in the future [108].

1.2.2.4. Application to proteomic data. Although all these methods
have been initially devised for gene expression data, proteomic
datasets can be analyzed with the same algorithms and functional
gene/protein module databases. For example, Gharib et al. used
GO-term enrichment to compare the BALF proteomes of human and
mice and identified shared (e.g., protease inhibitor activity) and distinct
(e.g., antioxidant activity) functional processes [113]; Chin et al. used
GSEA to identify proteome alteration in mouse models of Parkinson's
disease [114].

1.2.2.5. Interpretation of results. Themain challenge for the interpretation
of results from these methods is often the high overlap (and partial
redundancy) of the protein modules. Enrichment maps have been
presented as a solution to better visualize enriched gene sets/modules
and their relationships (Fig. 2, right panel) [115]. Here, the enrichment
results are presented as a similarity network,where the nodes represent
gene sets, the links the overlap between sets, and the node color
encodes the enrichment strength. The usefulness of this approach for
the analysis of a proteomic dataset is highlighted by a recent study on
dilated cardiomyopathy by Isserlin et al. [116]. In this study, the enrich-
ment maps supported the interpretation of proteomic changes at an
early- and mid-stage time point of the cardiomyopathy model and
identified a strong up-regulation of apoptosis, proteasome and RNA
processing/splicing apparatus at the mid-stage time point. In another
example, Meierhofer et al. demonstrated the power of protein set anal-
ysis to gain insights into the regulation of cell and tissue homeostasis
during high-fat diet feeding and medication with two anti-diabetic
compounds [117]. GSEA allowed for more sensitive detection of low-
level but coordinated protein expression changes, and the functional
modules showed a higher correlation than individual genes/proteins
when comparing proteomics and transcriptomics data.

1.2.3. Deriving insights through network analyses
As discussed in the previous section, the functional categorization of

genes/proteins into functional classes is an effective approach to system-
atically and functionally understand effects in biological systems [118].
An evenmore holistic viewpoint is taken by network biology approaches
[119]. Here, the biological entities (e.g., transcripts, proteins) are viewed
as the nodes of complex, interconnected networks. The links between
these nodes can represent actual physical associations (e.g., protein–
protein interactions) or functional interactions (e.g., proteins involved
in the samebiological process). For example, network biology approaches
can highlight highly perturbed protein subnetworks that warrant further
investigation [120]; they help to understand themodular organization of
the cell [119], and can be applied for improved diagnostics and therapies
[121,122].

1.2.3.1. Biological network models. Comprehensive and high-quality bio-
logical network models are the basis for these analyses. The available re-
sources for networkmodels differ in their scope, quality, and availability.
The STRING database is one of the most comprehensive, freely available
databases for functional protein–protein links for a broad range of species
[123]. It is based on aprobabilisticmodel that scores each link based on its
experimental or predicted support from diverse sources such as physical
protein interaction databases, textmining, and genomic associations. The
Reactomedatabase is amanually curated databasewith a narrower scope
of human canonical pathways [124]. Recently, however, Reactome data
have been supplemented with predicted functional protein associations
from several sources including protein–protein interaction databases
and co-expression data (Reactome Functional Interaction network)
[125]. Several commercial curated network databases exist including
KEGG, the Ingenuity® Knowledge Base and MetaCore®. At its core, the
KEGG database provides metabolic pathway maps but more recently
has added pathways of other biological processes (e.g., signaling path-
ways) [126]. The Ingenuity® Knowledge Base and MetaCore® are com-
prehensive resources for expert curated functional links from the
literature, and are also often employed for the analysis of proteomic
datasets [127–129]. These databases are well suited for generic network
analyses. However, currently, their coverage of relevant mechanisms is
often insufficient for tissue- and biological context-specific modeling
approaches. For this, specific mechanistic networkmodels curated by ex-
perts of the specific field of study are required. Very detailedNfKBmodels
are examples that recapitulate complex signaling and drug treatment re-
sponses [130]. For systems toxicology applications, we have developed
and published a collection of mechanistic network models [131]. These
models range from xenobiotic, to oxidative stress, to inflammation-
related, and to cell cycle models [132–135]. The networks are described
in the Biological Expression Language (BEL), which enables the develop-
ment of computable network models based on cause and effect relation-
ships [136]. Ensuring high-quality and independent validation of these
network models is especially important when these models are used
within a systems toxicology assessment framework. An effective ap-
proach that has been used for these networks for systems toxicology
makes use of the wisdom of the crowd [137–139]. Here, within the sbv
IMPROVER validation process, the derived networks are presented to
the crowd on a web platform (bionet.sbvimprover.com), and classical in-
centives and gamification principles are used tomotivate the participants
to challenge and improve the presented network models. The results of
this challenge are further discussed in a jamboree session with select
participants, and finally the improved network models are disseminated
for public use.

1.2.3.2. The Cytoscape platform. Although the approaches for possible
network analyses can be overwhelming, they are facilitated by the avail-
ability of the common network analysis software platform Cytoscape
[140]. At its core, Cytoscape allows for import, annotation, visualization,
and basic analysis of molecular interaction networks. However, its func-
tionality is expanded by many plugins/apps for extended data visualiza-
tion, handling, and analysis capabilities. Saito et al. provided a “travel
guide” to Cytoscape plugins [141]. Common analysis workflows involve
the identification of functional protein networks for differentially
expressed proteins or the identification of especially strongly perturbed
regions (modules) in biological networks.

1.2.3.3. Functional context networks. To understand the biology altered
under a specific condition, it is often helpful to visualize and analyze
how the differentially expressed proteins are functionally connected
and whether they form specific functional clusters. Several Cytoscape®
apps support this integration of protein lists with different functional
network resources. The Reactome Functional Interaction (FI) app
(Reactome FIs) allows construction of a subnetwork of the extensive
Reactome FI network for a given set of genes/proteins [125]. For exam-
ple, Chen et al. used Reactome FI for data interpretation of an integrative
personal omics profile from a single individual over a 14-month period
[142]. The Agilent Literature Search plugin generates biological net-
works for protein lists based on queries of the scientific literature
[143]. Outside the Cytoscape environment, the String database directly
allows network generation of protein sets and provides basic analysis
tools of the generated networks including clustering and functional
enrichment analyses. Similar functional network analyses are also a
central component of the commercial Ingenuity and MetaCore analysis
tools [127–129]. For example, Chang et al. used Ingenuity Pathway
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Analysis (IPA) to identify central network components among protein
changed during the course of acute respiratory syndrome [144]. Muller
et al. attempted to compare howgood IPA and the String database are at
recovering well known pathways such as Wnt and insulin signaling
[145]. Using manually defined protein input lists, both tools performed
equally well, but it should be noted that only well studied and single
pathways were tested, which does not necessarily reflect a real-life
complex biological response.

1.2.3.4. Activated sub-networks. These functional context network
approaches can be referred to as bottom-up strategies to construct net-
works for protein lists. Another set of approaches employs top-down
strategies. These approaches start with the entire biological network
and aim at identifying network regions (sub graphs) with a significant
enrichment of differentially expressed proteins. The benefit of these
methods is that they do not necessarily rely on strict cutoffs (e.g., of
p-values) for the definition of protein lists; they can take more of the
global topology of the network into account and be more globally evalu-
ated for statistical significance. The first such algorithm, which is still in
common use and available as a Cytoscape plugin (jActiveModules), was
publishedby Ideker et al. [120]. Here, p-values for differentially expressed
genes/proteins are transformed into z-scores, and these are integrated
into a subnetwork score. Then a simulated annealing algorithm is applied
to identify high-scoring subnetworks. In the original publication, this
allowed identification of several high scoring subnetworks with good
correspondence to known regulatory mechanisms in yeast. In a more
recent example, this algorithmhas been applied to identify activated sub-
networks upon early life exposure to mitochondrial genotoxicants [146].
Chuang et al. extended this approach by defining sample-wide subnet-
work activity values, which are compared across sample classes to derive
a discriminative potential for the subnetwork [147]. Subnetworks that
maximize this measure are identified with a greedy search and their
significance assessed based on permutated subnetworks. Strikingly,
these subnetworksweremore predictive for the classification of themet-
astatic potential of cancer samples than classical individual genemarkers.
Owing to the heuristic search component of these algorithms, finding the
optimal solution is not guaranteed. In contrast, the algorithm by Dittrich
et al. uses an integer linear programming approach to identify subnet-
works with optimal scores (available through the BioNet package for
the R statistical environment) [148,149]. More recent approaches include
an approach optimized for large-scale weighted networks (available as a
Cytoscape plugin, GeNA) [150], a Markov random field-based method
[151], the Walktrap random walk-based algorithm [152], and the
DEGAS method. Finally, NetWeAvers is a recently developed algorithm
specifically for the analysis of differentially regulated proteins in a
network context [153].

As for the other discussed methods, although primary method pub-
lications commonly report a limited comparison between the new and
established methods, more systematic and independent comparisons
are often lacking. With this, it is difficult to select the best method for
a certain analysis task, and we recommend evaluating a few of these
methods against case-specific performance metrics.

1.2.4. Deriving insights through data integration
Even the most comprehensive omics dataset represents only one

viewpoint of the complex biology under study. Integration of different
datasets and data modalities (e.g., transcriptomics and proteomics
data) can yield a more comprehensive picture and build up confidence
in the obtained results.

1.2.4.1. Data repositories.One basic question is how to obtain data to inte-
grate. Data repositories and integration approaches are much more
evolved for transcriptomics than proteomics data. Published transcripto-
mics data are routinely deposited into the GEO repository of the NCBI
[154] or the ArrayExpress database of the EBI [155]. These repositories
allow for convenient searches, data download or even basic web-based
data analyses of thedeposited data. In contrast, data repositories for pro-
teomics data went through a long period of instability, which included
the closure of major sites such as NCBI Peptidome and Proteome Com-
mons Tranche [156]. Only recently, the PRIDE database has emerged as
the central, commonly supported repository for proteomics data [157].
PRIDE provides a convenient search interface, basic data visualization
and analysis capabilities, and allows the user to download MS files for
further analyses. However, currently quantitative data are not fully
supported by the PRIDE database. This gap is partly filled by the
MOPED database [158], which has a smaller scope, but provides access
to consistently processed proteomics datasets including absolute and
relative quantitation values.

1.2.4.2. Proteomic vs. transcriptomic data. The first integrative studies
evaluated the direct correlation of protein and mRNA expression levels
within the same experimental system. As expected, owing to the addi-
tional levels of regulation acting on proteins, only a limited correlation
between transcriptomic and proteomic data was commonly observed
[5]. For example, relative steady-state protein and mRNA abundances
correlated only partially in three human cell lines (Spearman correla-
tion = 0.63) [159]. Overall, it has been found that regulation of post-
transcription, translation, and protein degradation contribute as much
to protein variation as the regulation of the transcript level does [160,
161]. In this context, another finding is noteworthy: comparing the con-
servation of transcript andprotein levels across species showed a stronger
conservation of protein levels [162,163]. This partial uncoupling of tran-
script and protein levels further emphasizes the need for an integrative
analysis of transcriptomics and proteomics data. Moreover, the stronger
conservation of protein levels suggests a higher translatability between
species.

1.2.4.3. Integration approaches. Transcriptomics and proteomics data
can be integrated at different biological levels ranging from individual
molecules (proteins/transcripts) to functional modules to biological
networks (Fig. 3, right panel). Themost basic, but reasonable first data in-
tegration approach is the intersection of differentially expressed gene/
protein lists (e.g., [164,165]). However, p-values of differential expression
can also be integrated directly. The advantage of this approach is that con-
sistently, but weakly regulated molecules across datasets can be identi-
fied. Traditional approaches for the integration of p-values (or z-scores)
are Fisher's [166] and Stouffer's [167] method and Brown's method for
the integration of dependent p-values [168]. Integration at the functional
module- (pathway-, gene set-) level can reveal similarities that are not
apparent at the level of individual biomolecules. For example, Buschow
et al. conducted an integrated transcriptomics/proteomics analysis to
study the activation of dendritic cells (DC).While only limited correlation
at the level of individual transcripts and proteinswas observed, the corre-
lation for relevant DC activation pathways was significantly higher [165].
Kaever et al. presented a general framework for the meta analysis of
p-values obtained frompathway enrichment analyses for transcriptomics
andmetabolomics data [169]. Moreover, data can be integrated at the bi-
ological network level. For example, Nibbe et al. used a proteomics-first
approach to integrate proteomics and transcriptomics data for the identi-
fication of functional subnetworks in colorectal cancer (CRC) [170]. First,
candidate subnetworks were identified by mapping differentially
expressed proteins in CRC samples onto a human protein interaction
network. Subsequently, independent transcriptomics datasets were
employed to identify those (proteomics-defined) subnetworks that
were significantly associated with the tumor/normal classification.
Finally, different integration approaches can be combined. For example,
Balbin et al. generated transcriptomics, proteomics, and phospho-
proteomics profiles for KRAS-mutated non-small cell lung cancer cell
lines [171]. These three data sources were first integrated using an
approach based on Stouffer's method. Subsequently, a network-based
approach was used to identify a novel targetable subnetwork in KRAS-
dependent CRC cell lines centered on LCK kinase.
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1.3. Applying proteomics for systems toxicology

1.3.1. Proteomics in the EU framework 6 project
Suter et al. characterized the effect of 16 test compounds using con-

ventional toxicological parameters in the integrated EU Framework 6
Project: Predictive Toxicology (PredTox) [172]. The project, partly funded
by the EU, was performed by a consortium of 15 pharmaceutical compa-
nies, 2 private companies, and 3 universities. The three major observed
toxicities, liver hypertrophy, bile duct necrosis and/or cholestasis, and
kidney proximal tubular damage, were analyzed in detail. The outcome
of this program indicates that omics technologies can help toxicologists
make better-informed decisions during exploratory toxicological studies.

The compounds included 14 proprietary drug candidates from partic-
ipating companies and 2 reference toxic compounds: gentamicin and
troglitazone. Following 2-week exposure in rats, conventional toxicolog-
ical endpoints were collected, and transcriptomics, proteomics, and
metabolomics profiles were evaluated.

Most of the proteomics data that were supportive of themechanistic
hypothesis were based on tissue proteomics (2D-DIGE). This technology,
despite offering relatively low throughput, provided valuable information
that was complementary to other data sources. The authors concluded
that themain changes that led to amechanistic interpretation of the find-
ings were similarly interpreted using different statistical and pathway
mapping tools, highlighting the robustness of the outcome. With this,
the authors strongly supported the use of these data for confirmation of
mechanistic hypotheses and discovery of putative biomarkers as very
tangible outcomes of integrated omics analysis.

1.3.2. Proteomics for liver toxicity determinations
Drug-induced liver injury is a leading cause of acute liver failure,

thus constituting a major reason for drug candidate failure during devel-
opment or withdrawal from themarket. Because of drug-related toxicity,
many drug candidates that may otherwise be potentially efficacious in
the treatment of diseases have been discontinued; this represents a
major setback to a larger population, whichmay benefit from further de-
velopment of these drug candidates. In addition, from the pharmaceutical
industry's perspective, the resultant regulatory actions have increased
development costs tomeet acceptable safety requirements. Troglitazone,
a once-marketed first-generation thiazolidinedione used for the treat-
ment of type-II diabetes mellitus, was withdrawn from the market
owing to unacceptable idiosyncratic hepatotoxicity risks even though
troglitazone did not cause hepatotoxicity in normal healthy rodents and
monkeys in preclinical drug safety assessments and long-term studies.

To understand idiosyncratic hepatotoxicity mechanistically, Lee
et al. used MS-based proteomics to characterize mitochondrial protein
changes to track the involvement of specific mitochondrial proteins in
troglitazone-induced hepatotoxicity in a mouse model [173].

By combining high-throughput MS-based mitoproteome-wide
profiling, biochemical endpoints, and network biology, the authors
demonstrated that the hepatic mitochondrial proteome followed a
two-phase response to repeated troglitazone administration that culmi-
nated in liver injuries by the fourth week. This integrative approach
identified the combined deterioration of key fragile nodes and a dys-
functionalmitochondrial GSH transport system that lead to the eventual
toxicity of troglitazone. They concluded that this approach might
Fig. 3. Impact of cigarette smoke exposure on the rat lung proteome. (A) Summary of rat exposu
Heatmap shows significantly altered proteins (FDR-adjusted p-value b 0.05) in at least one ciga
biological replicates), and the log2 fold-change expression values compared with sham (f
concentration-dependent gene set perturbation by cigarette smoke and a partial recovery
(−log10 adjustedp-value) of up- (red) and down- (blue) regulatedproteinswith gene sets. Sel
ed for three different clusters. (D) Functional interaction network of significantly up-regulat
xenobioticmetabolism, response to oxidative stress, and inflammatory response. (E) Overall, th
changes were measured for the same lung tissue samples and compared with the protein expr
lation (signed−log10 q-value) for the identified protein clusters and exposure conditions. The
regulation of themRNA transcript upon 90-day smoke exposure (q-value b 0.05). Note that—wh
mRNA up-regulation.
represent a powerful step forward in using a systems toxicology ap-
proach to advance the understanding of the risk factors of idiosyncratic
toxic drugs.

Overall, as discussed byVan Summeren et al.,many studieswithin the
last 5 years have successfully employed proteomic approaches to identify
mechanisms and biomarkers of drug-induced hepatotoxicity [174] (see
Table. 2). These studies performed proteomic analysis on different sub-
sets of proteins such aswhole tissue; cellular fractions, such asmitochon-
dria, endoplasmic reticulum, microsomes, and serum/plasma; and also
employed in vitro systems for proteomic analysis. Van Summeren et al.
are generally optimistic that proteomic analysiswill aid in the description
of toxicitymechanisms. Proteomics investigations revealed promising re-
sults upon the classification of hepatotoxic compounds and showed op-
portunities for the identification of protein biomarkers underlying this
classification. However, the detection of idiosyncratic hepatotoxicants
with the currently available in vitromethods will remain challenging be-
cause these reactions are unpredictable and mostly immune mediated.
For non-idiosyncratic hepatotoxicants, proteomics can be used to gain in-
sight into themechanistic processes underlying drug-inducedhepatotox-
icity. Despite these promising results with a toxicoproteomics approach,
the development of a panel of biomarkers will require the testing of sev-
eral well-characterized model hepatotoxicants. The authors state that by
testing classified compounds, common patterns of toxicity can be distin-
guished from compound-specific mechanisms. Importantly, in their
opinion, the value of proteome data can be increased by comparison
with data from complementary transcriptomics and metabolomics ex-
periments using a systems biology approach.

1.3.3. Proteomics in pulmonary toxicology: 90-day rat inhalation study to
assess the effects of cigarette smoke exposure on the lung proteome

Proteomic analyses are an important component of our overall sys-
tems toxicology framework for the assessment of smoke exposure effects.
Within our comprehensive assessment framework, both proteomics and
transcriptomics analyses complement the more traditional toxicological
parameters such as gross pathology and pulmonary histopathology as re-
quired by the OECD test guideline 413 (OECD TG 413) for a 90-day sub-
chronic inhalation toxicity study. These systems-level measurements
constitute the “OECD plus” part of the study [175] and provide the basis
for deeper insights into toxicologicalmechanisms,which enable the iden-
tification of causal links between exposure and observed toxic effects as
well as the translation between different test systems and species (see
Introduction).

Here, we report on the high-level results for the proteomic compo-
nent of a 90-day rat smoke inhalation study. Sprague Dawley rats were
exposed to fresh air or two concentrations of a reference cigarette
(3R4F) aerosol [8 μg/L (low) and 23 μg/L (high) nicotine] for 90 days
(5 days perweek, 6 h per day) (Fig. 3A). This exposure periodwas follow-
ed by a 42-day recovery period with fresh air exposure. Lung tissue was
collected and analyzed by quantitativeMS using amultiplexed iTRAQ ap-
proach (6 animals per group). At the level of individual differentially
expressed proteins, the 90-day cigarette exposure clearly induced
major alterations in the rat lung proteome comparedwith fresh air expo-
sure (Fig. 3B). These alterations were significantly attenuated after the
42-day recovery period. The high 3R4F dose showed an overall higher
impact and remaining perturbations after the recovery period than the
re study. (B) Tobacco smoke exposure showed strong overall impact on the lung proteome.
rette smoke exposure condition. Each row represents a protein, each column a sample (six
resh air) exposure is color-coded. (C) Gene set enrichment analysis (GSEA) shows a
after 42 days of fresh air exposure. The heatmap shows the significance of association
ect gene sets enriched for up-regulated proteins by cigarette smoke exposure are highlight-
ed proteins upon cigarette smoke exposure shows affected functional clusters including
e identified functional clusters show correspondingmRNA upregulation.mRNA expression
ession changes. The heatmap compares differential protein (left) and mRNA (right) regu-
bar plot indicates the percent of the genes that show consistent, statistically significant up-
ile overall consistent—the “translation” and “unfolded protein response” clusters show less



Table 1
Resources for the analysis of proteomics datasets.

Tool Comment References/links

MS raw data processing Trans-Proteomic Pipeline Flexible workflows for MS raw data processing tools.proteomecenter.org/software.php
[33]

CPAS MS raw data processing www.labkey.org
[34]

OpenMS Flexible workflows for MS raw
data processing

www.openms.de
[35]

MaxQuant Integrated package for quantitative
proteomics analysis

www.maxquant.org
[36]

Sequest Spectra to peptide matching [42]
Mascot Spectra to peptide matching [43]
X!Tandem Spectra to peptide matching [44]
OMSSA Spectra to peptide matching [45]
Normalizer Evaluation of data normalization procedures quantitativeproteomics.org/normalyzer

[68]
Protein-by-protein UniProt KB Comprehensive protein database www.uniprot.org

[83]
BioMart Open source database system for

unified access to biological data
www.biomart.org
[84]

neXtProt Database for human proteins www.nextprot.org
[85]

PhosphoSite Comprehensive phospho-protein database www.phosphosite.org
[86]

NetPhorest Database of phosphorylation-specific
sequence-based classifiers

netphorest.info
[87]

STITCH Database of chemical–protein interactions stitch.embl.de
[88]

T3DB Database of toxins and toxin-target links www.t3db.org
[89].

iHOP Database of text-mined protein–protein and
protein–concept links

www.ihop-net.org
[92]

EBIMed Text-mining tool www.ebi.ac.uk/Rebholz-srv/ebimed/
[93]

SciMiner Text-mining tool jdrf.neurology.med.umich.edu/SciMiner
[94]

PolySearch Text-mining tool wishart.biology.ualberta.ca/polysearch/
[95]

Functional modules DAVID Comprehensive functional classification
resource (ORA method)

david.abcc.ncifcrf.gov
[109]

Enricher Comprehensive functional classification
resource (ORA method)

amp.pharm.mssm.edu/Enrichr
[110]

TOPPGene Comprehensive functional classification
resource (ORA method)

toppgene.cchmc.org
[209]

GSEA Classical FCS module enrichment method www.broadinstitute.org/gsea
[111]

SPIA Topology-based pathway enrichment method [210]
Piano Module enrichment package for the R environment www.sysbio.se/piano

[100]
mSigDB Comprehensive gene set database www.broadinstitute.org/gsea

[101]
GeneSigDB Database of gene sets manually curated from the literature www.genesigdb.org

[105]
PAGED Integrated gene set database bio.informatics.iupui.edu/PAGED

[106]
Network analyses String DB Database of confidence scored functional

protein interactions
string.embl.de
[123]

KEGG DB Pathway database www.genome.jp/kegg
[102]

Ingenuity Pathway Analysis Commercial knowledgebase and functional
analysis system

www.ingenuity.com

Metacore Commercial knowledgebase and functional
analysis system

thomsonreuters.com/metacore

Reactome FI Extended Reactome functional interaction
database (Cytoscape plugin available)

www.reactome.org
[103,125]

Agilent Literature Search tool Cytoscape plugin for text-mining analysis www.agilent.com/labs/research/litsearch.html
jActiveModule Cytoscape plugin for the identification of

network modules
apps.cytoscape.org/apps/jactivemodules[120]

Data integration Pride Repository for MS data www.ebi.ac.uk/pride
[157]

MOPED Repository for MS data www.kolkerlab.org/projects/statistics-bioinformatics/moped
[158]

POINTILLIST Integration of p-values magnet.systemsbiology.net/software/Pointillist/
[211]
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Table 2
Hepatotoxic studies using proteomic endpoints.

Species Compound Cells/organelles Technique Observations Reference

In vivo
Rat Troglitazone Total liver DIGE Differential expression of proteins from fatty acid metabolism,

PPARa/RXR activation, oxidative stress and cholesterol biosynthesis
Boitier et al. (2011) [212]

Mouse Troglitazone Liver/mitochondria iTRAQ/MALDI-TOF Mitochondrial proteome shift from an early compensatory response
to an eventual phase of intolerable oxidative stress.

Lee et al. (2013) [173]

Rat Z24 Plasma 2DGE Differential expression of proteins from biotransformation,
apoptosis, carbohydrate, lipid amino acid and energy metabolism

Wang et al. (2010) [213]

In vitro
Human Bezafibrate Primary

hepatocytes
2D-LC/MALDI-TOF BEZA treatment modulated lipid and fatty acid metabolism/transport

and cellular stress
Alvergnas et al. (2011) [214]

Human Acetaminophen
Amiodarone
Cyclosporin A

HepG2 DIGE Differential expression of secreted proteins and ER-Golgi transport proteins van Summeren et al. (2011) [215]

Human Ethanol Secretome of
HepG2/C3A

LC–MS Differential expression of proteins from apoptosis,
inflammation and cell leakage

Lewis et al. (2010) [216]

Human Di(2-ethylhexyl)
phthalate

Secretome of
HepG2

2DGE Differential expression of proteins from cell structure,
apoptosis and tumor progression

Choi et al. (2010) [217]

Abbreviations: DIGE, difference gel electrophoresis; 2DGE, two-dimensional gel electrophoresis; LC, liquid chromatography;MALDI,matrix-assisted laser desorption ionization; TOF, time-
of-flight; MS, mass spectrometry.
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low 3R4F dose. GSEA can support the identification of affected biological
functions and potentially allows for the more sensitive detection of low,
but concerted alterations. Applying GSEA to this dataset overall recapitu-
lated the results observed for individual differentially expressed proteins:
an increase in the number of significantly affected gene sets from low to
high 3R4F exposure and an overall decrease after the 42-day recovery
period. Visually the recovery for the high 3R4F exposure appears more
pronounced on the protein- than gene-set level. However, one functional
class cluster remained significantly (positively) altered even after the
42-day recovery period. Gene sets in this cluster include neutrophil
granule constituents and up-regulated genes in acute lung injury,
which indicate a less reversible perturbation of these processes. Two
other gene-set clusters were strongly up-regulated by 3R4F exposure
at 90 days, but reverted back after the recovery period. These clusters
contained gene sets related to both metabolic and inflammatory pro-
cesses including oxidative phosphorylation, electron transport chain,
fatty acid metabolism, mast cell, and myeloid cell development gene
sets. In this context, the complexities of the interpretation of GSEA re-
sults are worth noting. Often gene sets describe an unrelated biological
process, and the observed enrichment is based on a common shared
component of the biological response. For example, in these clusters
an up-regulated tumor field effect gene set is enriched. Although the
name implies a cancer-specific process, this gene set is dominated by
a macrophage signature in the tumor stroma, which further supports
the activation of inflammatory processes upon smoke exposure in our
system. With this, GSEA can both capture the overall global response
to an exposure and specifically highlight affected biological functions
(here, inflammation- and metabolism-related processes). The detailed
interpretation of GSEA results is challenging owing to the large number
of affected, overlapping gene sets that are not necessarily specific to the
process under investigation.

As discussed above, methods such as enrichment maps have been
developed [115] that facilitate the interpretation of complex GSEA
result sets. Here, we complement GSEA with a functional network
approach, which supports the identification and interpretation of
perturbed functional modules (Fig. 3D). The main idea is to reduce the
complexity of data interpretation by first linking the selected proteins
by their functional protein interactions and then identifying and func-
tionally interpreting the emerging functional clusters. Specifically, we
make use of the STRING database, which is a comprehensive resource
of confidence-scored functional protein interactions based on a range of
evidence including pathway databases, text-mining, and co-expression
(see above) [123]. From the functional interaction network derived for
the proteins significantly up-regulated upon 90-day high 3R4F exposure,
several functional clusters clearly emerge (Fig. 3D). These include the
expected up-regulation of xenobiotic metabolism and oxidative stress
response proteins and of proteins associated with an inflammatory
response [135,132]. Another component of the stress response is the
up-regulation of proteins related to the unfolded protein response
(UPR). This response has been previously reported and is thought to
reflect a compensatory mechanism to cope with the adverse impact of
oxidative stress on protein folding in the endoplasmatic reticulum [176,
177]. Finally, several metabolism clusters are up-regulated including
oxidative phosphorylation and fatty acid oxidation, which is in line with
the GSEA results. This likely reflects the major metabolic alterations
that are triggered in response to smoke exposure, e.g., to cope with the
altered oxidative balance. For example, Agarwal has recently investigated
metabolic changes in mouse lungs upon short-term cigarette smoke ex-
posure and also found up-regulation of oxidative phosphorylation [178].
Here, the authors suggested that this is part of an overall metabolic
switch, which involves down-regulation of glycolysis, up-regulation of
the pentose-phosphate pathway for increased NADPH generation, and a
compensatory increase in themitochondrial energy-transducing capacity.
Interestingly, in this context the observed up-regulation of fatty acid oxi-
dation could play a similar role.

Finally, we compared the differential expression response of the pro-
teins in the identified clusters and their corresponding mRNA transcripts
(Fig. 3E). Overall, these functional clusters demonstrate consistent up-
regulation of the mRNA transcripts. While this is generally in line with
the remark by Lefebvre et al. that in equilibrium the proteome generally
reflects the transcriptome [179], clear differences between mRNA and
protein expression exist. For example, we observe differences in the reg-
ulation of the functional clusters: whereas protein up-regulation of the
xenobiotic cluster is well reflected on the mRNA level, no significant
mRNA up-regulation is detected for the translation and unfolded protein
response cluster. For example, among the proteins in the latter clusters
are TPT1 (Tumor Protein, Translationally-Controlled 1) and Grp78
(Hspa5) – two proteins known to be posttranscriptionally regulated
[180,181].

In summary, we have conducted a 90-day rat smoke exposure study
including a 42-day recovery period. Although the quantitative proteomic
analysis of lung tissue is only one component of our comprehensive as-
sessment strategy within an overarching systems toxicology framework,
it already provides an extensive view of the biological impact of cigarette
smoke exposure. Globally, the impact of cigarette smoke on the protein
and gene set level and the extent of recovery after subsequent 42-day
fresh air exposure are apparent. Here, we especially highlight the inflam-
matory, xenobiotic metabolism, and oxidative stress response. Impor-
tantly, these results complement the conclusions from our recent
transcriptomic analysis for a 28-day rat cigarette smoke inhalation
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study [175]. Moreover, the direct comparison with transcriptomic data
for the 90-day rat study revealed overall consistency between the
mRNA and protein response, but also highlighted relevant differences
likely due to posttranscriptional regulation. In addition, we provide
further evidence for the complex compensatory metabolic switch in re-
sponse to cigarette smoke exposure, which involves the up-regulation
of oxidative phosphorylation and fatty acid oxidation enzymes, possibly
to cope with the changing cellular energy requirements [178].

1.3.4. Phosphoproteomics for toxicological assessment
Global expression proteomicsmainly captures the alterations in effec-

tor functions that copewith a specific cellular stress (e.g., up-regulation of
xenobiotic enzymes) and gross alterations in the tissue composition
(e.g., invasion of immune cells). Cells use a sophisticated signaling net-
work to sense and process cellular stresses and changes in this network
can be considered early indicators of a toxicological stress. Of themethods
for the analysis of signaling networks, phosphoproteomics can be consid-
ered themost established (see above), but only a fewstudies have already
used this technique to assess toxicological mechanisms.

Caruso et al. employed a systems toxicology approach to assess the
impact of mercury on a B lymphocyte cell model [182]. Mercury is a po-
tent neurotoxin, but has also been found to contribute to autoimmune
diseases at low concentrations, which do not invoke neurotoxicity. To
further understand this phenomenon, the authors exposed WEHI-231
cells, a murine B-cell line, for 10 min with mercury and conducted a
mass-spectrometry based phospho-proteome analysis. Interestingly, the
B cell receptor pathway with the Lyn kinase as the key node was identi-
fied as the most affected signaling pathway. This finding was followed
up with a targeted mass-spectrometry assay and the involvement of
Lyn was confirmed. From this, the authors concluded that Lyn could
represent an important contributor to mercury induced autoimmune
diseases.

Chen et al. used quantitative expression and phospho-proteomics to
analyze the cellular response to the alkylating model chemical MNNG
(N-methyl-N′-nitro-N-nitrosoguanidine) [183]. They focused on the
nuclear (phospho-) proteome and compared the response of a lab-
generated cell line pair. Both cell lines had a defect in a direct detoxifi-
cation enzyme for MNNG (MGMT), but in addition one cell line was
deficient in the mismatch repair system (MMR). Chen et al. and found
a larger phosphorylation response in the MMR proficient cell line and
identified a signaling response network that involved ATM/ATR, CDK2,
Casein kinase II, and MAP kinases.

Pan et al. employed a phospho-proteomic strategy to analyze and
better understand the impact of deoxynivalenol (DON) on the mouse
spleen [184]. The mycotoxin DON is frequently found in human an
animal food and shows immunotoxic effects that are associated with a
ribotoxic stress response. Quantitative phospho-profiling revealed 90 dif-
ferentially regulated phosho-proteins upon DON exposure. Both the
MAP-kinase and PI3K/AKT signaling axes were affected and several addi-
tional pathways that likely contribute to immune dysregulation were
identified. From this, the authors concluded that phospho-proteomics
helped to further unravel the complex effect of DON on the immune sys-
tem and their study will serve as a template to better understand the
toxic effects of DON in the future.

1.4. General discussion and future prospects

1.4.1. The future of systems toxicology
Framed in a systems analysis context, physiological homeostasis is

maintained by a hierarchy of functional domains (genetic sequence,
gene transcription, transcriptional regulation, protein function and in-
teraction, organelles, cells, and organs) that are interconnected at each
level of functional organization and across levels [185]. Exposure to
chemicals and xenobiotics may simply be viewed as a perturbation
that alters this system. Thus, an advanced mechanistic understanding
of exposure effects requires systems toxicology approaches that capture
these effects on different levels of this hierarchy and eventual integrate
them into quantitative (and predictive) mathematical models [4]. This
perspective is already a central element of the EU framework 6 program
to further aid the understanding of themechanisms of drugs actions and
drug-mediated toxicities [186]. An example is the creation of joint data
repositories for the complex datasets generated by a number of EU pro-
jects, which include aging- or toxicology-related projects assembling
genomic, transcriptomic, proteomic, and functional data from a variety
of models.

In the context of chemical risk assessment,Wilson et al. especially em-
phasize the need for integrative systems-level studies (e.g., proteomics,
metabolomics, transcriptomics) to generate hypotheses and test mecha-
nisms of action, which are then used as supporting information for a
particularmode of action in EPA risk assessment [187]. Overall, such inte-
grative approaches will be instrumental in understanding the complexi-
ties of toxicokinetic and toxicodynamic steps in multiple, and possibly
interacting, pathways affected by a single chemical or mixtures of
chemicals in human health risk assessment.

1.4.2. The future of proteomics in systems toxicology
Mass spectrometry-based proteomics methods are evolving rapidly

toward higher sensitivity, higher throughput, higher coverage, and
highly accurate quantification, and thuswill constitute a central compo-
nent of future integrative systems toxicology approaches [188]. Specif-
ically, these advances include new highly accurate and fast mass
spectrometer instruments [189–191]; improvedmethods andmuch ex-
panded resources for targeted proteomic measurements (SRM, PRM)
[192] [193] [194]; the novel (still exploratory) SWATH technology,
which combines the strengths of targeted (sensitivity, dynamic range)
and untargeted measurement principles (coverage) [195]; and advances
in label-free quantification approaches [196]. Considering these advances,
it has recently been suggested by Aebersold et al. that—at least for the
analysis of proteins—it is “time to turn the tables” [197]: MS-based mea-
surements are now more reliable than classical antibody-based western
blot methods and should be considered the gold standard method of
the field.

WithMS instrumentation becomingmore andmoremature, VanVliet
especially emphasized the need to further develop computational analy-
sis tools for toxicoproteomic data including data integration and interpre-
tation methods [198]. Analysis methods developed for transcriptomic
data such as GSEA [111] have already been successfully used in several
proteomic studies. However, when developing (or applying) analysis
methods for proteomic data, it is important to keep the main differences
between transcriptomic and proteomic data in mind. These include sam-
pling differences (sampling biases, missing values) [199,200], differences
in the coverage of proteomic and transcriptomic measurements [199],
and the fundamentally different functional roles andmodes of regulation
of proteins and mRNAs.

For example, improving the integration of transcriptomic and prote-
omics data for toxicological risk assessment has been identified as an
important topic for future computational method development [198,
201]. In this review,we have presented several possible data integration
approaches including some that have already been successfully applied
for the integration of transcriptomic and proteomic data (see Fig. 2 and
“Deriving insights through data integration” section) [170,171]. Overall,
the question is still open how to best integrate these different data
modalities to reliably summarize the biological impact of a potential
toxicant. However, the concept of Pathways of Toxicity (PoT) [3] com-
bined with a rigorous quantitative framework could guide a solution.
Recently, we have published on a computational method that uses tran-
scriptomics data to predict the activity state of causal biological networks
that fall under the PoT category [202]. It can be imagined that such an ap-
proach can be further expanded by directly utilizing data on (phospho-)
protein nodes in these networks/PoTs measured with proteomic tech-
niques. While proteomic and transcriptomic data can already be consid-
ered as complementary for toxicological assessement (e.g., Fig. 3E),



87B. Titz et al. / Computational and Structural Biotechnology Journal 11 (2014) 73–90
such integrative models would yield truly synergistic results on the
biological impact across biological levels.

In addition, most current toxicoproteomics studies focus on the
measurement of whole protein expression. However, the relevance of
posttranslational modifications such as protein phosphorylation for
toxicologicalmechanisms iswell appreciated and especially the analysis
of phospho-proteomes has matured (see above) [203,204]. With this,
phosphoproteomics (and the measurement of other PTMs) has great
potential to significantly contribute to integrative toxicological assess-
ment strategies in the future.

When using model systems, the crucial question is how the mea-
sured molecular effects translate between species; most importantly,
from animal models to human. For example, Black et al. compared the
transcriptomic response of rat and human hepatocytes to 2,3,7,8-
Tetrachlorodibenzo-p-dioxin (TCDD) and found similarities, but also
significant differences in the response of the two species [205]. Recently,
we have co-organized the species translation challenge. For this, we gen-
erated a cross-species data set, which captures the exposure response of
both human and rat epithelial cells to 52 different stimuli [206]. Themo-
lecular responsewasmeasured both by transcriptomics and by targeted
phospho-proteomics. Within the sbv IMPROVER framework, different
computational groups were engaged to assess the predictability of
exposure effects within and between the two species (Rhrissorrakrai
et al., submitted) [207]. Again, while overall translatability was demon-
strated, the accuracy of translation was stimulus and biological process
dependent. Interestingly, however, for this dataset the phospho-
proteomics measurements demonstrated higher translatability than
the transcriptomics results. For future toxicological applications, it will
be important to further assess the translatability of transcriptomics
and (phospho-) proteomics responses. Especially, it will be interesting
to further evaluate, whether the reported higher conservation of the
proteome vs. the transcriptome holds for relevant toxic challenges [5].

2. Conclusions

Toxicology is increasingly moving beyond the sole measurement of
apical endpoints, and in the future itwill be crucial to gain a better under-
standing of the causal chain of molecular events linking exposures with
adverse outcomes (i.e., apical endpoints) toward improved predictive
risk assessment [4]. Toward this overall goal, systems toxicology com-
bines large-scale measurements (e.g., transcriptomics and proteomics)
with mathematical modeling. As discussed in this review, MS-based pro-
teomics is maturing into a robust technology for the measurement of
proteome-wide exposure effects. The benefits of including proteomic
data to understand exposure effects have already been demonstrated in
several case studies. Although some challenges still exist to make full
use of the richness of proteomic datasets [198,201,208], there is overall
a great opportunity for proteomics to contribute to an improved under-
standing of toxicant action, the linkages to accompanying dysfunction
and pathology, and the development of predictive biomarkers and signa-
tures of toxicity. Assembling a generally accepted, robust, and integrative
systems toxicology assessment frameworkwill benefit fromcollaborative
efforts with the active participation of industry, academia, research insti-
tutes, and regulatory bodies.
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