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Distance covariance entropy reveals
primed states and bifurcation dynamics
in single-cell RNA-Seq data

Qi Luo,1,2 Alok K. Maity,1,2 and Andrew E. Teschendorff1,3,*

SUMMARY

Cell-fate transitions are fundamental to development and differentiation. Study-
ing them with single-cell omic data is important to advance our understanding of
the cell-fate commitment process, yet this remains challenging. Here we present
a computational method called DICE, which analyzes the entropy of expression
covariation patterns and which is applicable to static and dynamically changing
cell populations. Using only single-cell RNA-Seq data, DICE is able to predict mul-
tipotent primed states and their regulatory factors, which we subsequently vali-
date with single-cell epigenomic data. DICE reveals that primed states are often
defined by epigenetic regulators or pioneer factors alongside lineage-specific
transcription factors. In developmental time course single-cell RNA-Seq datasets,
DICE can pinpoint the timing of bifurcations more precisely than lineage-trajec-
tory inference algorithms or competing variance-based methods. In summary,
by studying the dynamic changes of expression covariation entropy, DICE can
help elucidate primed states and bifurcation dynamics without the need for
single-cell epigenomic data.

INTRODUCTION

Cell-fate transitions are fundamental to development and homeostasis, and are orchestrated by regulatory

factors that include transcription factors (TFs) and chromatin-state modifiers.1,2 A relatively large number of

these cell-fate transitions are driven by sets of antagonistic TFs that exhibit highly specific differentiation

activity in one particular lineage, while being switched off in the alternative lineages,1–3 as epitomized

by the GATA1-PU1 antagonism that controls the erythroid-myeloid fate transition in early hematopoiesis.4

In general, abrupt changes in the expression ratio of TFs has been proposed as a means of identifying the

TFs controlling alternative cell-fates,3 including the identification of primed states in multi-or-pluripotent

cell populations,5,6 defined as multi/pluri-potent cellular states that are already committed to differentiate

into specific downstream lineages. Studying priming is critical not only to improve our understanding of the

cell-fate commitment process, but also for potential regenerative medicine purposes.5

Theoretically, cell-fate transitions and switch-like behavior has been modeled in terms of gene-regulatory

networks (GRNs) and an associated system of ordinary differential equations (ODEs) that describe the dy-

namic changes in TF concentrations.4,7–9 In most cases however, the full underlyingGRNs are unknown, and

the associated ODEs typically include many unknown parameters whose precise values may strongly affect

the resulting dynamics, rendering this ODE-modeling approach impractical. In the face of these difficulties,

single-cell RNA-Seq (scRNA-Seq) data10 and other single-cell omic data types11 offer the unprecedented

opportunity to study the underlying bifurcation dynamics from a more data-driven perspective, as exem-

plified by the development of numerous lineage-trajectory inference algorithms12,13 and statistical

methods to detect TFs controlling the cell-fate commitment process.5,14–16 In principle, with scRNA-Seq

data it may be possible to identify the full repertoire of relevant regulatory factors,14 to more accurately

pinpoint the bifurcation or tipping points underlying cell-fate transitions,15–21 or to better characterize sys-

tem-wide properties such as priming in pluri-or-multipotent cell populations.5,6 However, challenges

remain. Accurately identifying cell-fate transition points from scRNA-Seq data is difficult because sampling

of cells from the transition region is often very sparse, the implication being that lineage-trajectory infer-

ence algorithms can’t accurately pinpoint the bifurcation point. It also remains unclear how best to identify

the TFs controlling cell-fate transitions, partly because of the scRNA-Seq assay’s low sensitivity to detect
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dynamic changes in TF expression.22–24 Finally, there are conflicting opinions regarding a key phenomenon

such as priming in multipotent cell populations, with some studies reporting primed states that are detect-

able from scRNA-Seq data alone,25 with others advocating the need to consider epigenomic (e.g. scATAC-

Seq) data.26,27

Here we address these challenges by proposing a computational framework based on the concept of dis-

tance covariance entropy (DICE). DICE identifies candidate regulatory factors (RFs) controlling primed

states and cell-fate transitions by analyzing the entropy of their expression covariation patterns, either in

snapshot populations or as a function of time/pseudotime. In effect, DICE quantifies the randomness of

the expression covariation between RFs, and is thus ideally suited to explore single-cell phenomena

such as priming. Indeed, using DICE we demonstrate that priming in multipotent cell populations is an

ubiquitous phenomenon that is detectable from scRNA-Seq data only, without the need for matched

scATAC-Seq profiles. In doing so, we discover that primed states are often defined by epigenetic regula-

tors or pioneer factors, consistent with these factors altering the chromatin accessibility landscape that pre-

cedes and enables priming and fate commitment. Importantly, the identification and validation of primed

states hinges entirely on the use of metrics that quantify the covariation in expression, as indeed simpler

variance-only based metrics fail to discover these states.

RESULTS

Rationale of the DICE algorithm

The identification of primed states, bifurcation points, and TFs that control cell-fate decisions from scRNA-

Seq data is complicated by the sparseness of sampling (i.e. relatively low coverage of cells) around cell-fate

transition points, and the sparseness of the count-data per cell, which can hamper the reliable identification

of TFs controlling such fate transitions.14,22,23 Recent work has aimed to elucidate bifurcation dynamics by

studying the variation in expression of TFs, based on the principle that variation of relevant TFs increases in

the vicinity of cell-fate transition points.14,28 Here, we propose an extension of this concept based on how

the covariation of TF regulatory activity patterns change with time/pseudotime. Briefly, given a scRNA-Seq

dataset, with cells collected either in real time or binned according to pseudotime, DICE first identifies

candidate regulatory factors (RFs) that display interesting covariation patterns in time/pseudotime (Fig-

ure 1A, STAR Methods). We consider two classes of RFs: TFs and epigenetic factors (EFs), i.e., chromatin

regulators/modifiers, because these are known to also control the epigenetic process of differentiation.

Although prior selection of RFs is possible if appropriate biological knowledge is available, in general,

candidate RFs are identified by the requirement that they display increased differentiation activity with

time/pseudotime, but only along one differentiation path corresponding to the specification of one partic-

ular cell-fate (Figure 1A, STAR Methods). To measure differentiation activity of RFs we rely on their

measured mRNA expression levels. However, for TFs, we preferably use a corresponding TF-regulon de-

signed to measure differentiation activity, assuming such regulons are available.22 To clarify, in the regulon

approach we infer regulatory (differentiation) activity of the TF from the expression levels of its regulon

target genes, a strategy that improves the sensitivity and precision to detect true TF differentiation activity

changes22 (STAR Methods). Of note, candidate RFs are further required to display clear antagonistic

switch-like behavior between opposing lineages and across the whole time course, a strategy that is

well justified on principles from dynamical systems theory (STAR Methods).6,17 In addition, this strategy al-

lows more robust identification of key RFs, as their inference is drawn from using all timepoints and not just

from the lower number of cells collected at or near the bifurcation event.

Having identified candidate RFs, we next compute a covariation metric of these RFs across all cells from a

given timepoint or pseudotime bin and for all available timepoints/bins (Figure 1B). To account for poten-

tial non-linear or non-monotonic dependencies between RFs, we use the notion of distance covariation/

correlation,29,30which can elegantly encapsulate such complex dependencies (Figure S1, STAR Methods)

in a way that allows subsequent global quantification of these dependencies using the covariation en-

tropy,6,31 leading to the notion of distance covariance entropy (DICE) (Figure 1B). One potential application

of DICE is to explore its variation as a function of timepoint/pseudotime, to better pinpoint the timing of

cell-fate transitions, which may not be well characterized from ordinary diffusion maps (Figure 1C). Another

potential application of DICE is to the detection of primed states in saymultipotent cell populations, as well

as the RFs that control such priming (Figure 1D). Of note, although the acronym DICE stands for DIstance

Covariance Entropy, we henceforth and interchangeably use the term DICE to also refer to the whole algo-

rithmic framework described above.
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DICE captures general cell-fate transitions and outperforms the ordinary covariance entropy

First, we aimed to demonstrate that DICE can capture complex cell-fate transitions and that it is preferable

over the ordinary covariance entropy measure31 which cannot account for non-linear patterns. We initially

studied this in the context of simulated data, by considering a GRN describing the canonical cross-antag-

onism of 2 TF (e.g. GATA1/PU1) repressing each other whilst also driving their own positive feedback

loop (Figure 2A). This GRN has 9 parameters, but we considered the symmetric scenario, where there

are in effect only five (a,b, k, q, n), describing the strength of autoactivation (a), mutual repression (b) and
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Figure 1. The DICE metric, algorithm and applications

(A) Given a differentiation process into fully differentiated cell-types (depicted here as a path inWaddington’s landscape),

and an associated scRNA-Seq dataset X, the first aim is to identify pools of regulatory factors (RFs) that may contribute to

this process. This involves identification of terminal branch points in the context of diffusion maps, as well as differential

expression (DE) analyses in order to identify RFs that become more active in the mature cell-types compared to (1) their

multipotent progenitors and (2) the mature cell-types from competing lineages, as indicated.

(B) The next step is to quantify the dependencies of these RFs as a function of timepoint or pseudotime bin. Scatterplots

of RF activity/expression for 3 RFs intended to display the cases of (1) no association (non-significant Pearson Correlation

Coefficients-PCCs or distance covariance-dCov), corresponding to high distance covariance entropy (DICE), and (2) the

case of a significant association (as measured by dCov). Illustrated are examples where the relation between RFs is linear

and non-monotonic non-linear, the latter requiring the dCov metric to find such associations.

(C) One application of DICE is to compute the DICE metric for each timepoint/pseudotime bin and study its variation as a

function of time/pseudotime, to better pinpoint the cell-fate transition point. The latter may or may not be easily

identifiable from an ordinary diffusion map, as indicated.

(D) Another application of DICE is to identify primed states in say multipotent cell populations using only scRNA-Seq

data. After identification of candidate RFs (as described in a)), DICE can be computed to determine if it is significantly

lower compared to that of a fully stochastic randomized data matrix. If DICE is significantly lower, this indicates the

existence of associations between RFs and correspondingly of ‘‘primed cells’’ that overexpress these particular RFs. In this

work, we validate the RFs and cells involved defining these primed states using cell-fate probability calculations as well as

matched scATAC-Seq data.
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degradation (k), with (q, n) representing additional parameters controlling the autoactivation and mutual

repression functions (STAR Methods). For particular parameter choices, e.g. (a, k, q, n)=(0.008, 1, 0.5, 4),

the system is known to undergo a supercritical pitchfork bifurcation as b (the bifurcation parameter) varies

from 0.05 to 1.25 (Figure 2A). In this case, the expression state of any one of the two TFs is monostable up

until a value 0.5, with larger b-values leading to a bistable regime corresponding to the two possible fates

(Figure 2A). By simulating the expression dynamics of the 2 TF for 1000 cells and different choices of b, we

verified this bifurcation pattern (Figures 2B and 2C). Next, we computed DICE across the 2 TF and over the

1000 cells for each choice of bifurcation parameter b, which revealed a sharp decrease at the known

bifurcation value (Figure 2D), reflecting the anti-correlative expression pattern of the 2 antagonistic TFs.

Importantly, DICE displayed a more pronounced decrease compared to the ordinary covariance entropy

(Figure 2D, STAR Methods), thus demonstrating that even in the simplest of GRNs, TFs may display

weak but significant non-linear dependencies (Figures 2B and 2C) that are better captured by the distance

covariation metric. Of note, similar findings were observed if the GRNmodel undergoes a subcritical bifur-

cation (Figures 2E–2H). To confirm that DICE can capture bifurcation dynamics in other more complex

GRNs, we generated TF expression data for (1) a 4 TF GRN describing the transition from multipotent

lymphoid progenitor cells to unipotent early T cells32 and (2) a 52-gene GRN describing the transformation

of somatic cells to induced pluripotent stem cells33,34 (STARMethods). We note that for these two systems,

the patterns of dependency between TFs are more complex. Despite this, DICE exhibited abrupt patterns

of change at the known transition points which were also more pronounced than those derived using the

ordinary covariance entropy (Figures S2 and S3). Thus, all these results validate and justify the use of DICE

to capture complex cell-fate transitions in different GRNs. This is an important requirement to justify appli-

cation to general scRNA-Seq datasets where the underlying GRNs may be unknown or incomplete.

DICE identifies primed states in fetal liver hematopoiesis

Next, we applied ourDICE algorithm to real scRNA-Seqdata, specifically to a scRNA-Seqdataset representing

fetal liver hematopoiesis from Ranzoni et al.,27 to explore if DICE can detect any evidence of priming in
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Figure 2. DICE analysis in the GATA1-PU.1 system

(A) Supercritical bifurcation diagram displaying the activation level of PU.1 against the bifurcation parameter. The black and red lines in the bifurcation

figures indicate stable and unstable states, respectively. Inset figure shows the mutually repressing with auto-activation GRN representing the GATA1-PU.1

system. Arrows represent auto-activation (rate constant, A) and short bars represent mutual repression (rate constant, (B).

(B) Scatterplot displaying the activation level of the TFs (PU.1 and GATA1) for different bifurcation parameter values. Each dot represents an individual cell.

(C) As (B), but now displaying the values for many cells per bifurcation value.

(D) Plot of DICE (orange) versus bifurcation parameter, with the entropy of the ordinary covariance matrix (PCC) shown in green.

(E-H) As (A-D), but for the scenario of a subcritical pitchfork bifurcation.
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hematopoietic multipotent progenitor (MPP) cells. We here adopt the same definition of priming as in Ranzoni

et al., i.e. as the presence of non-random positive associations (possibly non-linear/non-monotonic) between

common lineage-specifying regulatory factors in a pool of MPP-cells. This non-random positive association

would be driven by a proportion of cells primed to the given cell-fate. Whether such priming is present in

multi-and-pluripotent cell populations generally is a question of paramount interest given previous reports

that such priming may not be detectable from scRNA-Seq data alone, requiring in addition chromatin-state

data (e.g., scATAC-Seq).26,27 To ensure cross-comparability with Ranzoni et al., we used the normalized

data and cell-type annotation provided by the authors. Out of 4504 cells that passed QC, we focused on

1569 non-cycling cells annotated as MPP (n = 1200), megakaryocyte-erythroid-mast progenitors (MEMPs,

n = 192) and granulocyte progenitors (GPs, n = 177). More mature cell-types (e.g., B-cells, granulocytes,

erythroid cells, dendritic cells) were excluded from our analyses, as this would add substantial data variation

that could obscure the inference of the MEMP-GP bifurcation. Using Diffusion Maps35 on the full normalized

data matrix defined over the 1569 non-cycling cells, confirmed the existence of a clear bifurcation from MPPs

into either GPs orMEMPs (Figure 3A). To identify candidate regulatory factors controlling theGP fate decision,

we performed differential overexpression analysis comparing GPs to MPPs and separately also to MEMPs. An

analogous overexpression analysis was performed to identify candidate RFs regulating the MEMP fate deci-

sion. These DE-analyses were done using a combined list of 1994 RFs from the Molecular Signature and

DOROTHEA databases,23,36 which not only includes TFs but also EFs. In all, we identified 46 GP- and 79

MEMP-specific RFs (Figure 3B). The list of 46 GP RFs included well-known granulocyte-specific TFs such as

IRF8 as well as epigenetic factors such as UHRF1. The list of 79MEMP RFs included well-knownMEMP-specific

TFs such as KLF1, GATA1 and TAL1, but also epigenetic factors like HDAC1. Of interest, we observed that GP

and MEMP-specific RFs fell into two broad categories, that we termed type-1 and type-2 (Figure 3B), depend-

ing on their frequency of expression in MPP cells. For instance, KLF1 and GATA1 displayed low frequency of

expression among MPP cells, and displayed clear antagonistic patterns between MEMPs and GPs. On the

other hand, a MEMP-specific factor like FOXP1, which also exhibited significantly higher expression in

MEMP-cells compared to either MPP or GP-cells, still displayed frequent expression in the MPP and GP-cells.

Because the frequency of primed cells among MPPs is expected to be low, we reasoned that the RFs respon-

sible for priming would fall into the former ‘‘type-1’’ category. In support of this, type-1 RFs displayed stronger

overexpression in the mature differentiated cells from the corresponding lineage when compared to the

mature differentiated ones from the opposite lineage, while also displaying stronger enrichment for biological

terms related to lineage differentiation (Figure S4, STARMethods). Computing DICE for the 26 type-1 GP-RFs

over the MPP cells and separately also for the 45 type-1 MEMP-RFs, demonstrated clear evidence of priming,

i.e. their expression covariation patterns were distinctively non-random (Figure 3C).We stress that this is a non-

trivial finding because the selection of the RFs never depends on such covariation patterns across MPP cells.

Next, to identify the specific RFs driving the primed states into GP and MEMP lineages, we devised a dual

perturbation entropy and Spearman rank correlation strategy, designed to confidently identify RF pairs ex-

hibiting the most significant positive covariation as assessed over the MPP population (STAR Methods). In

the case of the GP and MEMP lineages, this identified IRF8-UHRF1 and GATA1-KLF1 as the most highly

ranked pairs, respectively (Figures 3D and 3E). Thus, we posited that these RF-pairs control early priming

and cell-fate commitment into the GP and MEMP lineages, respectively.

To validate this prediction in the context of the same scRNA-Seq data, we next identified the GP-primed

cells within the MPP population as those cells co-expressing IRF8 and UHRF1, and similarly for the MEMP-

lineage using GATA1 and KLF1 (STAR Methods). In total, we identified 88 and 24 MPP cells primed for the

GP and MEMP lineages, respectively, and their positions in the Diffusion Map were consistent with that of

their respective differentiation paths (Figure 3F). To confirm this, and thus to validate the RF-pairs defining

the primed states, we used the Palantir algorithm37 to compute fate probabilities for each of the MPP cells

(STAR Methods, Figure 3G). Validating our assignments, we observed that MPP cells primed for the GP

lineage exhibited significantly higher probabilities of differentiating into GP-lineage cells compared to un-

primed cells or cells primed for the MEMP-fate (Figure 3H). Conversely, cells primed for the MEMP lineage

exhibited lower probabilities of differentiating into the GP-fate as compared to unprimed and GP-primed

cells (Figure 3H).

Validation of primed states using scATAC-Seq data

To further validate the above findings, we posited that the TFs defining the primed states would exhibit higher

TF-activity scores in the primed cells as measured using an independent assay such as scATAC-Seq. Although
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Figure 3. DICE identifies priming and primed states in fetal liver hematopoiesis

(A) Diffusion map derived from the scRNA-seq dataset encompassing multipotent progenitors (MPPs), megakaryocyte-

erythroid-mast progenitors (MEMPs) and granulocyte progenitors (GPs) during fetal liver hematopoiesis, demonstrating

the bifurcation from MPPs into GPs and MEMPs.

(B) Heatmap displaying the mRNA expression levels of selected lineage specific regulatory factors (RF) across the

different cell types. Every RF displayed in this heatmap exhibits significantly higher expression in one of the two lineages

(GPs or MEMPs) relative to both the MPPs as well as the cells from the other lineage. Type-1 RFs refer to RFs with relatively

low expression frequency in MPPs, whereas type-2 RFs refer to those with relatively high expression frequency in MPPs.

(C) Vertical red line denotes the observed DICE value for the type-1 lineage specific RFs as estimated over the MPPs. The

blue curve represents the null distribution obtained by randomizing the data matrix (1000 Monte-Carlo randomizations).

Empirically derived P-values are given.

(D) Panels depict the change in DICE values obtained on removing each type-1 RF in turn, separately for MEMP and GP

TFs. We only depict the top 10 type-1 RFs exhibiting the highest increased DICE values.

(E) Spearman correlation coefficient (SCC) heatmap between the top-10 RFs from (D). The heatmap is colored by-log10-

adjusted P-value of the SCC weighted by the sign of the SCC. MEMP specific RFs are displayed in green and GP specific

RFs in coral.

(F) As (A), but with cells colored by pseudotime (left) and cell-type including primed cells (right). PrimedM refers to MPPs

co-expressing GATA1 and KLF1, and primedG to MPPs co-expressing IRF8 and UHRF1.

(G) As (A), but with cells colored by their cell-fate probabilities, specifically the probability of differentiating into GPs, as

calculated with Palantir.

(H) Violin plots comparing the probabilities of differentiating into GP-lineage for different MPP cell groups: PrimedG are

MPPs co-expressing IRF8 and UHRF1 and primed for GP-lineage, primedM are MPPs co-expressing GATA1 and KLF1 and

primed to MEMP-lineage, unprimed are the rest of MPPs. p values are from a one-sided Wilcoxon rank-sum test. The

horizontal dashed orange line represents the GP-fate probability = 0.5. The three horizontal black lines represent the

mean values for the different cell groups. Gray points in the violins represent real data points.
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scATAC-Seq profiles for the same cells analyzed earlier are not available, they are available for the same cell-

types, as profiled by the same study.27 Thus, using the scATAC-Seq data and cell-type annotations provided

by Ranzoni et al.,27 we aimed to identify putative primed cells within the MPP population (STAR Methods).

Briefly, this was done by performing differential overexpression analysis to first infer marker genes for the

primed-GP and primed-MEMP MPP subpopulations identified earlier with the scRNA-Seq data (Figure 4A),

and subsequently computing scATAC-Seq accessibility scores over these marker genes for each of the

MPP cells (STAR Methods). This allowed identification of candidate GP and MEMP primed cells as those ex-

hibiting the corresponding highest accessibility scores (Figure 4B). To check that these assignments of candi-

date primed cells are plausible, we performedUMAP analysis38 on all cells using normalized peak-level counts

over the marker genes (STARMethods), displaying only the GP, MEMP and corresponding predicted primed

cells. This revealed a significant segregation of GP and MEMP cells, with the primed cells of a given lineage

displaying preferential co-clustering with the more mature cells of that lineage (Figure 4C). Importantly,

consistent segregation of the primed cells of each lineage was also evident when performing UMAP on

themost variable peak-level features, without restricting to ourmarker genes, thus confirming the consistency

of the primed states (Figure 4D). To further validate these states, we posited that if the TFs we have identified

from the scRNA-Seq data do indeed define GP andMEMP primed states, that the target genes of these spe-

cific TFs ought to exhibit higher chromatin accessibility in the predicted primed cells. To this end, we applied

chromVar39 to infer a TF regulatory activity score (TFA) for each of the DNA-binding TFs IRF8, GATA1 and

KLF1 in each of the MPP cells. This revealed that TFA levels of GATA1 and KLF1 were higher in the cellular

neighborhoods enriched for MEMP-primed cells, while the converse was true for TFA of IRF8 (Figure 4E).

Using Wilcoxon rank sum tests we confirmed the statistical significance of these patterns (Figure 4F). Overall,

the scATAC-Seq data support the view that GATA1 and KLF1 define MPP states primed to differentiate into

the MEMP-lineage, while IRF8 defines MPP states primed for the GP-lineage. Of note, although we used the

scATAC-Seq data to validate the primed states, the identification of these states was accomplished using only

scRNA-Seq data.
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Figure4. Validation of primed states using scATAC-Seq data

(A) UMAP visualization of MEMPs, GPs and the primed cells, as obtained from the scRNA-seq using the derived marker genes.

(B) Scatterplots of scATAC-Seq data accessibility scores for each MPP cell, with cells ranked in decreasing order of overall accessibility as computed over the

corresponding marker genes. The top 10% of cells were defined as primed in the corresponding lineage, as shown. Cells ranked among the top 10% in both

lineages were not assigned as primed.

(C) UMAP visualization of MEMPs, GPs and the primed MPP cells (as predicted from (B)), as obtained from the scATAC-seq using normalized peak-level data

summarized over the marker genes.

(D) As (C), but as obtained from the scATAC-Seq data using the most variable peak-level features.

(E) As (C), but with cells now colored by the TF activity (TFA) obtained by running chromVAR on the scATAC-seq data. Left panel: colored by the average TFA

of GATA1 and KLF1. Right panel: colored by the TFA of IRF8.

(F) Violin plots comparing the average chromVAR TFA of GATA1 and KLF1 (left panel) and IRF8 (right panel) between the predicted MEMP and GP primed

cells (primedM, primedGP) and unprimed cells. P-values derived from one-tailed Wilcoxon rank sum tests.
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Figure5. Identification and validation of primed states in hair-follicle regeneration

(A) Diffusion map derived from the scRNA-seq dataset encompassing multipotent transit amplifying cells (TACs),

differentiated hair-shaft (HS) cells encompassing medulla and cuticle cortex (CC), and differentiated IRS cells during hair-

follicle regeneration.

(B) Heatmap displaying the mRNA expression levels of IRS and HS-specific regulatory factors (RF) across the different cell

types. Every RF displayed in the heatmap exhibits significantly higher expression in one of the two lineages (IRS or HS)

relative to TACs and the opposite lineage. Type-1 RFs refer to RFs with relatively low expression frequency in TACs,

whereas type-2 RFs refer to those with relatively higher expression frequency.

(C) Vertical red line denotes the observed DICE value for the type-1 lineage specific RFs as estimated over the TACs. The

blue curve represents the null distribution obtained by randomizing the data matrix (1000 Monte-Carlo randomizations).

P-values are given.

(D) The change in DICE values obtained on removing each of the type-1 RFs in turn, separately for each lineage. We only

depict the top-10 type-1 RFs exhibiting the highest increased DICE values.

(E) Spearman correlation coefficient (SCC) heatmap between the top-10 RFs from each lineage. The heatmap is colored

by log10-adjusted P-value of the SCC weighted by the sign of the SCC. HS-specific RFs are displayed in blue and IRS-

specific RFs in orange.

(F) Left panel: as (A) but with primed TAC cells annotated as primed into IRS or HS lineages. Middle panel: as (A) but will

cells labeled by their Palantir probability of differentiating into HS-lineage. Right panel: Violin plots depicting the Palantir-

derived probability (averaged over 50 runs) of differentiating into HS for all TACs, stratified according to being primed to

HS (pHS), primed to IRS (pIRS) or unprimed. P-values derive from one-tailed Wilcoxon rank sum tests.

(G) Left panel: UMAP visualization for 15 topics generated with cisTopic on matched scATAC-Seq peak data with cells

colored by celltype. Middle panels: Diffusion maps generated with Palantir on 15 topics with cells colored by celltype and

by the probability of differentiating into HS-lineage. Right panel: Violin plots depicting the Palantir-derived probability

(averaged over 50 runs) of differentiating into HS for all TACs (TACs grouped as in panel-(F), with the Palantir cell-fate
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DICE identifies primed states during hair-follicle development

To further demonstrate that primed states are identifiable from scRNA-Seq data only, we turned our atten-

tion to a scRNA-Seq study of hair-follicle regeneration, where hair-follicle stem cells initially give rise to

short-lived transit-amplifying cells (TACs) that subsequently divide to produce differentiated cell types

of the mature hair-follicle, including the inner root sheath (IRS) keratinocyte layer, and the hair shaft (HS),

which itself consists of the cuticle cortex (CC) and medulla (M).26 Thus, we asked if DICE would be able

to identify multipotent TACs primed for differentiation into the alternative IRS and HS layers. To explore

this, we selected RFs upregulated in one of the IRS and HS lineages relative to TACs and relative to the

alternative lineage. Diffusion Map analysis over these RFs using destiny40 confirmed the well-known bifur-

cation into competing IRS and HS lineages, with the M & CC bifurcation occurring at a later stage (Fig-

ure 5A). As before, we observed that upregulated RFs in each of the IRS and HS lineages encompassed

two subtypes, depending on the frequency of expression in the multipotent (here TAC) population (Fig-

ure 5B), with the type-1 RFs displaying lower frequencies of expression and being more strongly enriched

for biological terms related to differentiation of that lineage (Figure S5). Focusing on type-1 RFs, we verified

that their DICE computed over TACs was significantly lower compared to a completely randomized TAC

expression data matrix (Figure 5C), suggesting that priming is present within this TAC population. Using

our dual perturbation Spearman rank correlation analysis we identified candidate pairs of RFs driving

this priming (Figures 5D and 5E): Foxo3 and Lmo7 for priming into IRS, and Runx2 and Zfhx3 for HS.

Next, we identified IRS-primed and HS-primed TACs as those co-expressing the respective pair of IRS

or HS-priming RFs, resulting in 131 and 196 HS and IRS-primed cells, respectively. To confirm that these

cells are primed to each lineage, we ran Palantir to estimate cell-fate probabilities for each TAC cell (Fig-

ure 5F). This revealed a stronger probability to differentiate into the HS-lineage for cells that DICE had pre-

dicted to be HS-primed, as required (Figure 5F).

To further validate these primed TAC states, we took advantage of the fact that all cells had been profiled

with SHARE-Seq, a technology that generates joint scRNA-Seq and scATAC-Seqprofiles in the same cells.26

To process the scATAC-Seq data, we used cisTopic,41 a dimensional reduction and Latent Dirichlet Alloca-

tion (LDA) framework based on topic modeling, to identify latent sources of variation termed ‘‘regulatory

topics’’. With cisTopic, cells are clustered on the basis of their contributions to each regulatory topic. Using

UMAP visualization over this latent space confirmed segregation of all TAC, IRS and HS cells by cell-type,

with the medulla and cuticle-cortex cells displaying more similarity to each other compared to IRS cells,

as required (Figure 5G). Next, we estimated cell-fate probabilities into IRS and HS lineages, by running Pal-

antir on the cisTopic latent space (15 topics), revealing that the TAC cells DICE had previously predicted to

be HS-primed are more likely to differentiate into the HS-lineage (Figure 5G). Thus, the cells we identified

with DICE as being primed into HS or IRS lineages using scRNA-Seq data, are validated usingmatched scA-

TAC-Seq profiles. Next, to validate the RF-pairs that DICE predicts to be driving these primed states (as

derived from the scRNA-Seq data), we used the scATAC-Seq profiles to compute chromatin accessibility

scores for the corresponding RFs in each of the TACs. This was done in two ways: one approach focused

on the accessibility of the RFs themselves, whilst in the secondwe used chromVAR39 tomeasure accessibility

at the predicted RF-targets (STAR Methods). Validating their roles in HS-priming we observed that the HS-

primed cells displayed higher accessibility scores for the predicted HS-RFs compared to unprimed TACs or

TACs primed for the competing IRS-lineage (Figure 5H). The converse was also true for the IRS-priming RFs

(Figure 5H). chromVAR-derived accessibility scores for the HS and IRS TFs with available target-information,

were also higher in their corresponding primed cells (Figure S6), further validating our findings. Thus, over-

all, our data demonstrate that DICE can identify primed states from scRNA-Seq alone.

DICE identifies priming-RFs with higher confidence than other methods

Of note, if following the differential expression analysis (Figure 5B) we had selected candidate priming RFs

using a criterion of highest variance across TAC cells, as opposed to using DICE, we would have selected a

Figure5. Continued

probability computed over the 15 topics (derived from scATAC-Seq data). P-values are from a one-sided Wilcoxon

rank-sum test. The horizontal dashed red line represents the HS-fate probability = 0.5.

(H) Left panel: Violin plots depicting the average accessibility score for HS driving RFs (Runx2 and Zfhx3) across the 3

categories of TACs. P-values from a one-sided Wilcoxon rank-sum test. For each RF, its accessibility is calculated by

adding the accessible counts across peaks within a region 3 kb upstream of the gene and the gene body, and the summed

accessibility means adding the accessibility scores of the two driving RFs. Right panel: as left panel but for the IRS-priming

RFs Lmo7 and Foxo3.
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distinct set of RFs (Lef1 and Dach1 for HS-lineage, Sox5 and Cux1 for IRS-lineage), with the primed states

defined by these failing to validate in the scATAC-Seq data (Figure S7). This supports the view that consid-

eration of expression covariation can improve the identification of primed states and their regulators over

methods based on variance only. In support of this, we also compared DICE to an alternative method

dubbed ‘‘Palantir-only’’ where we use Palantir directly to identify primed states using a threshold on the

estimated cell-fate probabilities (STAR Methods). Applying this method to both the Ranzoni fetal liver he-

matopoietic as well as the hair-follicle SHARE-Seq datasets, we generally found candidate pairs of priming-

RFs that were distinct from those inferred with DICE and whose evidence in priming was less well validated

(Figures S8 and S9). For instance, considering the MPP population in liver hematopoiesis, Palantir-only

identified XBP1 as the partner of UHRF1 in defining primed-GP states, yet the TFA of XBP1 failed to

convincingly discriminate primed-GPs (primedG) from primed-MEMPs (primedM), suggesting that XBP1

is not directly implicated in priming (Figure S8). In contrast, DICE had predicted IRF8 to be implicated in

priming of GP cells, which was well validated (Figure S8). Similarly, in the case of the hair-follicle data, using

‘‘Palantir-only’’ we found Gata3 and Maml3 to be priming-IRS factors, yet their accessibility was not higher

in primed-IRS cells compared to primed-HS, which is inconsistent with their hypothesized role in priming

(Figure S9).

DICE helps pinpoint cell-fate transition points in real scRNA-Seq data

Finally, we applied DICE to real scRNA-Seq datasets representing differentiation time courses to assess if

DICE can help pinpoint the underlying bifurcations. Eligible datasets are those profiling sufficient numbers

of cells (R50 cells per timepoint) across a sufficient number of timepoints where bifurcation dynamics is

evident and grounded on prior biological evidence. We first analyzed a developmental time course of liver

differentiation in mice (n = 447 cells), with hepatoblasts differentiating into both hepatocytes and cholan-

giocytes along 7 developmental timepoints (E10.5, E11.5, E12.5, E13.5, E14.5, E15.5 & E17.5).42 Here we

focused on a set of 22 liver-specific TFs which we have previously validated as exhibiting increased differ-

entiation activity from hepatoblasts into either hepatocytes or cholangiocytes.22 Of note, in this earlier work

we made use of liver-specific TF regulons to estimate differentiation activity for the 22 liver-specific TFs in

each of the 447 cells, an approach that improves the sensitivity to detect true dynamic changes of TFs, as

compared to TF-expression.22 Applying Diffusion Maps35 to the differentiation activity matrix defined over

the 22 TF and 447 cells confirmed the known bifurcation into the two main liver epithelial subtypes,

although the precise timing of the bifurcation point is unclear due to low sampling-sparsity in this region

(Figure 6A). We note that the imprecision in the timing of the bifurcation is also unclear had we derived the

diffusion map using all variable genes.22 Although pseudotime and developmental timepoint were

strongly correlated (Figure S10), the substantial asynchrony displayed by cells (Figures 6B andS10) moti-

vated us to study the covariation of TFs as a function of pseudotime (STAR Methods). We identified 4

high-confidence hepatocyte (Foxa2, Nr1i3, Nr1i2, Trim15) and cholangiocyte (Lsr, Elf3, Bgn, Irf6) specific

factors (Figures S11 and6C), and computing their DICE as a function of pseudotime revealed a transition

following E13.5 (Figure 6D), consistent with previous knowledge.42 Importantly, DICE displayed a clear

transition-like behavior, unlike the individual TF variances which increased but in a mostly asynchronous

manner (Figure 6E). We also compared DICE to BioTIP,19 a tool designed to detect cell-fate transitions us-

ing the concept of a dynamical network biomarker (DNB),17,18which also relies on covariation patterns,

albeit not just of TFs but of specific subsets of all genes. In line with this, BioTIP’s criticality index also dis-

played a clear transition, although at an earlier timepoint compared to DICE, whilst also displaying larger

fluctuations during the timecourse (Figures S12A and S12B). This demonstrates that covariation of TFs and

the derived DICE measure displays smoother behavior that can help pinpoint bifurcation points more

precisely than what is possible from the inferred diffusion map bifurcation diagram, from consideration

of TF variances only, or from DNB-based criticality indices.

As a second example, we considered differentiation of human fetal retinal progenitor cells into either

neuronal or epithelial subtypes, another well-known bifurcation system.43 For this dataset, we did not

have an a-priori set of tissue-specific TFs, hence we inferred relevant TFs from the scRNA-Seq dataset itself

using the measured TF-expression levels (STAR Methods). We identified 17 TFs (10 neuronal and 7 epithe-

lial specific) displaying increased expression during the timecourse and clear antagonistic behavior be-

tween the two differentiation branches. Application of Diffusion Maps to the 17 TF-expression matrix

confirmed the bifurcation into the two retinal subtypes, although, as before, the precise timing of the bifur-

cation is unclear (Figures S13A–S13C). By computing DICE over the top 7 TF from each lineage, we could

readily identify the developmental timepoint 13W as the critical transition point (Figures S13D and S13E),
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consistent with previous knowledge.43 Importantly, inspection of the individual TF variances or their

average did not exhibit a clear transition-like behavior (Figures S13F and S13G), while BioTIP’s criticality

index displayed large fluctuations, not allowing precise identification of a cell-fate transition point

(Figures S12C and S12D).

DISCUSSION

Here we have proposed the concept of distance covariance entropy to quantify priming and bifurcation

dynamics in scRNA-Seq data. As shown, DICE can be a useful measure for identifying bifurcation points

which otherwise could be hard to pinpoint when only using lineage-trajectory inference algorithms. This

is because sampling of cells in the vicinity of bifurcation points is generally quite sparse which leads to

high variance and blurring of the lineage-trajectory landscape near such transition points. Our DICE strat-

egy circumvents this problem by identifying the relevant RFs that display the typical antagonistic switch-like

behavior during differentiation, a task which only requires identification of the terminal branch points and

which can therefore be easily accomplished with standard lineage trajectory or clustering algorithms. By

subsequently computing the DICE of these RFs as a function of differentiation-or-pseudotime, we can

thus track the covariation behavior of these RFs, to more accurately identify the specific timepoint at which

DICE changes, reflecting the transition point. In this regard, it is worth pointing out that DICE displayed

improvements over competing methods. For instance, although in the real datasets considered here we

did not observe the covariation patterns between RFs to deviate strongly from monotonic linear depen-

dencies, DICE did display a higher dynamic range in the vicinity of the transition points compared to the

ordinary covariance entropy. We also observed improvements of DICE over DNB-based methods such

as BioTIP, in the sense that DICE displayed much smoother patterns away from the cell-fate transition

points. With BioTIP we often observed wilder fluctuations on either sides of the transition point. We attri-

bute the improved smoothness of DICE to the fact that it is anchored on the expression or differentiation

activity levels of RFs. In other words, although DNBs derive from expression covariation patterns, these are
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Figure6. DICE analysis in liver differentiation

(A) Diffusion Map bifurcation diagram as inferred over the TFA-matrix of 22 liver-specific TFs and 447 cells, with cells colored by diffusion pseudotime (DPT).

(B) As (A), but will cells colored by developmental timepoint.

(C) As (A), but with cells colored by the average TFA of hepatocyte (Foxa2, Nr1i3, Nr1i2, Trim15) and cholangiocyte factors (Lsr, Elf3, Bgn, Irf6).

(D) Left: DICE as a function of DPT-bin. Error bars indicate 95% CIs as estimated from 1000 Bootstraps. Right: overlap cell count matrix between

developmental timepoint and DPT-bin.

(E) Variance of the hepatocyte and cholangiocyte TFs (estimated using TFA-matrix) as a function of DPT-bin. Data on y-axis has been capped at 2, with outlier

values displayed in text.
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inferred frommuch larger pools of genes, and hence are more likely to be purely associative and not causal

for the cell-fate commitment process. It will be interesting if future work were to perform a more compre-

hensive comparison to include other tipping point algorithms such as scGET.18

Using DICE we have also obtained clear evidence of priming, i.e. non-stochastic covariation of lineage spe-

cific RFs within multipotent cell populations. We observed such priming within a hematopoietic MPP cell

population during fetal liver hematopoiesis and within an MPP population driving hair-follicle regenera-

tion, suggesting that this is a broad phenomenon. Although we were able to validate the primed states

and RFs using scATAC-Seq data, it is important to observe that the identification of such primed states

and their RFs did not require the scATAC-Seq itself. Indeed, DICE is able to infer the RFs defining the

primed cells using only the scRNA-Seq data as input, without the need for any epigenome data. This is

consistent with observations from Velten et al.,25 but appears to contradict the claim made by others27,44

that such primed states are only detectable using scATAC-Seq data. In our opinion, primed states should

be detectable from scRNA-Seq data, because chromatin accessibility is determined by RFs, including

epigenetic modifiers and pioneer TFs, and the expression levels of these factors must change first to facil-

itate subsequent changes in chromatin accessibility. In support of this, in the case of MPPs primed to

MEMPs, the main identified RF-pair was GATA1-KLF1, the latter being a well-known pioneer TF that facil-

itates open chromatin and recruitment of GATA1.45 Similarly, for MPPs primed to GPs, our candidate prim-

ing pair IRF8-UHRF1 involves an epigenetic modifier (UHRF1) involved in DNAmethylation maintenance.46

Consistent with our data, UHRF1 has been shown to be critical for granulocyte differentiation with UHRF1

KO cells being biased toward erythroid differentiation.47 These findings are consistent with priming being

associated with a particular chromatin modification state (‘‘chromatin potential’’) that precedes cell-fate

commitment,44 and that such priming is detectable by subtle expression covariation patterns of specific

RFs. Indeed, we note that one important reason why previous studies may have been unable to identify

primed states from scRNA-Seq data,27,44 is that they did not consider the covariation patterns of RFs.

Although we did not explore the application of DICE to a disease context, we envisage that DICE could

also be useful as a means of inferring which differentiation networks are altered in diseases like cancer.

Indeed, cell-lineage has recently been shown to be a critical determinant of oncogenesis,48 and lineage-

specific TFs are preferentially silenced in the corresponding cancer type.22,49 Thus, DICE could help

identify the specific combinatorial patterns of RFs whose covariation is disrupted, promoting oncogenic

transformation.

In summary, the DICE framework andmetric presented here is a novel useful tool to help quantify and iden-

tify primed states in multipotent cell populations, as well as to help pinpoint the exact timing of bifurcation

events in differentiation and development.

Limitations of the study

Ideally, we would have had SHARE-Seq profiles (i.e., joint scRNA-Seq & scATAC-Seq) for the liver hemato-

poiesis study, yet this data was not available. As a result, to validate the primed states as identified from the

scRNA-Seq data, we had to invent a method to assign corresponding primed states in the scATAC-Seq

data. Although the method is rigorous, it is inevitably also an approximation. Ideally, one would also

perform experimental work to demonstrate the importance of the identified RFs in priming. Instead, we

used the generated scATAC-Seq data to validate the role of the RFs in priming.
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41. Bravo González-Blas, C., Minnoye, L.,
Papasokrati, D., Aibar, S., Hulselmans, G.,
Christiaens, V., Davie, K., Wouters, J., and
Aerts, S. (2019). cisTopic: cis-regulatory topic
modeling on single-cell ATAC-seq data. Nat.
Methods 16, 397–400. https://doi.org/10.
1038/s41592-019-0367-1.

42. Yang, L., Wang, W.H., Qiu, W.L., Guo, Z., Bi,
E., and Xu, C.R. (2017). A single-cell
transcriptomic analysis reveals precise
pathways and regulatory mechanisms
underlying hepatoblast differentiation.
Hepatology 66, 1387–1401. https://doi.org/
10.1002/hep.29353.

43. Hu, Y., Wang, X., Hu, B., Mao, Y., Chen, Y.,
Yan, L., Yong, J., Dong, J., Wei, Y., Wang, W.,
et al. (2019). Dissecting the transcriptome
landscape of the human fetal neural retina
and retinal pigment epithelium by single-cell
RNA-seq analysis. PLoS Biol. 17. e3000365.
https://doi.org/10.1371/journal.pbio.
3000365.

44. Buenrostro, J.D., Corces, M.R., Lareau, C.A.,
Wu, B., Schep, A.N., Aryee, M.J., Majeti, R.,
Chang, H.Y., and Greenleaf, W.J. (2018).
Integrated single-cell analysis maps the
continuous regulatory landscape of human
hematopoietic differentiation. Cell 173,
1535–1548.e16. https://doi.org/10.1016/j.
cell.2018.03.074.

45. Gillinder, K.R., Magor, G., Bell, C., Ilsley,M.D.,
Huang, S., and Perkins, A. (2018). KLF1 acts as
a pioneer transcription factor to open

ll
OPEN ACCESS

14 iScience 25, 105709, December 22, 2022

iScience
Article

https://doi.org/10.1038/nbt.2859
https://doi.org/10.1038/nbt.2859
https://doi.org/10.1038/s41592-019-0632-3
https://doi.org/10.1038/s41592-019-0632-3
https://doi.org/10.1371/journal.pbio.1002585
https://doi.org/10.1371/journal.pbio.1002585
https://doi.org/10.1371/journal.pbio.2000640
https://doi.org/10.1371/journal.pbio.2000640
https://doi.org/10.1038/srep00342
https://doi.org/10.1016/j.gpb.2020.11.008
https://doi.org/10.1093/nar/gkac452
https://doi.org/10.1093/nar/gkac452
https://doi.org/10.1186/s12967-022-03445-0
https://doi.org/10.1093/bib/bbac177
https://doi.org/10.1093/bib/bbac177
https://doi.org/10.1038/s41525-020-00151-y
https://doi.org/10.1038/s41525-020-00151-y
https://doi.org/10.1186/s13059-020-1949-z
https://doi.org/10.1186/s13059-020-1949-z
https://doi.org/10.1186/s12859-018-2217-z
https://doi.org/10.1186/s12859-018-2217-z
https://doi.org/10.1038/ncb3493
https://doi.org/10.1038/ncb3493
https://doi.org/10.1016/j.cell.2020.09.056
https://doi.org/10.1016/j.stem.2020.11.015
https://doi.org/10.1016/j.stem.2020.11.015
https://doi.org/10.1038/nrg.2017.86
https://doi.org/10.1038/nrg.2017.86
https://doi.org/10.1093/bioinformatics/bty724
https://doi.org/10.1093/bioinformatics/bty724
http://refhub.elsevier.com/S2589-0042(22)01982-4/sref30
http://refhub.elsevier.com/S2589-0042(22)01982-4/sref30
http://refhub.elsevier.com/S2589-0042(22)01982-4/sref30
https://doi.org/10.1093/bioinformatics/btq704
https://doi.org/10.1093/bioinformatics/btq704
https://doi.org/10.1371/journal.pcbi.1006855
https://doi.org/10.1371/journal.pcbi.1006855
https://doi.org/10.1371/journal.pcbi.1002300
https://doi.org/10.1371/journal.pcbi.1002300
https://doi.org/10.1371/journal.pcbi.1003165
https://doi.org/10.1371/journal.pcbi.1003165
https://doi.org/10.1038/nmeth.3971
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1038/s41587-019-0068-4
https://doi.org/10.1038/s41587-019-0068-4
https://doi.org/10.1038/nbt.4314
https://doi.org/10.1038/nbt.4314
https://doi.org/10.1038/nmeth.4401
https://doi.org/10.1038/nmeth.4401
https://doi.org/10.1093/bioinformatics/btv715
https://doi.org/10.1093/bioinformatics/btv715
https://doi.org/10.1038/s41592-019-0367-1
https://doi.org/10.1038/s41592-019-0367-1
https://doi.org/10.1002/hep.29353
https://doi.org/10.1002/hep.29353
https://doi.org/10.1371/journal.pbio.3000365
https://doi.org/10.1371/journal.pbio.3000365
https://doi.org/10.1016/j.cell.2018.03.074
https://doi.org/10.1016/j.cell.2018.03.074
http://refhub.elsevier.com/S2589-0042(22)01982-4/sref45
http://refhub.elsevier.com/S2589-0042(22)01982-4/sref45
http://refhub.elsevier.com/S2589-0042(22)01982-4/sref45


chromatin and facilitate recruitment of
GATA1. Blood 132, 501.

46. Bostick, M., Kim, J.K., Estève, P.O., Clark, A.,
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Aaltonen, L.A., Hautaniemi, S., and Taipale, J.
(2021). Human cell transformation by
combined lineage conversion and oncogene
expression. Oncogene 40, 5533–5547.
https://doi.org/10.1038/s41388-021-01940-0.

49. Liu, T., Zhao, X., Lin, Y., Luo, Q., Zhang, S., Xi,
Y., Chen, Y., Lin, L., Fan, W., Yang, J., et al.
(2022). Computational identification of
preneoplastic cells displaying high stemness
and risk of cancer progression. Cancer Res.
82, 2520–2537. https://doi.org/10.1158/0008-
5472.CAN-22-0668.

50. Rainer, J., Gatto, L., andWeichenberger, C.X.
(2019). ensembldb: an R package to create
and use Ensembl-based annotation
resources. Bioinformatics 35, 3151–3153.
https://doi.org/10.1093/bioinformatics/
btz031.

51. Fornes, O., Castro-Mondragon, J.A., Khan,
A., van der Lee, R., Zhang, X., Richmond, P.A.,
Modi, B.P., Correard, S., Gheorghe, M.,
Barana�si�c, D., et al. (2020). Jaspar 2020:
update of the open-access database of
transcription factor binding profiles. Nucleic
Acids Res. 48, D87–D92. https://doi.org/10.
1093/nar/gkz1001.

52. Butler, A., Hoffman, P., Smibert, P., Papalexi,
E., and Satija, R. (2018). Integrating single-cell
transcriptomic data across different
conditions, technologies, and species. Nat.
Biotechnol. 36, 411–420. https://doi.org/10.
1038/nbt.4096.

53. Pineda-Krch, M. (2008). Implementing the
stochastic simulation algorithm in R. J. Stat.
Softw. 25, 1–18.

54. Soetaert, K. (2012). Solving Differential
Equations in R (Springer).

55. Stuart, T., Srivastava, A., Madad, S., Lareau,
C.A., and Satija, R. (2021). Single-cell
chromatin state analysis with Signac. Nat.
Methods 18, 1333–1341. https://doi.org/10.
1038/s41592-021-01282-5.

56. Korsunsky, I., Millard, N., Fan, J., Slowikowski,
K., Zhang, F., Wei, K., Baglaenko, Y., Brenner,
M., Loh, P.R., and Raychaudhuri, S. (2019).
Fast, sensitive and accurate integration of
single-cell data with Harmony. Nat. Methods
16, 1289–1296. https://doi.org/10.1038/
s41592-019-0619-0.

57. Teschendorff, A.E., Zhuang, J., and
Widschwendter, M. (2011). Independent
surrogate variable analysis to deconvolve
confounding factors in large-scale microarray
profiling studies. Bioinformatics 27, 1496–
1505. https://doi.org/10.1093/
bioinformatics/btr171.

58. Miyamoto, T., Furusawa, C., and Kaneko, K.
(2015). Pluripotency, differentiation, and
reprogramming: a gene expression dynamics
model with epigenetic feedback regulation.
PLoS Comput. Biol. 11. e1004476. https://doi.
org/10.1371/journal.pcbi.1004476.

59. Alagha, A., and Zaikin, A. (2013). Asymmetry
in erythroid-myeloid differentiation switch
and the role of timing in a binary cell-fate
decision. Front. Immunol. 4, 426. https://doi.
org/10.3389/fimmu.2013.00426.

60. Gillespie, D.T. (1977). Exact stochastic
simulation of coupled chemical reactions.
J. Phys. Chem. 81, 2340–2361. https://doi.
org/10.1021/j100540a008.

ll
OPEN ACCESS

iScience 25, 105709, December 22, 2022 15

iScience
Article

http://refhub.elsevier.com/S2589-0042(22)01982-4/sref45
http://refhub.elsevier.com/S2589-0042(22)01982-4/sref45
https://doi.org/10.1126/science.1147939
https://doi.org/10.1126/science.1147939
https://doi.org/10.1073/pnas.1612967114
https://doi.org/10.1073/pnas.1612967114
https://doi.org/10.1038/s41388-021-01940-0
https://doi.org/10.1158/0008-5472.CAN-22-0668
https://doi.org/10.1158/0008-5472.CAN-22-0668
https://doi.org/10.1093/bioinformatics/btz031
https://doi.org/10.1093/bioinformatics/btz031
https://doi.org/10.1093/nar/gkz1001
https://doi.org/10.1093/nar/gkz1001
https://doi.org/10.1038/nbt.4096
https://doi.org/10.1038/nbt.4096
http://refhub.elsevier.com/S2589-0042(22)01982-4/sref53
http://refhub.elsevier.com/S2589-0042(22)01982-4/sref53
http://refhub.elsevier.com/S2589-0042(22)01982-4/sref53
http://refhub.elsevier.com/S2589-0042(22)01982-4/sref54
http://refhub.elsevier.com/S2589-0042(22)01982-4/sref54
https://doi.org/10.1038/s41592-021-01282-5
https://doi.org/10.1038/s41592-021-01282-5
https://doi.org/10.1038/s41592-019-0619-0
https://doi.org/10.1038/s41592-019-0619-0
https://doi.org/10.1093/bioinformatics/btr171
https://doi.org/10.1093/bioinformatics/btr171
https://doi.org/10.1371/journal.pcbi.1004476
https://doi.org/10.1371/journal.pcbi.1004476
https://doi.org/10.3389/fimmu.2013.00426
https://doi.org/10.3389/fimmu.2013.00426
https://doi.org/10.1021/j100540a008
https://doi.org/10.1021/j100540a008


STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the Lead

Contact, Andrew Teschendorff (andrew@sinh.ac.cn).

Materials availability

This study does not generate novel data.

Data and code availability

SHARE-Seq data analyzed in this study is publicly available from the Gene Expression Omnibus (GEO) un-

der accession number GSE140203. Single-cell RNA-Seq data for mouse liver and human fetal retina

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Fetal liver hematopoiesis scRNA-Seq data Ranzoni et al.27 https://gitlab.com/cvejic-group/integrative-scrna-scatac-human-

foetal/-/tree/master/Data/ScanpyObjets

Fetal liver hematopoiesis scATAC-Seq data Ranzoni et al.27 https://u.pcloud.link/publink/show?code=XZdMm1XZssJXAvp
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analyzed in this study is publicly available from the GEO under accession numbers, GSE90047 and

GSE107618.

The main functions implementing the DICE framework are available as part of the DICE R-package, freely

available from https://github.com/aet21/DICE. The R-package comes with a user-friendly tutorial vignette.

Any additional information required to reanalyze the data reported in this paper is available from the lead

contact upon request.

METHOD DETAILS

Single-cell omic datasets analyzed

We analyzed a total of four single-cell RNA-seq and two single-cell ATAC-Seq datasets, respectively.

scRNA-Seq and scATAC-Seq data of fetal hematopoiesis in liver

scRNA-Seq and scATAC-Seq data was derived from Ranzoni et al.27 QC and normalization for scRNA-Seq

data were done with filter_cells and normalize_per_cell functions (normalize_per_cell function with scaling

factor 10,000 and log1p function) from Python (v.3.6.9) package SCANPY (v.1.4.5.1). After QC, 4504 cells re-

mained. Their annotation was given by Ranzoni et al. as 1200 MPPs, 169 cycling MPPs (MPPs-Cycle), 156

lymphoid-myeloid progenitors (LMPs), 192 MK-erythroid-mast progenitors (MEMPs), 255 cycling MEMPs

(MEMPs-Cycle), 177 granulocytic progenitors (GPs), 265 granulocytes, 254 erythroid cells, 200 mast cells, 96

megakaryocytes, 135 plasmacytoid dendritic cells (pDCs), 42 cycling pDCs, 476 monocytes, 756 B cells, 41

endothelial cells, 46 NK cells and 44 unspecified cells. The Scanpy Object containing the normalized

scRNA-Seq data for cells passing QC and annotation information was downloaded from https://gitlab.

com/cvejic-group/integrative-scrna-scatac-human-foetal/-/tree/master/Data/ScanpyObjets. The Seurat ob-

ject of scATAC-Seq data containing a peak assay for 3611 cells passing QC was downloaded from https://

u.pcloud.link/publink/show?code=XZdMm1XZssJXAvpOTVyH183w4QwCN4PtroPk. For scATAC-Seq data

we also used the annotation provided by the authors: there were 2264 MPPs, 313 cycling MPPs, 133

MEMPs, 265 cycling MEMPs, 186 GP, 185 LMPs and 265 unspecified cells. The metadata and TF activity calcu-

lated with chromVAR files for scATAC-Seq data were downloaded from https://gitlab.com/cvejic-group/

integrative-scrna-scatac-human-foetal/-/tree/master/Data/scATAC_CSV_file_for_Scanpy.

SHARE-seq data of mouse skin

SHARE-seq data, containing joint profiles of single cell gene expression and chromatin accessibility, was

downloaded from GEO: GSE14020327. We used 34,774 joint profiles from mouse skin that passed QC

with cell-type annotations, encompassing 4378 transit-amplifying cells (TACs), 3433 CD34+ bulge cells,

7787 basal cells, 1121 Dermal Fibroblast cells, 766 dermal papilla cells, 398 dermal sheath cells, 927

endothelial cells, 291 granular cells, 1166 hair shaft cuticle cortex cells, 4139 infundibulum cells, 672 inner

root sheath (IRS) cells, 689 isthmus cells, 514 K6+ bulge companion layer cells, 263 macrophage DCs, 981

medulla cells, 187 melanocytes, 1029 outer root sheath cells (ORS), 163 Schwann cells, 181 sebaceous

gland cells, 3146 spinous cells. scRNA-Seq data was normalized with Seurat.52 For our analysis, we

focused on the joint scRNA-Seq scATAC-Seq profiles of 4378 TACs, 672 IRS, 981 medulla and 1166

cuticle cortex cells.

scRNA-Seq data of liver differentiation

This Fluidigm C1 dataset was derived from Yang et al.,42 a study of differentiation of mouse hepatoblasts

into hepatocytes and cholangiocytes. Normalized (TPM) data was downloaded from GEO:GSE90047 (file:

GSE90047-Singlecell-RNA-seq-TPM.txt). Data was further transformed using a log2 transformation add-

ing a pseudocount of 1. After quality control, 447 single-cells remained, with 54 single cells at embryonic

day 10.5 (E10.5), 70 at E11.5, 41 at E12.5, 65 at E13.5, 70 at E14.5, 77 at E15.5 and 70 at E17.5.

scRNA-Seq data of human retina differentiation

This STRT scRNA-Seq dataset derives from Hu et al.,43 representing a time-course differentiation of hu-

man fetal retinal progenitor cells into retinal neuronal and retinal epithelial cells (GEO:GSE107618). After

quality control (following Hu et al.), 2421 single-cells remained encompassing 10 developmental stages

(5W–24W).
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Selection of lineage specific regulatory factors

For each dataset analyzed, the RFs used in DICE were selected as follows:

Fetal hematopoiesis in liver

Starting out from a combined list of 1994 RFs derived from the Molecular Signature (MSigDB) and

DOROTHEA databases,23,36 we performed differential expression analysis on the log-normalized

scRNA-seq data from27 encompassing 1569 non-cycling cells annotated as MPP (n = 1200), megakaryo-

cyte-erythroid-mast progenitors (MEMPs, n = 192) and granulocyte progenitors (GPs, n = 177). MEMP spe-

cific RFs were selected by performing Wilcoxon rank sum tests comparing expression profiles between

MEMPs and MPPs, and separately also between MEMPs and GPs, so as to find RFs with significantly higher

expression values in MEMPs in both comparisons (MEMP-RFs). We corrected for multiple testing using a

Benjamini-Hochberg (BH) significance threshold of 0.05. An analogous procedure was implemented for se-

lecting GP specific RFs (GP-RFs). We observed that both MEMP-RFs and GP-RFs displayed two different

types of overexpression depending on the frequency of expression in the MPP population. For each

MEMP and GP specific RF we computed the expression frequency across all MPP cells, and those with

an expression frequency lower than the mean expression frequency were classified as ‘‘type-1’’, while

the rest fell into ‘‘type-2’’. This was done separately for MEMP and GP specific RFs, leading to type-1

MEMP-RFs, type-2 MEMP-RFs, type-1 GP-RFs and type-2 GP-RFs. Of note, only type-1 RFs were used to

assess priming, since priming is not a frequent event among multipotent cells.

Hair-follicle regeneration

Using the log-normalized scRNA-Seq data encompassing TACs, IRS, medulla and hair shaft cuticle cortex

cells, we performed a similar differential overexpression analysis as described above to select type-1 line-

age specific RFs for IRS and hair shaft (HS) lineages. For the HS, we combined medulla and cuticle cortex

cells as one broad HS group. We selected the IRS and HS specific RFs from the 1994 RFs mentioned above.

The IRS specific RFs were selected by performing Wilcoxon rank sum tests comparing expression profiles

between TACs and IRS, and separately also between IRS and HS, so as to find RFs with significantly higher

expression values in IRS in both comparisons (IRS-RFs). We corrected for multiple testing using a Benjamini-

Hochberg (BH) significance threshold of 0.05. HS specific RFs were selected with an analogous procedure

(HS-RFs). Similarly, IRS-RFs and HS-RFs displayed two different types of overexpression in relation to the

frequency of expression in the TAC population. For each IRS and HS specific RF we computed the expres-

sion frequency across all TACs, and those with an expression frequency lower than the mean expression

frequency were classified as ‘‘type-1’’, while the rest as ‘‘type-2’’. By doing this separately for IRS and HS

specific RFs, we obtained type-1 IRS-RFs, type-2 IRS-RFs, type-1 HS-RFs and type-2 HS-RFs, and only

type-1 RFs were used to assess priming.

Mouse liver differentiation

In this dataset, we used a prior list of 22 liver-specific TFs derived and validated by us previously.22 This list

included well-known hepatocyte and cholangiocyte factors Hnf4a, Foxa2, Hnf4g, Hnf1a, Elf3, Bcl3, Lhx2,

Trim15, Lsr, Irf6, Bgn. Because for liver we have corresponding liver-specific regulons for these 22 TF,22

in this dataset we don’t use TF-expression but instead estimate the transcription factor differentiation ac-

tivity (TFA) of the 22 TF. Briefly, the estimation of TFA proceeds by performing a linear regression of the log-

normalized expression profile of a cell against the regulon binding profile, with the inferred t-statistic of the

regression defining the TFA-value.22 The regulon binding profile is a vector with entries equal to 1 indi-

cating positively regulated targets of the TF,�1 indicating repressive interactions and 0 indicating no regu-

lation. Next, from the estimated TFA profiles, we selected the TFs displaying increased TFA with differen-

tiation timepoint, and which also displayed significant differential TFA between cholangiocyte and

hepatocyte branches. Finally, DICE was computed over the top-4 selected hepatocyte and top-4 selected

cholangiocyte factors (4 was chosen because this was the minimum number of selected TFs per branch).

Human retina differentiation

In this dataset we started out with the list of TFs fromMSigDB.36 Because cells were not annotated, we first

used Seurat (4.0.4)52 to perform normalization and cluster analysis, defining 11 cell clusters. To annotate

them, we identified corresponding marker genes using the Seurat function FindMarkers(only.pos =

TRUE, min.pct = 0.25, logfc.threshold = 1). For further analyses we discarded all clusters representing im-

mune cells, fibroblasts andmicroglia, because they are unrelated to the retinal differentiation process, only
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keeping the neuronal and epithelial cells. We identified specific clusters representing the terminal differ-

entiation state (23–24W) of retinal neuronal cells and others associated with the terminal differentiation

state (23–24W) of retinal epithelial cells. Next, we identified a total 17 TF displaying increased expression

during the whole developmental process (5W–24W) and which also displayed antagonistic differential

expression between the terminal neuronal (n = 10) and epithelial branches (n = 7). Finally, for the DICE

computation we selected the top 7 retinal neuronal (NR2E3, RCVRN, NRL, NEUROD4, CRX, NEUROD1,

VSX1) and top 7 retinal epithelial (TTLL4, BMP4, NFIX, EPAS1, NFE2L1, PDLIM5, LITAF) specific TFs.

THE DISTANCE COVARIANCE ENTROPY (DICE) METRIC

Here we describe the DICE metric that we use to quantify priming in pluri-or-multipotent cell populations

or to detect cell-fate bifurcation events from scRNA-Seq data. In both applications, DICE is computed over

a set of carefully selected regulatory factors (RFs), using either their measured expression values or using

differentiation regulatory activity estimates derived from a regulon-based approach. See other subsections

below for how these RFs are selected. Here we shall assume that these RFs have already been selected. The

aim of the DICE metric is to capture the degree of covariation between these RFs in a multi-or-pluripotent

cell population or as a function of time/pseudotime, and where due to the complexity of real GRNs, this

covariation could be non-linear or non-monotonic. Conveniently, DICE quantifies the overall degree of

covariation using entropy. In effect, the DICE metric calculation is based on the following two concepts:

(i) Because of the complexity and non-linearity of GRNs, associations between TFs can be non-mono-

tonic and non-linear. In order to capture these complex dependencies, we use the recently proposed

distance correlation/covariance measures.29,30 The beauty of these distance-based measures is that

they allow definition of ordinary linear covariance matrices, but in the space of pairwise distances

between data points, which allows any non-linear/non-monotonic form of dependency between

observables to be captured. In more detail, given two random variables X and Y, which could repre-

sent the differentiation activity (TFA) or expression levels of two TFs, and given n sample draws from

each xi = X(xi), yi = Y(yi), i = 1, ., n (these could represent n cells collected at a given timepoint or

within a pseudotime bin), the distance correlation is obtained by first computing the distance

matrices aij =
��xi � xj

��
2
and bij =

���yi � yj

���
2
, where we have here used an Euclidean distance

norm. These distance matrices are then double centered to yield Aij and Bij matrices as follows:

Aij = aij � 1

n

Xn

k = 1

aik � 1

n

Xn

k = 1

akj +
1

n2

Xn

k;l = 1

akl

Bij = bij � 1

n

Xn

k = 1

bik � 1

n

Xn

k = 1

bkj +
1

n2

Xn

k;l = 1

bkl

The distance covariance dCov(X,Y) and distance correlation dCor(X,Y) are then defined as

dCovðX ; Y Þ =
1

n2

Xn

i;j = 1

AijBij

dCorðX ;Y Þ =
dCovðX; Y Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dCovðX ;XÞdCovðY ;Y Þp
Of note, the distance correlation/covariance can be computed for a set of d RFs/TFs ðp R 2Þ, and the

expression or TFA values for the RFs/TFs can always be scaled so that dCor = dCov. Here we always scale

the profiles in such a way that dCor = dCov, and hence we interchangeably use the terms distance corre-

lation and distance covariance. Thus, given a set of d TFs with a = 1.d and Xa denoting the expression or

TFA profile of TF a ;we can construct a data covariance matrix S with entries Sab = dCovðXa;XbÞ where
dCov is as defined above.

(ii) Assuming we have d RFs, where d is typically less than n (the number of cells), we quantify the over-

all degree of dependency of the RFs using entropy. Assuming a multivariate Gaussian variable

X = (X1, .,Xd) of mean m ˛ Rd and d 3 d data covariance S, its entropy is defined by
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HðXÞ = �
Z

dX pðXÞlog pðXÞ

where pðXÞ = Gðm;SÞ is themultivariate Gaussian. Our key insight is to replace the covariance matrixSwith

the distance covariance matrix, as defined in point (i) above. Henceforth we refer to this entropy as ‘‘DICE’’

(DIstance Covariance Entropy).

In order to compute DICE or PCC, we note that the entropy expression can be rewritten as

HðXÞ =
1

2
logdSe+d

2
ð1 + log 2 pÞ

The determinant of any covariance matrix can be expressed in terms of the product of its eigenvalues, and

thus the above equation can be simplified to31:

HðXÞ =
1

2

Xd
i = 1

log li +
d

2
ð1 + log 2 pÞ

where li is the i-th eigenvalue of S. We note that the second term in the expression above is a

constant, sinced is generally fixed for any given system. Thus, the entropy varies as a function of the

eigenvalues of the covariance matrix. For convenience we shall be using the simplified definition

H�ðXÞ = 1
2

Pd
i = 1 log li which is bounded above by zero. This is because for d i.i.d RVsXi, i.e for a randomd3 n

matrix X, its entropy will be maximal and zero.

Several notes with the above definition are in order: First of all, it only requires strong dependency for any 2

of the d RFs for the DICE value to drop significantly relative to the random null distribution. This feature

makes DICE very appealing for detecting the earliest regulatory changes underlying cell-fate commitment,

as is the case with priming. A corollary of this, is that we often need to determine the specific pairs or sets of

RFs that ‘‘drive’’ the deviations from the random null distribution. How this is done is described in the next

subsection. Second, DICE makes distributional assumptions which strictly speaking are not satisfied for

expression derived from scRNA-Seq data, although they are satisfied for transcription factor activity

(TFA)-values (see later). Extensive simulations we have performed however demonstrate that for all practical

purposes the dCor(X,Y) measure above can be replaced with a corresponding non-parametric Spearman

rank correlation coefficient computed over the vectorized distance matrices A and B. In practice, we use

pairwise Spearman correlations to confirm the specific predictions of DICE as to which RFs drive priming

(see further below).

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification of priming in pluri-and-multipotent cell populations

Statistical significance of priming

Given a selected set of RFs and a pool of multi-or-pluripotent cells, we first compute the DICE-metric of the

RFs, using either their mRNA expression values, or their TFA profiles. To assess the statistical significance of

the obtained DICE value, we derive a null distribution for DICE by randomly permuting the values for each

RF across cells, using a different permutation for each RF. This randomization destroys any correlative struc-

ture that might exist in the data. We typically perform on the order of 1000 to 10,000 Monte-Carlo random-

izations, and derive a P-value by calculating the fraction of randomizations that lead to a lower DICE value

than the observed one. If the P-value is significant, this means that at least two RFs display non-random

associations across the pluri-or-multipotent cells.

Identification of RFs driving primed states

To identify the key RFs displaying these non-random associations, i.e the RFs defining the putative primed

states, we devised a dual perturbation DICE and Spearman correlation strategy. In the perturbation

approach, and assuming d RFs, we recomputed DICE a total of d times, each time excluding one of the

RFs. The difference between the new DICE values and the original one can be viewed as a measure of

how much a given RF contributes to the original DICE value. For instance, if the DICE value computed

over the d TFs is very low (indicating strong dependency), and if removing a given TF x leads to a substantial

increase in DICE, then we can conclude that TF x drives the lower entropy and is a candidate ‘‘priming TF’’.

The perturbation analysis allows ranking of the d RFs in order of decreasing importance. Because the
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distributional assumptions underlying DICE may not be satisfied, we supplement the perturbation analysis

with the computation of the Spearman correlation coefficient between every pair of RFs. The pair of RFs

displaying the largest increases in DICE (from the perturbation analysis) and which also display a highly sig-

nificant Spearman correlation were declared the RFs driving primed states.

Identification of primed cells from scRNA-Seq data

Finally, we identify the multi-or-pluripotent cells defining the primed states as those that co-express the RFs

responsible for the priming. This definition is sensible as long as the RFs are only expressed in a relatively

low fraction of the multi-or-pluripotent cells. We note that if necessary this requirement of a low frequency

of expression in the multi-or-pluripotent cells is imposed when selecting the RFs prior to DICE

computation.

Dimensionality reduction of scRNA-Seq data and scATAC-Seq data

Fetal liver hematopoiesis

For scRNA-Seq data from Ranzoni et al., we applied RunUMAP function from Seurat on the expression data

of primed-MEMP and primed-GP marker genes across MEMPs, GPs, primed-MEMP and primed-GP. For

scATAC-Seq data from Ranzoni et al., we did dimensionality reduction for MEMPs, GPs, primed-MEMP

and primed-GP in two different ways: 1) We found all the peaks within the region of 3 kb upstream and

the gene body of each marker gene for primed-MEMP and primed-GP, binarized the peak data, turned

the peak matrix into a TF-IDF matrix by RunTFIDF function from Signac,55 did SVD, used harmony56 on

PC2-50 to reduce effects of lanes, samples and organs, and applied RunUMAP on the 1–50 harmony

spaces. 2) We selected 50% of peaks with highest total accessible counts across MPPs, GPs and MEMPs,

binarized the data for these peaks, applied RunTFIDF, did SVD, followed by harmony on PC2-50, and

applied RunUMAP on 1–20 harmony spaces.

Hair follicle generation

For scRNA-Seq data from Ma et al., we selected genes specifically highly expressed in IRS and hair shaft

lineages respectively by doing Wilcoxon rank sum tests between IRS, hair shaft cells and TACs, and con-

structed a diffusion map on expression of these genes across TACs, IRS and hair shaft with package des-

tiny.40 For the scATAC-Seq data, we applied cisTopic41 on the peak data for the above 3 cell types, using

functions runWarpLDAModels (alpha = 20, topics = 15) and runUmap.

Cell fate probability calculation

Fetal liver hematopoiesis

To compute the cell fate probabilities, we used the Palantir algorithm.37 We performed PCA on the scRNA-

Seq data of MPPs, GPs, MEMPs from Ranzoni et al., subsequently applying Palantir on the top 56 PCs. The

number 56 was selected by using the RMT function of the isva R-package.57 Diffusion map coordinates and

pseudotime were calculated with run_diffusion_maps and run_palantir functions. The run_palantir function

was run 100 times with parameter num_waypoints set to 400 to get a more stable estimate of the cell-fate

probabilities (i.e the probabilities to differentiate into the GP and MEMP lineages). The average cell fate

probabilities toward one lineage of 100 Palantir runs for each MPP was used to compare the probabilities

between different subpopulations.the cell fate probabilities for MPPs, we used the Palantir algorithm.37

After doing PCA, we applied Palantir on 1–56 PCs of the log-normalized scRNA-seq data for MPPs. The

number 56 was selected by using RMT as implemented in isva R-package57 to determine the significant

number of PCs. Diffusion map coordinates and pseudotime were calculated with run_diffusion_maps

and run_palantir functions. The run_palantir function was run 100 times with parameter num_waypoints

set to 400 to get a more stable estimate of the cell-fate probabilities. The final cell fate probabilities for

each MPP were obtained by averaging the probabilities over the 100 runs.

Hair follicle generation (scRNA-Seq data)

We constructed a diffusion map from the normalized expression data encompassing all up-regulated

genes for IRS and HS lineages, selected as described previously. We then applied Palantir on the top diffu-

sion components to predict IRS and HS differentiation probabilities for each of the TAC cells, setting the

num_waypoints parameter to 400. The final cell fate probabilities for each TAC was obtained by averaging

over 50 separate Palantir runs.
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Hair follicle generation (scATAC-Seq data)

We applied cis-Topic41 on the scATAC-Seq data of TACs, IRS, medulla and hair shaft cortex from Ma et al.

Palantir was subsequently applied to the latent representation of the cells defined over 15 regulatory

topics. The final cell fate probabilities toward for each TAC was obtained by averaging over 50 separate

Palantir runs, with num_waypoints set to 400.

Identification and validation of primed cells in scATAC-seq data

Fetal liver hematopoiesis

Having identified the primed-MEMP and primed-GP cell populations from the scRNA-Seq data, we aimed

to identify the corresponding primed states in the scATAC-Seq data. To this end, we selected marker

genes for primed-MEMP and primed-GP cells by performing Wilcoxon rank sum tests comparing expres-

sion of primed MPPs of the given lineage to all other MPPs. We selected marker genes displaying signif-

icantly increased expression (BH adjusted p < 0.05) in either primed-MEMP or primed-GP cells. Markers

genes significantly overexpressed in both primed-MEMP and primed-GP cells were removed. Having

thus identified specific marker genes for the primed-MEMP and primed-GP cell populations, we next

turned to the scATAC-Seq peak data. We first generated a gene accessibility count matrix by aggregating

peak counts within a 3 kb region upstream of each gene including the gene-body. We log-normalized this

gene-cell accessibility matrix with the NormalizeData function from Seurat package. For each MPP cell

(annotation of cells with scATAC-Seq profiles provided by authors), we next calculated the average of

the normalized peak counts overall selected marker genes for a given lineage (primed-MEMP or

primed-GP). This allows us to rank MPP cells according to an overall accessibility score over the primed-

MEMP marker genes, and separately another ranking derived over the primed-GP marker genes. MPPs

in the top-10% of these ranked lists were declared putative primed-MEMP and primed-GP cells, respec-

tively. MPP cells appearing in both of the top-10% ranked lists were not specific and thus were excluded

and categorized as ‘‘unprimed’’ alongside all other MPPs. To validate these assignments as well as to vali-

date the role of the identified RFs in defining these primed states, we applied chromVar39 on the scATAC-

seq data to derive transcription factor regulatory activity (TFA) values for each of the MPP cells. In the case

of priming into the MEMP-lineage, this was done for GATA1 and KLF1, the two TFs identified from the

scRNA-Seq data as driving the primed states. In the case of the GP-lineage, this was only done for IRF8,

since the other implicated RF (UHRF1) is not a TF. For the validation, we then performed one-sided Wil-

coxon rank sum tests comparing the average TFA of GATA1 and KLF1 (or the TFA of IRF8), across the

different subpopulations of MPPs (primed MEMPs, primed GPs and unprimed) as identified earlier from

the scATAC-Seq data. To check the robustness of our findings to the choice of top-10% threshold consid-

ered earlier when defining primed subpopulations, we supplemented the validation analysis by performing

Spearman correlation analysis between the TFA values and themarker accessibility scores obtained earlier.

Hair-follicle generation

Since the scATAC-Seq data fromMa et al. was generated with SHARE-Seq, this data is matched to scRNA-

Seq profiles, hence the primed cells can be identified by direct matching of barcodes between the joint

profiles. To validate the RFs driving the primed states in the scATAC-Seq data, we first generated a

gene level accessible matrix by aggregating peak counts over each RF, and summed the gene level acces-

sible counts for the RFs, comparing these values between primed and unprimed cells. Peaks were matched

to the nearest gene if the peaks were located within a 3 kb region upstream of a gene and the gene body by

using Bioconductor package EnsDb.Mmusculus.v79 55. We also validated the priming-status of the RFs by

calculating for each RF/TF with available target information, an activity score with chromVAR. This was done

by running function RunChromVAR from Seurat on the peak level data, setting the genome to

BSgenome.Mmusculus.UCSC.mm10. The TF motif information derived from JASPAR2020.51

Identification of primed states using variance in hair-follicle regeneration data

To benchmark DICE on the hair-follicle regeneration data, we compared it to a similar strategy that only

uses variability in RF expression across the multipotent cells to select candidate priming RFs. Thus, the

DE-analyses were performed exactly as with DICE to identify initial pools of candidate priming IRS and

HS factors. However, one difference with DICE is that instead of selecting type-1 RFs (i.e. those exhibiting

low frequency of expression among the TACs), we considered the full pool of selected RFs from the DE-

analyses. This is because setting a threshold on the frequency of expression across TACs would automat-

ically favor less variable RFs, which would be counter to using variance as a criterion for selection. Thus, as
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priming RFs for a given lineage, we selected from the pool passing the DE-analyses, the two RFs displaying

the highest variance across TACs. To find the corresponding primed cells, we first selected cells co-ex-

pressing the two RFs. Then, for each RF we calculated the variance across TACs after removing one candi-

date primed cell, subsequently computing the difference between the new and original variances. We then

ranked the cells in descending order of the contribution to the variance. The average over the ranks from

the two priming RFs was then taken as the final rank. Finally, we declared the top n cells to be primed for the

given lineage, where n was matched to the number of primed cells from the DICE analysis. Using the

SHARE-Seq data (joint expression and chromatin accessibility profiles), we could then define primed cells

in the scATAC-Seq dataset. The gene level accessibility for each RF was obtained by aggregating the

accessible peak counts within a 3 kb range upstream of the gene and gene body. The average gene acces-

sibility of the two priming RFs was compared between primed-IRS, primed-HS and unprimed TACs with

one-tailed Wilcoxon rank sum tests. For those RFs with TF-motif information, we also compared the TF ac-

tivity obtained with chromVAR between primed-IRS, primed-HS and unprimed TACs with one-tailed

Wilcoxon rank sum tests.

Identification of cell-fate transition points from differentiation time course scRNA-Seq data

Having identified the interesting sets of TFs, we then compute DICE over these TFs and for each timepoint.

Alternatively, if diffusion map analysis35 reveals substantial asynchrony of cells between collected time-

points, we use pseudotime bins instead, with the number of bins matched to the number of timepoints,

and with the same number of cells per pseudotime bin. This procedure generates a profile for how

DICE changes with developmental timepoint/pseudotime bin. Abrupt changes in DICE between succes-

sive timepoints/bins indicate potential cell-fate transition points. To quantify the uncertainty in the

measured DICE values, we use a bootstrapping approach where we resample with replacement an equal

number of cells from each timepoint/bin (n = 100 bootstraps). From these bootstraps we compute an SD

and derive a 95% confidence interval.

BioTIP analysis

BioTIP is an algorithm designed to detect tipping points from gene-expression data.19 It works by inferring

dynamic network biomarker (DNB) modules, computing a score for each of these modules in each differ-

entiation stage and then identifying those that display transition-like behavior. We applied BioTIP to the

log-normalized gene expression data of the two timecourse scRNA-Seq dataset (liver and retina differen-

tiation). Each data matrix was split into submatrices defined by physical timepoints or pseudotime bins

representing differentiation stages. Default parameter values were used to construct a graphical represen-

tation of genes of interest based on Pearson correlation matric and identify clusters defining dynamic

network biomarker (DNB) modules. The maximum statistical score among the biomodules of each differ-

entiation stage is quantified as DNB score. BioTIP returns a criticality index (Ic.shrink) to allow identification

of the cell-fate transition.

Palantir-only analysis

Fetal liver hematopoiesis

We applied Palantir as described before to compute cell-fate probabilities for all MPP cells, and used a

probability threshold of 0.6 to assign MPP cells to primed/unprimed states. With the MPP cells divided

up into primed-GP, primed-MEMP and unprimed categories, we then used Wilcoxon rank sum tests to

identify RFs overexpressed in the primed states relative to unprimed cells and the primed ones from the

competing lineage. This was done using a BH-adjusted p value < 0.05. Among the selected RFs, the top

2 RFs with largest logFC were selected as the priming RFs for each lineage. To define the primed cells

in scATAC-Seq data from Ranzoni et al., we identified marker genes displaying significantly increased

expression (BH adjusted p < 0.05) in either primed-MEMP or primed-GP cells, and computed accessibility

scores over these marker-genes for each MPP and each lineage, as before. MPPs in the top-10% of these

ranked lists were declared putative primed-MEMP and primed-GP cells for the Palantir-only method,

respectively. MPP cells appearing in both of the top-10% ranked lists were excluded from the primed-

MEMPs and primed-GPs. Finally, we used chromVAR to compute transcription factor regulatory activity

(TFA) values for the selected RFs with PWM information in each of the MPP cells (GATA1 for MEMPs and

XBP1 for GPs, since the other priming RFs ZBTB16 for MEMPs and UHRF1 for GPs lacked the PWM infor-

mation). TFA-values between the primed and unprimed cell categories were compared using one-sided

Wilcoxon rank sum tests.
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Hair-follicle generation

We used the same procedure for the hair-follicle dataset except that for this set the Palantir cell-fate prob-

abilities for the TACs displayed more extreme values. Hence, we declared TACs with probabilities toward

IRS greater than 0.97 to be ‘‘primed-IRS’’ cells whilst TACs with probabilities toward HS greater than 0.9 to

be ‘‘primed-HS cells’’. Since the scATAC-Seq data fromMa et al. was generated with SHARE-Seq, this data

is matched to scRNA-Seq profiles, hence the primed cells in the scATAC-Seq data can be identified by

direct matching of barcodes between the joint profiles. To validate the RFs driving the primed states in

the scATAC-Seq data, we first generated a gene level accessible matrix by aggregating peak counts

over each RF, and summed the gene level accessible counts for the RFs, comparing these values between

primed and unprimed cells. We also used chromVAR to derive TFA values for the RFs with PWM info, and to

then compare the TFAs between the primed and unprimed cell categories. For priming to IRS and HS, TFA

was calculated for Gata3 and Lef1, respectively, whilst for the other priming RFs (Maml3 for IRS and Trps1

for HS) no PWM info was available. We also compared the cell fate probabilities between different sub-

groups of TACs with the previously obtained Palantir results for scATAC-Seq data from Ma dataset, as

described in the cell fate probability calculation section.

Description of GRNs and simulation of scRNA-Seq from GRNs

Simple 4-gene GRN describing transition between pluripotent and differentiated cells

We considered a simple four-gene regulatory network model derived from experimentally observed

gene-gene regulatory interactions in pluripotent and differentiated cells.58 This model was chosen to

illustrate the importance of considering the distance correlation dCor measure, since in this GRN model,

pluripotency is associated with oscillatory (and hence non-monotonic) dynamics of the TFs. In detail, the

GRN consists of two pluripotent genes (Nanog (G1) and Oct4 (G2)) and two differentiation genes (Gata6

(G3) and Gata4 (G4)), with seven mutually activating and inhibitory interactions. During differentiation, the

expression of pluripotent genes gradually decreases whereas expression of differentiation genes in-

creases. Cellular states are described by the combined expression pattern of the four genes, G1, G2,

G3 and G4. The gene expression dynamics in single cells is described by the four coupled Langevin

equations.

dG1
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�
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dt
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1
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�n + h4

ffiffiffiffiffiffi
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(Equation 4)

The first term in the right-hand side of the above equations represent degradation of gene Gi and rest of

the terms describe different types of regulatory interactions (activation/inhibition function). The expression

of pluripotent gene G1 is controlled by the interaction parameters K11 and K13 that are crucial for defining

the cellular state. In the above model, the pluripotent state can be characterized by oscillatory expression

dynamics of the four genes, and such pluripotency can be lost due to a decrease in the ability of the ex-

pressed genes to uphold the oscillatory dynamics. By changing the interaction parameter values, the

gene expression dynamics switches between fixed-point (differentiated) and oscillatory (pluripotency)

states. We opted for a parameter set that allows for the oscillatory state in which all expression levels

show temporal cycles. In the above equations, hiði = 1;.; 4Þ is a Gaussian white noise term with noise

strength (s = 0.01) to represent stochastic gene expression. All parameter values are summarized in

Table S1, and are identical to those used previously.58 We used the de-Solve R-package54 to numerically

simulate the above differential equations for 1000 cells, each with different initial values of gene expression,
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randomly sampled from a uniform distribution Uð0:1;1Þ. Final expression values of the four genes/TFs for

each of the 1000 cells were obtained in the long-time limit (i.e. steady state). This resulted in a 4 TF x 1000

cell expression data matrix, from which we then estimated the Distance Correlation dCor and Pearson Cor-

relation (PCC) for the 6 TF-TF pairs.

GRN describing two mutually repressing TFs with auto-activation (GATA1-PU.1)

A well-known dynamical system is the one describing the binary cell-fate decision of bipotent myeloid pro-

genitors into either erythroid or myeloid lineages, and which is controlled by the antagonistic pair of TFs

PU1 and GATA1.4,59 The mathematical equations that describe the dynamics are:

dx

dt
= � kx +

axn

qn + xn
+

bqn

qn + yn
(Equation 5)

dy

dt
= � ky +

ayn

qn + yn
+

bqn

qn + xn
(Equation 6)

Depending on the value of the auto-activation and decay rate constants, this GRN can display two distinct

types of pitchfork bifurcations, known as supercritical and subcritical. For the numerical simulation of

single-cell dynamics, we adopted the exact stochastic simulation algorithm (SSA) formulated by Gilles-

pie.60 Used parameter values are shown in Table S2 and were taken directly from.4,59 These parameter

values were used for the SSA simulation (using GillespieSSA R-package53) with the expression values of

the two transcription factors (TFs) obtained in the long time limit. Of note, we applied a scale factor

(sf = 100) to convert the arbitrary units (A.U.) into molecular units, since the Gillespie simulation is run at

the level of reaction molecule numbers. The SSA simulation was run for each individual cell, where for

each cell we used a unique initial value of TF expression, a generated random integer within the range

between 20 and 80 reactant molecules. Finally, we scaled the simulated TFs expression value by the scale

factor for downstream analysis. In these analyses, we considered the mutual repression rate constant (b) as

the bifurcation parameter whose value ranged from 0.05 to 1.25.

GRN describing T cell development

The GRN circuit consists of 4 TF (TGF1, PU1, GATA3 and BLC11B) that together with external Notch

signaling determines the stage of T cell development.32 The ODEs describing the system are given below
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where F, P, G and B stand for TGF1, PU1, GATA3 and BLC11B concentrations, respectively. See Table S3 for

specific parameter values used. In the above, N denotes the Notch signaling, which varies between 0.05

and 0.5. For low Notch signaling, i.e. whenN is less than the critical value 0.25, there are four distinct states

(high potency regime). All four states can converge into a single-attractor system (low potency) at high

Notch signal (i.e. when N> 0.25). To generate the expression patterns of the four TFs across single-cells,

we applied the SSA simulation scheme (using GillespieSSA R-package53) quantifying the expression values

of the four TFs in the long time limit. We converted A.U. into molecular unit by a scale factor (sf = 50) for

Gillespie simulation. For each cell, the SSA simulation was initiated with unique initial values of TF expres-

sion, obtained by sampling random integer within the range between 5 and 175 reactant molecules. We
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scaled the simulated TFs expression values by the scale factor for downstream analysis. Of note, when

computing DICE and the ordinary PCC-based entropy, only 3 of the 4 TF were used (TCF1, GATA3 and

BLC11B) because only these 3 represent differentiation factors (their expression goes up with increased

commitment).

52-Gene GRN describing transition to induced pluripotency

Finally, we decided to consider a more complex GRN composed of 52 genes, that has been proposed to

model the transition of somatic cells to induced pluripotency.33,34 Among the 52 genes, 11 mark the plurip-

otent stem cell state, another 11 mark the differentiation state and the rest (30 genes) are regulated by

these 22 marker genes. The network consists of 183 regulatory interactions (84 activating and 39 inhibitory).

The stem cell state is characterized by high NANOG & low GATA6 levels, whilst the differentiation state is

defined by low NANOG & high GATA6. The ODEs take the form

dxi
dt

= � fxi +
X
j = 1

Aij

a � xnj
Sn + xnj

+
X
j = 1

Bij
a � Sn

Sn + xnj
(Equation 11)

where Aij and Bij are the network adjacency matrices for activating and inhibitory interactions, respectively,

and where i = 1,.,52. The first term on the right-hand side of the ODE represents degradation of gene xi ,

whilst the second and third terms describe positive and negative regulatory interactions, respectively.

Table S4 lists the parameter values that were used for the SSA simulation (using GillespieSSA

R-package) and where expression values of the 52 genes were extracted in the long time limit. In this anal-

ysis, regulatory interaction (activation/inhibition) parameter a ranges from 0.25 to 0.5 and is the parameter

driving cell-fate decision with a= 0.35 representing the critical value. We converted A.U. intomolecular unit

by a scale factor (sf = 100) for Gillespie simulation. Individual cells were run with a unique initial value of

gene expression, generated as a random integer within the range between 50 and 120 reactant molecules.

We ran the SSA simulation for 1000 cells and evaluated steady state expression of 52 genes, followed by

scaling for downstream analysis.
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