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Although skull-stripping and brain region segmentation are essential for precise
quantitative analysis of positron emission tomography (PET) of mouse brains, deep
learning (DL)-based unified solutions, particularly for spatial normalization (SN), have
posed a challenging problem in DL-based image processing. In this study, we propose
an approach based on DL to resolve these issues. We generated both skull-stripping
masks and individual brain-specific volumes-of-interest (VOIs—cortex, hippocampus,
striatum, thalamus, and cerebellum) based on inverse spatial normalization (iSN) and
deep convolutional neural network (deep CNN) models. We applied the proposed
methods to mutated amyloid precursor protein and presenilin-1 mouse model of
Alzheimer’s disease. Eighteen mice underwent T2-weighted MRI and 18F FDG PET
scans two times, before and after the administration of human immunoglobulin or
antibody-based treatments. For training the CNN, manually traced brain masks and
iSN-based target VOIs were used as the label. We compared our CNN-based VOIs
with conventional (template-based) VOIs in terms of the correlation of standardized
uptake value ratio (SUVR) by both methods and two-sample t-tests of SUVR %
changes in target VOIs before and after treatment. Our deep CNN-based method
successfully generated brain parenchyma mask and target VOIs, which shows no
significant difference from conventional VOI methods in SUVR correlation analysis, thus
establishing methods of template-based VOI without SN.

Keywords: mouse brain, deep convolutional-neural-network (CNN), inverse-spatial-normalization (iSN), skull-
stripping, template-based volume of interest (VOI)
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INTRODUCTION
18F-fluorodeoxyglucose positron emission tomography (18F-
FDG PET) is a useful imaging technique that enables the
investigation of glucose metabolism-based functional imaging
not only in human brains but also in mouse brains (Som et al.,
1980; Bascunana et al., 2019).

Because mouse brains have different shapes and sizes, spatial
normalization (SN) of individual brain PET and/or magnetic
resonance imaging (MRI) onto standard anatomical spaces is
required for objective statistical evaluation (Ma et al., 2005).
Moreover, we can apply common volume-of-interest (VOI)
templates for spatially normalized individual brain PET and
MR images, which can be directly used without labor-intensive
manual tracing and further can define individual brain-specific
VOIs using inverse transformation of SN.

To do this, PET-based SN (i.e., the SN of individual PET
images onto a ligand-specific PET template) can be conducted,
but SN using PET alone may be vulnerable to local uptake
changes, and disease-specific uptake patterns may not be optimal
compared to SN based on anatomical information. Moreover,
MR-based SN has been preferred to project individual brain
PET and/or MR images into a template space (Ashburner and
Friston, 1999; Gispert et al., 2003) because MRI is independent
of changes in uptake patterns due to diseases in PET images and
is advantageous in terms of anatomical precision.

In human brain studies, many neuroimage analysis tools
including statistical parametric mapping (SPM), FMRIB Software
Library (FSL—Woolrich et al., 2009; Jenkinson et al., 2012), and
Elastix (Klein et al., 2010; Shamonin et al., 2014) have been widely
used to perform SN. However, there are limitations in the use
of these tools in mouse brain research due to various differences
between human and mouse brains, such as the scale, shape, and
image contrast (including distribution of gray matter).

In some human brain studies, the template used for SN was
skull-stripped to avoid potential spatial misregistration due to
soft tissues around the skull and brain (Acosta-Cabronero et al.,
2008). Because most mouse brain templates have been based
on skull-stripped images, skull-stripping has been considered a
prerequisite for the SN of mouse brain MRI and/or PET images
(Fein et al., 2006; Feo and Giove, 2019).

Template-based (also known as atlas-based) brain skull-
stripping and brain VOI segmentation methods in mouse
brain MRIs have shown accurate segmentation performance in

Abbreviations:18F-FDG PET, 18F-fluorodeoxyglucose positron emission
tomography; SN, spatial normalization; MRI, magnetic resonance imaging; VOI,
volume-of-interest; SPM, statistical parametric mapping; FSL, FMRIB Software
Library; MU-Net, multitask U-Net; CNN, convolutional neural network; STNs,
spatial transformer networks; iVOIs, inversely normalized VOIs; CT, computed
tomography; FP-CIT, fluoro-propyl-carbomethoxy-iodophenyl-tropane; AC,
attenuation correction; APP, amyloid precursor protein; PS, presenilin; AD,
Alzheimer’s disease; T2 MR, T2-weighted MR; nanoPM, nanoScan PET/MRI 1
Tesla; FOV, field of view; leaky ReLU, leaky rectified linear unit; Adam, adaptive
moment estimation; DSC, Dice similarity coefficient; ASSD, average symmetric
surface distance; SEN, sensitivity; and PPV, positive predictive value; true positive
(TP); FN, false negative; TN, true negative; FP, false positive; SUV, standardized
uptake value; SUVR, standardized uptake value ratio; VOIDL, DL-generated mask;
VOIiGT, DL label mask; VOIGT, template-based ground-truth VOI; % change,
percentage change.

prior studies (Nie and Shen, 2013; Feo and Giove, 2019). In
these studies, PET or MRI images of individual brains were
registered onto predefined templates of average mouse brains
using affine transformations, occasionally followed by non-linear
registration for more precise registration of the individual brains
onto a brain template. Subsequently, the template brain skull-
stripping results were used as starting (or seeding) points to
define the individual brain skull-stripping and segmentation.
Although these methods were relatively accurate, most of them
were applied semiautomatically, not only resulting in SN with
reduced reliability due to inter- and intrarater reliability issues
(Yasuno et al., 2002; Kuhn et al., 2014) but also involving
a time-consuming process. In addition, degradation of image
quality may occur (in preserving the integrity of the original
voxel intensities), because SN requires spatial transformation
of the images onto a template, which, in turn, requires image
intensity interpolation.

Recently, several deep learning (DL)-based skull-stripping
methods have been studied. Hsu et al. (2020) devised a DL-
based framework to automatically identify mouse brains in MR
images. The brain mask was generated using MR image patches
randomly cropped as input of the 2D U-Net architecture. For
the evaluation of the model, a manually traced brain mask by
an anatomical expert and a brain mask generated by the model
were evaluated by Dice coefficient and Jaccard index and also
positive predictive value and sensitivity, and the results showed
better performance than conventional methods (Chou et al.,
2011; Oguz et al., 2014; Liu et al., 2020). Similarly, De Feo
et al. (2021) proposed multitask U-Net (MU-Net) to accomplish
skull-stripping and region segmentation. 128 T2 MR image from
32 mice at 4 different ages were used as inputs to perform
the training and validation of their proposed model, and five
manually traced regions consisting of cortical, hippocampus,
ventricular, striatum, and brain masks were used as labels. They
demonstrated that MU-Net was able to effectively reduce the
inter- and intrarater variability that occurs when skull-stripping
and region segmentation are performed manually and showed
better performance than the latest multiatlas segmentation
methods (Jorge Cardoso et al., 2013; Ma et al., 2014).

By contrast, DL-based SN has been a very challenging
problem involving many DL-based medical image preprocessing
steps. Recently, an interesting DL-based “pseudo” PET template
generation method (as the preprocessing of amyloid PET SN)
has been developed using a convolutional autoencoder and a
generative adversarial network (Kang et al., 2018). Nonetheless,
this class of methods commonly generates a “pseudo” linearly or
non-linearly registered individual brain onto the template using
a convolutional neural network (CNN), instead of estimating
the actual spatial transformation of the individual images onto
the template, inevitably requiring additional efforts for the final
SN. Another class of CNN-based spatial registration methods
has been developed, called spatial transformer networks (STNs,
Jaderberg et al., 2015). However, most of them are demonstrated
as 2D registration and linear (rigid body or affine) transformation
tools. Although a diffeomorphic transformer network was
recently developed by Detlefsen et al. (2018) using a continuous
piecewise affine-based transformation, its validation study as
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an SN tool for PET or MR images has not been conducted
thus far. Notably, a DL model-based SN of Tau PET has been
developed, which repeatedly estimates the sets of rigid and affine
transformations using a CNN (Alvén et al., 2019). Although
rigid and affine transformations have been implemented and
evaluated, a non-rigid deformation has not been. Moreover,
this class of methods requires a complicated CNN architecture
consisting of cascades of many regression and spatial transformer
layers, that is, numerous CNN parameters to be estimated.
This reduces the clinical feasibility of these methods in that
considerable amounts of data are required for effective training.
Taken together, thus far, the SN problem in isolation has not been
fully resolved, even in recent DL-based literature, including not
only image segmentation (Delzescaux et al., 2010; Bai et al., 2012;
Nie and Shen, 2013; Feo and Giove, 2019) but also apparently
more challenging image generation methods, such as PET-based
MR generation, to support SN (Choi et al., 2018). Considering
that DL-based image generation can resolve these challenging
issues of medical image preprocessing, we were motivated to
reformulate the challenging SN problem into a more easily
tractable image generation problem of VOI segmentation. To
bridge SN and segmentation, we used the useful approach of iSN.

The iSN process involves the operation of generating the
inverse of a deformation field and resampling a spatially
normalized image back to the original space (i.e., an individual
brain space—Ashburner et al., 2000). Indeed, we can generate
inversely normalized VOIs (iVOIs) in an individual brain space
by applying the iSN technique to VOI templates, as performed
in many neuroimaging studies. Representatively, neuroimage
analysis tools such as MarsBar and the deformation toolbox of
SPM conduct iSN-based VOI analysis in an individual (native)
brain space and have been frequently used in many brain PET
quantification studies (Kim et al., 2010, 2015; Cho et al., 2014).
Specifically, computed tomography (CT)-based SN was used
for 18F-fluoro-propyl-carbomethoxy-iodophenyl-tropane (18F-
FP-CIT) PET analysis using an inverse-transformed automatic
anatomical label (AAL) VOI template in the two previous studies
(Cho et al., 2014; Kim et al., 2015). Similarly, iVOIs were defined
using the iSN of the Brodmann area or callosal template VOIs as
the seed points for diffusion tensor tractography (Oh et al., 2007,
2009). Although attenuation correction (AC) can be conducted
directly using CT transmission data in conventional PET/CT,
it is difficult to conduct AC in PET/MR. To resolve this issue,
several studies have employed template-based AC (Hofmann
et al., 2009, 2011; Wollenweber et al., 2013; Sekine et al., 2016).
In particular, Sekine et al. (2016) projected an atlas-based pseudo-
CT to a patient-specific PET/MR space using iSN methods, which
generated a single-head atlas from multiple CT head images.

Inspired by these concepts, we developed a new method for
generating the iVOI labels of a deep CNN in an individual
brain space. Consequently, we could reduce the abovementioned
complicated problem of SN for the final VOI quantification into
a much simpler problem of VOI segmentation in an individual
brain space that is straightforwardly tractable for modern deep
CNNs such as U-Net.

Recently, individual brain-specific VOI generation methods
such as the FreeSurfer software (Lehmann et al., 2010),

which can produce highly concordant VOIs with respect to
manually traced ground-truth VOIs, have been frequently
used in many neuroimaging studies. By contrast, template-
based VOI approaches such as SPM present better or equal
performance than individual brain space VOIs in terms of
test–retest reproducibility (Palumbo et al., 2019). Considering
this information, our previous iSN-based template VOI defined
in the individual brain space leverages the strengths of both
methods. Employing the iSN method, we can avoid image
deformation, whose magnitude can be described using the
Jacobian determinant of the deformation fields (Ashburner and
Friston, 2000), which can lead to differences between the effective
voxel sizes of PET images in individual brain and template spaces.

In this regard, herein, we propose a unified deep CNN
framework designed to conduct not only mouse brain
parenchyma segmentation (i.e., skull-stripping) but also to
generate target VOIs (i.e., cortex, hippocampus, striatum,
thalamus, and cerebellum) in an individual brain space. This
is achieved using VOI templates defined in mouse MR or PET
templates without SN onto a template to facilitate automatic
precision 18F-FDG PET analysis with MR-based iVOI using
deep CNN. Consequently, we could reduce the relatively
complicated brain VOI generation (by skull-stripping and SN)
for precise PET quantification to a more tractable problem
of DL-based iVOI segmentation in an individual brain space
without conducting SN. This approach can avoid the complicated
preprocessing steps for skull-stripping and SN for target VOI
generation, which prevents the unwanted time-consuming
process of semiautomatic skull-stripping and reduces the inter-
and intrarater reliability issues. In addition, our DL-based
method can perform precise PET image analysis without a
network of complicated structures for SN (Kang et al., 2018;
Alvén et al., 2019).

MATERIALS AND METHODS

Data
Eighteen transgenic mice expressing an amyloid precursor
protein (APP) and presenilin (PS)-1 Alzheimer’s disease (AD)
mouse model underwent brain 18F-FDG PET and T2-weighted
MR (T2 MR) imaging. The PET images were acquired by
nanoScan PET/MRI 1 Tesla (nanoPM—Mediso Medical Imaging
Systems, Budapest, Hungary). Eighteen mice were anesthetized
with isoflurane (1.5–2%) and received an intravenous injection
of 18F-FDG (0.15 m Ci/0.2 cc). After the acquisition of T2-
weighted fast spin-echo MRI by nanoPM, the PET static
images were acquired for 20 min in list mode and were
reconstructed using the ordered subset maximum-likelihood
algorithm using the abovementioned T2-weighted MR-based
AC in the Nucline software (Reinvent Systems For Science &
Discovery, Mundolsheim, France) in the following parameters—
energy window: 250–750 keV; coincidence mode: 1–3; Tera-
tomo3D full detector; regularization: normal; iteration x subset:
8 × 6; voxel size: 0.4 mm. The MR images were acquired using a
Bruker 7.0T MRI Small Animal Scanner (Bruker, Massachusetts,
United States) reconstruction options of T2 MR images as
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follows—repetition time: 4,500 ms; echo time: 38.52 ms; field of
view (FOV): 20 mm x 20 mm; slice thickness: 0.8 mm; matrix: 256
× 256; respiration gating was applied.

Preprocessing
All image preprocessing was performed using SPM 12 software
(SPM12; Wellcome Trust Centre for Neuroimaging, London,
United Kingdom) implemented in MATLAB R2018a (The
MathWorks Inc.) and MRIcro (Chris Rorden, Columbia, South
Carolina, United States). First, the acquired T2 MR images and

18F-FDG PET images were converted from DICOM format to
Analyze format using MRIcro. PET images were coregistered
onto MR images to match different FOVs and slice thicknesses.
For brain parenchyma mask generation DL, the entire mouse
brain was manually traced using in-house software (Asan Medical
Center Nuclear Medicine Toolkit for Image Quantification of
Excellence—ANTIQUE) (Han et al., 2016). To achieve a more
precise SN of the PET image, deformation fields generated by
spatial normalizing T2 MR images to the T2 MR template were
applied to the corresponding PET images. In addition, to obtain

FIGURE 1 | Schematic diagram of the proposed deep CNN model. (A) We conducted six-fold crossvalidation for training and test set separation. (B) Brain
parenchymal mask generation deep CNN. For model training, T2-weighted magnetic resonance (T2 MR) imaging was used as an input and manually traced brain
mask was used as a label. (B) Inversely normalized volumes-of-interest (iVOIs) in individual brain space generation through deep CNN. For training the deep CNN
model, skull-stripped T2 MR was used as the model input and iVOI template was used as the VOIs in individual space (the label for the model). (C) Deep CNN (i.e.,
U-Net) structure used in this study. The light blue box represents a 3 × 3 convolution and a leaky ReLU followed by max pooling, expressed in gray boxes. The
orange and yellow boxes denote the 2 × 2 deconvolution and concatenation operations to increase the accuracy of localization. The dash arrow represents the
copying skip connections. The dash arrow represents the copying skip connections. deep CNN, deep convolutional neural network.
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a label image of the “iVOI template” (i.e., VOI template-based
and iSN-based VOIs in an individual brain space) generation
model, an inverse deformation field was generated and resampled
from the VOI template space to the individual image space.
This was achieved using the deformation toolbox of SPM, by
performing inverse transformation of the deformation fields that
map the individual brains onto the template brain. A quantitative
evaluation of the PET images by a VOI template was used as
the gold standard.

Deep Convolutional Neural Network
A CNN is a DL model that enables training while maintaining
spatial information and thus allows efficient learning with
a lighter architecture than a conventional neural network
architecture, that is, fully connected network. For image feature
extraction in a CNN, the filters (also known as kernels)
in the convolution layers transform the input images into

convolution-based filtered output images, termed feature maps.
F represents a feature map and is calculated using the following
equation:

F [m, n] =
(
I ∗ k

)
[m, n] =

∑
i

∑
j

k
[
i, j
]

I
[
m− i, n− j

]
where I represents the input image, k represents a kernel, and m
and n represent the index of the rows and columns of the resulting
matrix, respectively. For each convolution layer, the shape of the
output data is changed according to the filter size, stride, and
max pooling size and if zero-padding is applied or not. In this
study, we used a quasi-3D U-Net for the deep CNN architecture
and an input comprising three consecutive slices for the T2
MR images to generate a brain mask for skull-stripping and an
iVOI template in an individual space, as illustrated in Figure 1.
Specifically, we used three consecutive slice-based multichannel

FIGURE 2 | Comparison of mouse brain parenchyma mask contours between manually traced brain mask (light blue) and deep CNN-predicted brain mask (blue) in
three cases. The left shows the axial plane, the middle the coronal plane, and the right shows the sagittal plane. deep CNN, deep convolutional neural network.
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inputs for the generation of each VOI slice; this 2D-like approach
can generate as large amount of training data, as a 2D approach
(see Supplementary Material for the comparison of the results
of the quasi-3D and 2D approaches). We believe that such an
approach can additionally overcome the limitations of the small
amounts of mouse data. Moreover, the consecutive slice-based
information allows the U-Net architecture to generate a highly
continuous VOI by referring to the information of contiguous
slices. U-Net consists of an end-to-end CNN architecture using
a contracting path of the images and an expanding path for
localization and residual learning of images to output layers. The
contraction path consists of a 3 × 3 convolution followed by
a 2 × 2 max pooling using a leaky rectified linear unit (leaky
ReLU) as the activation function. The expansion path consists of
a 2 × 2 deconvolution for upsampling and a 3 × 3 convolution
using a leaky ReLU after concatenating with the context captured
in the contraction path to increase the accuracy of localization.
To train a DL CNN for skull-stripping mask generation, the
abovementioned consecutive axial slices of T2 MR images were

used as multichannel input, and manually traced binary brain
masks were used as labels. A similar qausi-3D approach was also
used in the training of iVOI template generation model, where an
iVOI template in an individual space was used as the label. As the
U-Net input, the skull-stripping mask generation model and the
iVOI template generation model used 70 slices of transaxial MR
and the corresponding skull-stripped MR, respectively, and the
input dimension was 70 slices × N, 128, 128, 3 channel, where N
is the number of mice used in the training set.

To overcome the small amount of data available for training
set, data augmentation was performed through shift, rotation,
and shear transformations. We used a Dice loss function and
an adaptive moment estimation (Adam) optimizer to fit deep
CNN parameters. The training was performed with an initial
learning rate of 1e-5 with 25 batches. Our deep CNN model
was implemented using Keras (version 2.2.4)-based code in the
Python programming language with a backbone of TensorFlow
(version 1.12.0) running on a GeForce NVIDIA GTX 1080 GPU
and an Intel R© Xeon R© E5-2640 CPU. To regularize the generated

TABLE 1 | Our unified deep neural network assessment through the mean and standard deviation of Dice similarity coefficient (DSC), average symmetric surface
distance (ASSD) (mm), sensitivity (SEN), and positive predictive value (PPV) between DL labels and DL-generated brain masks and inversely normalized target VOIs
(cortex, hippocampus, striatum, thalamus, and cerebellum) in six-fold crossvalidation.

N-fold Brain mask Cortex Hippocampus Striatum Thalamus Cerebellum

DSC Fold-1 0.96 ± 0.01 0.78 ± 0.02 0.68 ± 0.2 0.62 ± 0.18 0.76 ± 0.12 0.66 ± 0.05

Fold-2 0.95 ± 0.01 0.78 ± 0.01 0.76 ± 0.07 0.72 ± 0.03 0.72 ± 0.11 0.69 ± 0.04

Fold-3 0.96 ± 0.01 0.79 ± 0.01 0.66 ± 0.1 0.66 ± 0.04 0.74 ± 0.11 0.7 ± 0.01

Fold-4 0.98 ± 0.02 0.77 ± 0.04 0.74 ± 0.08 0.74 ± 0.11 0.78 ± 0.03 0.72 ± 0.03

Fold-5 0.96 ± 0.01 0.77 ± 0.02 0.68 ± 0.13 0.75 ± 0.08 0.77 ± 0.08 0.68 ± 0.02

Fold-6 0.98 ± 0.02 0.75 ± 0.02 0.61 ± 0.13 0.59 ± 0.06 0.76 ± 0.12 0.69 ± 0.02

Total 0.97 ± 0.01 0.77 ± 0.02 0.69 ± 0.14 0.68 ± 0.13 0.76 ± 0.01 0.71 ± 0.03

ASSD (mm) Fold-1 0.01 ± 0.00 0.08 ± 0.01 0.11 ± 0.06 0.2 ± 0.13 0.12 ± 0.03 0.12 ± 0.01

Fold-2 0.01 ± 0.00 0.09 ± 0.0 0.12 ± 0.06 0.08 ± 0.01 0.09 ± 0.01 0.09 ± 0.01

Fold-3 0.01 ± 0.0 0.08 ± 0.0 0.11 ± 0.04 0.1 ± 0.01 0.02 ± 0.04 0.11 ± 0.01

Fold-4 0.02 ± 0.01 0.09 ± 0.01 0.12 ± 0.07 0.11 ± 0.04 0.04 ± 0.02 0.05 ± 0.01

Fold-5 0.01 ± 0.00 0.09 ± 0.01 0.12 ± 0.08 0.1 ± 0.02 0.12 ± 0.01 0.07 ± 0.01

Fold-6 0.01 ± 0.0 0.09 ± 0.0 0.16 ± 0.08 0.11 ± 0.02 0.22 ± 0.08 0.15 ± 0.02

Total 0.01 ± 0.00 0.17 ± 0.0 0.12 ± 0.07 0.12 ± 0.06 0.1 ± 0.00 0.01 ± 0.00

SEN Fold-1 0.91 ± 0.02 0.76 ± 0.05 0.67 ± 0.29 0.6 ± 0.15 0.68 ± 0.02 0.61 ± 0.05

Fold-2 0.94 ± 0.02 0.81 ± 0.04 0.66 ± 0.11 0.6 ± 0.06 0.65 ± 0.05 0.64 ± 0.12

Fold-3 0.93 ± 0.02 0.77 ± 0.03 0.53 ± 0.19 0.65 ± 0.08 0.69 ± 0.05 0.71 ± 0.14

Fold-4 0.97 ± 0.02 0.73 ± 0.06 0.7 ± 0.15 0.65 ± 0.14 0.69 ± 0.01 0.75 ± 0.05

Fold-5 0.88 ± 0.04 0.78 ± 0.07 0.55 ± 0.22 0.56 ± 0.12 0.66 ± 0.12 0.68 ± 0.08

Fold-6 0.87 ± 0.01 0.72 ± 0.07 0.52 ± 0.25 0.58 ± 0.08 0.64 ± 0.02 0.72 ± 0.07

Total 0.92 ± 0.02 0.76 ± 0.06 0.61 ± 0.22 0.61 ± 0.16 0.67 ± 0.05 0.69 ± 0.09

SPE Fold-1 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.99 ± 0.0 0.99 ± 0.0

Fold-2 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.99 ± 0.0 0.99 ± 0.00

Fold-3 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.99 ± 0.0 1.0 ± 0.0

Fold-4 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

Fold-5 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

Fold-6 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

Total 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.99 ± 0.0 0.99 ± 0.0

PPV Fold-1 0.98 ± 0.01 0.8 ± 0.03 0.65 ± 0.14 0.88 ± 0.04 0.73 ± 0.01 0.68 ± 0.03

Fold-2 0.99 ± 0.01 0.76 ± 0.02 0.67 ± 0.06 0.81 ± 0.03 0.8 ± 0.06 0.78 ± 0.07

Fold-3 0.99 ± 0.0 0.8 ± 0.02 0.67 ± 0.09 0.82 ± 0.05 0.78 ± 0.03 0.71 ± 0.03

Fold-4 0.99 ± 0.0 0.81 ± 0.01 0.6 ± 0.03 0.8 ± 0.06 0.82 ± 0.03 0.65 ± 0.02

Fold-5 0.99 ± 0.01 0.76 ± 0.03 0.72 ± 0.11 0.8 ± 0.04 0.77 ± 0.03 0.74 ± 0.03

Fold-6 0.99 ± 0.0 0.8 ± 0.05 0.58 ± 0.07 0.76 ± 0.01 0.78 ± 0.02 0.68 ± 0.04

Total 0.99 ± 0.0 0.79 ± 0.04 0.65 ± 0.1 0.81 ± 0.06 0.78 ± 0.03 0.71 ± 0.01
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mask by the deep CNN, we conducted postprocessing in
several steps, different from other studies that used complicated
postprocessing methods such as graph cuts (Jimenez-Carretero
et al., 2019; Kim et al., 2020; Hu et al., 2021). First, the
mask predicted by DL was converted into a binary mask,
and erosion and dilation were sequentially performed (also
known as the “open” operator) to remove noisy false positives
(FPs). Subsequently, 3D-connected component analysis-based
kill-islands and fill-holes were conducted to reduce FPs and false
negatives (FNs), respectively.

Performance Evaluation
To avoid overfitting issue and also to increase the generalization
ability of the deep CNN, we conducted six-fold crossvalidation
for training and test set separation. Of a total 36 samples obtained
by 2 scans before and after treatment in 18 mice, 30 samples (15
mice × 2 scans) were used as the training set. The remaining 6
samples (3 mice × 2 scans) were used as the testing set in each
fold of the training or test set pair to ensure that the slices of the
same mouse are not split as training or test samples. To assess the
concordance between predicted and label masks, we measured
the Dice similarity coefficient (DSC), average symmetric surface
distance (ASSD), sensitivity (SEN), and positive predictive value
(PPV). DSC is the most representative indicator used for image
segmentation evaluation. It directly compares the results of
the two image segmentations, which indicate their similarity.
The average symmetrical surface distance is the average of all
distances from a point at the boundary of the machine segment

region to the boundary of the ground truth. The SEN is defined
as the proportion of true positive (TP) results among TP and FN.
The SPE is defined as the proportion of true negative (TN) among
TN and FP. PPV is defined as the proportion of TP among TP and
FP. Formulas are provided for the five methods as follows, where
P is the predicted mask of our network, and G is the label used in
deep CNN (See following equations for the details).

Dice Similarity Coefficient =
2 |P ∩ G|
|P| + |G|

,

Average Symmetric Surface Distance

=

∑
m∈∂(M) min

g∈∂(G)

∣∣∣∣p− g
∣∣∣∣∑

g∈∂(G) min
m∈∂(M)

∣∣∣∣g − p
∣∣∣∣

|∂ (P)| + |∂ (G)|

Sensitivity =
TP

TP + FN
,

Specificity =
TN

TN + FP
,

Positive Precitive Value =
TP

TP + FP
.

Standardized uptake value (SUV), the most representative
and simplest method of determining activities in PET images,
is widely used for PET (semi)quantitative analysis. SUV can be

FIGURE 3 | Segmentation comparison of target VOIs (i.e., cortex, hippocampus, striatum, thalamus, cerebellum) in axial plane of three mice. The light blue contour
represents deep learning label masks which are iVOI templates. The blue contour represents an iVOI template in an individual space generated by the proposed
deep CNN. iVOI, inversely normalized VOI; deep CNN, deep convolutional neural network.
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FIGURE 4 | Correlation analysis between all mean counts (blue dot) obtained using VOIDL, VOIiGT, and VOIGT in all target VOIs from the first to the fifth row (cortex,
hippocampus, striatum, thalamus, and cerebellum, respectively). CCC represents a measure of reliability based on covariation and correspondence. The line of
identity (dashed line) is depicted as a reference line. Cortex, hippocampus, striatum, thalamus, and cerebellum are represented sequentially from the top row.
(A) Correlation analysis between each mean count obtained using VOIDL and VOIiGT . (B) Correlation analysis between each mean count obtained using VOIDL and
VOIGT. (C) Correlation analysis between each mean count obtained using VOIiGT and VOIGT VOIDL, deep-learning generated-VOI; VOIiGT, deep learning
(inverse-normalized ground-truth) label VOI; VOIGT, template-based ground-truth VOI; CCC, concordance correlation coefficient.
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FIGURE 5 | Correlation analysis between all mean SUVRs (blue dot) obtained using VOIDL, VOIiGT, and VOIGT in all target VOIs from the first to the fourth rows
(cortex, hippocampus, striatum, and thalamus, respectively). Concordance correlation coefficient represents a measure of reliability based on covariation and
correspondence. The line of identity (dashed line) is depicted as a reference line. Cortex, hippocampus, striatum, and thalamus are represented sequentially from the
top row. (A) Correlation analysis between mean SUVRs obtained using VOIDL and VOIiGT . (B) Correlation analysis between mean SUVRs obtained using VOIDL and
VOIGT. (C) Correlation analysis between each mean SUVRs obtained using VOIiGT and VOIGT VOIDL, deep learning generated VOI; VOIiGT, deep learning label VOI;
VOIGT, template-based VOI; CCC, concordance correlation coefficient.

calculated by the equation below.

SUV (t) =
CPET (t)
ID/BW

,

where CPET(t) is the radioactivity measured from an image
acquired at the time t, ID is the injected dose at t = 0, and BW is
the animal’s body weight. The ratio of the SUV from target region
and reference region within the same PET image is commonly
called standardized uptake value ratio (SUVR). In 18F-FDG PET,
a PET image is obtained based on glucose uptake metabolism
after sufficient time elapses, following the injection of the tracer
into the body. Then, SUVR was calculated by dividing target

regions of glucose metabolism depending on the disease, with
constant glucose uptake regions at all times regardless of the
disease. In this study, the SUVR evaluation was conducted on
four major regions: cortex, hippocampus, thalamus, and stratum.
We chose the cerebellum as a reference region, which seems to be
free of plaques in the AD mouse model.

SUVR =
SUV target

SUVreference
=

Cimg, target

Cimg, reference
.

To assess our DL-based method, mean count and SUVR
were calculated by the following three different methods:
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FIGURE 6 | % changes in SUVR for each part of 18 mice before and after treatment. The reference area of the SUVR was the cerebellum. Percent change in SUVR
obtained using VOIDL (A). Percent change in SUVR obtained using VOIiGT (B). Percent change in SUVR obtained using VOIGT (C). Results for cortex, hippocampus,
striatum, and thalamus are presented sequentially from the left column. VOIDL, deep learning generated VOI; VOIiGT, deep learning label VOI; VOIGT, template-based
VOI; baseline (BL—before treatment); follow-up (FU—after treatment).
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DL-generated mask (VOIDL), DL label mask (i.e., inversely
normalized template (ground-truth) VOIs, VOIiGT), and
template-based ground-truth VOI (VOIGT). Then, correlation
analysis was conducted between these methods. In addition, we
compared percentage change (% change) in SUVR before and
after the treatment of 18 mice obtained by the abovementioned
three masks by qualitative assessment and quantitative
assessment by conducting paired or unpaired two-sample
t-tests.

RESULTS

Deep Convolutional Neural Network for
Automatic Generation of Brain Mask for
Skull-Stripping
Figure 2 shows the comparisons in the brain skull-stripping mask
generated by the proposed deep CNN (i.e., U-Net) (blue contour)
and a manually traced brain mask (light blue contour) in three
mice. All three mice showed high visual consistency without
significant differences.

Table 1 shows the concordance of brain masks generated
by a deep CNN and manually traced masks in terms of the
DSC, ASSD, SEN, SPE, and PPV. Mean DSC reached 0.97, mean
ASSD was less than 0.01 mm, and mean SEN reached 0.92. In
addition, both mean SPE and mean PPV were greater than 0.99.
In summary, there was no significant difference between the
brain mask generated by our DL-based method and the manually
traced mask in the six-fold crossvalidation.

Deep Convolutional Neural Network for
Automatic Generation of Inversely
Normalized VOI Template in Individual
Brain Space
We conducted a qualitative visual assessment and quantitative
assessment of VOIDL and VOIiGT to evaluate the performance
of the proposed deep CNN model. In addition, we conducted a
correlation analysis between mean count in each VOI obtained
using VOIDL, VOIiGT, and VOIGT and correlation analysis
between each mean SUVR using the abovementioned VOI
method. In addition, % change of SUVR between PET images
before and after treatment was analyzed through a two-sample
t-test for each VOI mask.

Figure 3 shows axial slices of VOIDL (blue contour) and
VOIiGT (light blue contour) in target VOIs (cortex, hippocampus,
stratum, thalamus, and cerebellum). There was no significant
difference between VOIDL and VOIiGT in cortex, cerebellum,
and thalamus and also in the relatively small areas of the
hippocampus and striatum.

In Table 1, VOIDL and VOIiGT of 36 mice in target VOIs
(cortex, hippocampus, striatum, thalamus, and cerebellum) were
evaluated by calculating the average of DSC, ASSD, SEN, SPE,
and PPV. The DSC for each target VOI was 0.77, 0.69, 0.68,
0.76, 0.69, the ASSD was 0.17, 0.12, 0.12, 0.1, and 0.01 mm,
SEN was 0.76, 0.61, 0.61, 0.67, and 0.69, SPE was 1.0, 1.0,
1.0, 0.99, and 0.99, and PPV was 9, 0.65, 0.81, 0.78, and

0.71, respectively, which indicates that our DL model generated
target VOIs well.

In Figure 4, the mean counts obtained by VOIDL, VOIiGT,
and VOIGT were significantly (p < 0.001) correlated with
one another in all target VOIs. In addition, as shown in
Figure 4B, the mean count obtained by VOIGT in template space
tended to be slightly underestimated compared to the mean
count obtained by VOIDL in individual space. Furthermore,
we conducted a correlation analysis between each mean SUVR
obtained using VOIDL, VOIiGT, and VOIGT in all target VOIs
(Figure 5). For SUVR analysis, cerebellum was used as a
reference region, that is, SUV (or mean count) of target regions
was normalized by that of cerebellum. In all target VOIs,
mean SUVR obtained through VOIDL, VOIiGT, and VOIGT
was significantly (p < 0.001) correlated with one another. As
shown in Figure 5B, in the hippocampus and thalamus, the
mean SUVR obtained by VOIGT in template space and the
VOIDL in individual space was almost identical, whereas in
the cortex and striatum, the mean SUVR obtained by VOIGT
was underestimated compared to the mean SUVR obtained
by VOIDL.

Figure 6 compares the % changes of the SUVRs in each VOI
before and after treatment using VOIDL, VOIiGT, and VOIGT
for 18 mice. Regardless of the three types of masks, there was
no significant difference between the mean SUVR % changes
obtained by each mask. Moreover, the degrees of increase in the
mean SUVRs in the cortex, hippocampus, and thalamus were
similar, and the degree of decrease in those in the striatum
was similar. In addition, we did not find significant differences
in the SUVR% changes of all target VOIs before and after
treatment of three methods (DL-based method and SN/iSN-
based conventional methods) by both paired and unpaired two-
sample t-tests (p > 0.3 and p > 0.8, respectively).

DISCUSSION AND CONCLUSION

Spatial normalization of individual brain PET images onto
standard anatomical spaces is required for objective statistical
evaluation (Feo and Giove, 2019). However, several steps of
the preprocessing were semiautomatic, which causes time-
consuming problems and inter- and intrarater problem. A precise
SN method through DL has also been devised and has recently
attracted considerable attention. However, despite the use of a
complicate network of structures, the method still has difficulty
in performing complete SN from affine transformation to non-
linear transformation (Alvén et al., 2019), and an additional SN
process is required to generate a PET pseudotemplate (Kang
et al., 2018) or a method of generating MR from a PET image
(Choi et al., 2018). In addition, many studies have considered
the use of iSN for PET quantitative analysis (Kim et al., 2010,
2015; Cho et al., 2014). Inspired by this, we generated an
iVOI template to reformulate the complicated and difficult-to-
implement SN problem into a relatively simpler problem of VOI
segmentation for PET quantification. Overall, we have devised
a unified CNN framework for brain mask generation to skull-
stripping and generate an iVOI template in individual space to
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perform precise PET quantification without any additional efforts
of skull-stripping and SN.

With regard to DL for brain parenchyma segmentation,
as shown in Figure 2, manually traced brain mask contours
(lightblue) and DL-based contours (blue) were almost identical
in visual assessment. Moreover, DSC reached 0.97, ASSD was
less than 0.01 mm, and SEN and PPV were higher than
0.92 and 0.99 (Table 1) compared between these two masks,
confirming good agreement from a quantitative perspective
as well. With regard to DL for iVOI template segmentation,
mean count and SUVR obtained by VOIiGT and VOIDL
were significantly (p < 0.001) correlated with each other
in all target VOIs (Figures 3A, 4A). In addition, each of
the mean count and SUVR obtained with template-based
VOI (i.e., VOIGT) and individual space VOI (i.e., VOIDL,
VOIiGT) showed a significant (p < 0.001) correlation between
each VOI methods (Figures 3B,C, 4B,C). However, the mean
count and SUVR obtained by VOIGT tended to be slightly
underestimated compared to that obtained by VOIiGT and
VOIDL in hippocampus and striatum. We believe that our
method can avoid image intensity degradation problems that
may occur in preprocessing, including SN. Consequently, the %
change of SUVR in the target VOI showed the same tendency
in each of the three methods. In summary, the proposed DL-
based method using an iVOI template in individual space that
does not require SN has been developed as new method of PET
quantitative assessment, avoiding variation between intra- and
interrater that can occur in the process of drawing a brain mask
or in the preprocessing. In addition, we showed a comparable
level of segmentation performance using lighter neural network
structures (i.e., CNNs with fewer training parameters—fewer
channels and simple convolutional blocks) as compared to
conventional mouse brain studies (Hsu et al., 2020; De Feo
et al., 2021). Furthermore, our DL-based iVOI method has
reformulated the PET SN problem for precise PET quantification,
which remains challenging despite using a complicate network
that requires a considerable parameter estimation (Choi et al.,
2018; Kang et al., 2018; Alvén et al., 2019), with an easy-to-
handle image generation method for target VOIs using inversely
normalized template VOIs.

This study involves several limitations. First, we only had
small number of data, consisting of 18 mice. Although the
data were inflated using consecutive axial slices of T2 MR
as multichannels input of the deep CNN and using data
augmentation, this was not sufficient. Second, because this study
was carried out with only in-house mice with a specific disease
(i.e., Alzheimer’s disease), there is a possibility that the trained
model may be specialized to our data. Therefore, as in study
by De Feo et al. (2021), model validation should be warranted
with more data and various types of mice in the near future.
Third, our method is dependent on MR images because we
generated iVOI templates using parameters based on SN of
MR images onto MR templates in the process of generating
label used for deep CNN training. However, corresponding
MR images are not always available in PET image analyses. In
this regard, we should consider further studies for generating
iVOI templates only with PET images. Finally, one of the

strengths of this study is that because we used a PET/MRI
system registration of PET, MR is straightforward in nature
compared to existing methods. Nonetheless, we believe that our
proposed approach may be readily applied to ordinary PET
or PET/CT scanners with additional MR images as well. In
this regard, a further study on a more unified deep CNN with
PET input and iVOI defined by MR should be warranted in
the near future.

In conclusion, we proposed a unified deep CNN-based
model that can generate mouse brain parenchyma masks
and iVOI templates in individual brain space without any
effort for skull-stripping and SN. Through qualitative and
quantitative evaluations, our proposed model has shown
identical quantification of regional glucose metabolism
(i.e., mean SUV of each VOI) forming line of identity
between ground truth (conventional template) methods-
based mean SUV/SUVR and DL-based mean SUV/SUVR
(Figures 4, 5, respectively) and also concordant patterns
of mean SUVR treatment-induced change between ground
truth and DL methods. These results show that the proposed
approach comprises a new method for PET image analysis
by reformulating the SN problem, which has been difficult to
implement despite of recent advances in DL techniques, into
a segmentation problem using iVOI template generation in an
individual brain space.
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