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Abstract: This paper reports on the synthesis and structure elucidation of track-etched membranes
(TeMs) with electrolessly deposited copper microtubes (prepared in etched-only and oxidized
polyethylene terephthalate (PET) TeMs), as well as on the comparative testing of arsenic (III) ion
removal capacities through bath adsorption experiments. The structure and composition of com-
posites were investigated by X-ray diffraction technique and scanning electron and atomic force
microscopies. It was determined that adsorption followed pseudo-second-order kinetics, and the
adsorption rate constants were calculated. A comparative study of the applicability of the adsorption
models of Langmuir, Freundlich, and Dubinin–Radushkevich was carried out in order to describe the
experimental isotherms of the prepared composite TeMs. The constants and parameters of all of the
above equations were determined. By comparing the regression coefficients R2, it was shown that the
Freundlich model describes the experimental data on the adsorption of arsenic through the studied
samples better than others. Free energy of As(III) adsorption on the samples was determined using
the Dubinin–Radushkevich isotherm model and was found to be 17.2 and 31.6 kJ/mol for Cu/PET
and Cu/Ox_PET samples, respectively. The high EDr value observed for the Cu/Ox_PET composite
indicates that the interaction between the adsorbate and the composite is based on chemisorption.

Keywords: composite track-etched membranes; template synthesis; electroless plating; copper
microtubes; arsenic (III) ions; adsorption kinetics

1. Introduction

Increasing public awareness of the environment, concerns about depleting natural
resources, and environmental disasters are driving interest in developing new methods
and materials to treat contaminated media. Among a wide range of pollutants, heavy metal
ions are one of the most serious ones as they are considered toxic even in trace amounts and
are commonly present in various matrices, such as surface water, groundwater, sediments,
and soils [1–3]. Arsenic is a widely distributed natural component of the earth’s crust. Its
inorganic form is a highly toxic, clinically confirmed carcinogen and is the most significant
chemical contaminant in drinking water globally [4]. The greatest threat to public health
from arsenic originates from contaminated groundwater. In addition to pollution resulting
from rapid and uncontrolled industrialization, inorganic arsenic is also naturally present at
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high levels in the groundwater of many countries, including the USA, China, India, Mexico,
Argentina, Bangladesh, Hungary, and Chile [5].

The most widely applied treatment scheme for the removal of arsenic contamination is
adsorption [3]. However, disposal of the adsorbent (for example, in landfills) only transfers
the problem to another medium. Therefore, scientific and industrial efforts are focused
on the development of new materials that will effectively capture the highest amount of
contaminants with the least amount of adsorbent [3]. For this very reason, nanomaterials
stand out as suitable materials that can meet this need due to their high surface areas and
specificity. In addition to their adsorptive capacity, nanoparticles (NPs) may be excellent
candidates for water treatment [6–8] applications due to their high reactivity, for example,
through catalytic reactions [9]. In many previous studies, various NPs have been examined
as adsorption media in arsenic removal [10–13]. Among them, the most commonly used
are iron oxides/hydroxides [10,14]. It is well known that oxides of polyvalent metals,
such as Fe(III), Ti(IV), Cu(II), and Al(III), exhibit ligand sorption properties through the
formation of inner-sphere complexes [15–17]. Therefore, oxides of metals other than iron
have also been studied widely for the removal of inorganic arsenic species. Among these
metal oxides, TiO2, CeO2, Al2O3, ZrO2, CaO2, and CuO are promising due to their high
adsorption capacities [10–12,18,19].

Although these NPs are effective in the selective adsorption of arsenic, their appli-
cations suffer from the formation of a large amount of sludge containing a substantial
concentration of arsenic [10]. For this reason, employing NPs in heterogeneous systems,
particularly in a nanoporous membrane with a large surface area, such as track-etched
membranes (TeMs), offers ease of use along with high capacity and creates less burden on
the environment, which is easier to deal with after treatment. When a polymer membrane is
irradiated by swift heavy ions, ions penetrating through the solid induce continuous trails
of excitations and ionizations in their pathways, leading to the formation of latent tracks.
These latent tracks are revealed when selectively etched in a highly oxidizing solution,
leading to nanoporous TeMs. Nowadays, TeMs are used as filtration membranes for water
purification [20,21] or effective adsorbents and are commercially available. Combining the
inherent advantages of TeMs and metal nanostructures provides composite membranes
that are excellent candidates in a variety of promising material science applications, such
as biotechnology [22,23], catalysis [24–28], medicine [29,30], sensors [21,31], and radiation
resistive and magnetic materials [32,33]. In our previous study, we created Cu/CuO in
the nanochannels and surface of poly(ethylene terephthalate) (PET) TeMs by electroless
template-assisted deposition of copper and subsequent low-temperature annealing process.
The resulting composite membrane was successfully evaluated in cross-flow mode as an
adsorbent for the removal of As(III) from wastewater samples [34]. In the present work,
we excluded the thermal annellation step from the procedure, thus demonstrating that
efficient membranes for As(III) removal can be developed with a simpler and one-step
synthesis method. Furthermore, unlike in our previous study, we evaluated the removal
of As(III) not only by using track-etched PET but also by employing oxidized PET TeM
as the template. As a result, we recommend oxidation as a step that can be considered
in the preparation of similar membranes since a higher arsenic removal efficiency was
obtained using the oxidized PET TeM. Finally, a detailed study was carried out to elucidate
the kinetics and adsorption mechanism of As(III) on the surface of composite TeMs with
embedded copper microtubes (MTs).

2. Materials and Methods
2.1. Materials

Copper(II) sulfate pentahydrate, sodium potassium tartrate, and palladium chloride
were purchased from Sigma-Aldrich. All chemical reactants were of the analytical or
reagent grade purity and used without further purification. The certified reference solution
at a concentration of 0.1 g/L As(III) was purchased from Ecroskhim (Russia). The water
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used in all the experiments was purified using a D-301 water purification system (Akvilon,
Russia) with a resistivity of 18.2 MΩ/cm.

To obtain polymer templates, a PET Hostaphan® RNK film (film thickness is 12.0 microns)
was irradiated by 84Kr15+ ions with 1.75 MeV/nucleon energy and 4 × 107 ion/cm2 fluency
(Cyclotron DC-60, Institute of Nuclear Physics of Kazakhstan) and then etched in 2.2 M
NaOH.

2.2. Composite TeMs Synthesis

All composites were prepared using an oxidized or non-oxidized (only etched) PET
template with 430 ± 10 nm pore size. Cu/Ox_PET composites were prepared using a
pre-oxidized PET template. The oxidized PET (Ox_PET) was obtained by exposing pristine
PET TeMs to a 500 mM H2O2 solution at pH 3 for 180 min under UV irradiation (190 W
at 254 nm). After oxidation, the samples were washed twice with deionized water and
air-dried at room temperature for 5 h [35]. Cu/PET composite was prepared using non-
oxidized PET TeMs. Electroless plating of copper was accomplished by following three
steps:

− Sensitization step: PET template was immersed in 50 g/L SnCl2 and 60 mL/L 37%
HCl solution for 6 min and rinsed thoroughly in hot water for 10 min.

− Activation step: the sensitized membrane was immersed in a solution of 0.1 g/L of
PdCl2 and 10 mL/L of HCl for 6 min and then air-dried.

− Deposition step: activated polymer template was immersed in a thermostated de-
position solution for 40 min at a temperature of 283 K (KNaC4H4O6·4H2O, 18 g/L;
CuSO4·5H2O, 5 g/L; NaOH, 7 g/L; formaldehyde, 0.13 M), pH 12.45 [36].

2.3. Characterization of PET Template and Composites

Fourier-transform infrared spectroscopy (FTIR) spectra were recorded using a Cary
600 Series FTIR spectrometer (Agilent Technologies, Santa Clara, CA, USA) with a single
reflection diamond attenuated total reflectance (ATR) accessory (PIKE Technologies, Madi-
son WI, United States of America). Measurements were taken in the range from 400 to
4000 cm−1. All spectra (32 scans at 2.0 cm−1 resolution and rationed to the appropriate
background spectra) were recorded at room temperature.

XPS measurements were carried out using a Thermo Scientific K-Alpha spectrometer
(Waltham, MA, USA) with a monochromatized Al Kα X-ray source (1486.6 eV photons) at
a constant dwell time of 100 ms and pass energy of 30 eV with steps of 0.1 and 200 eV for
core-level and survey scan spectra, respectively. The pressure in the analysis chamber was
maintained at 2 × 10−9 Torr or lower. The binding energy (BE) values were referred to the
C1s peak at 284.7 eV. Processing of data was carried out using the Avantage software.

The change in the concentration of carboxyl groups on the surface of the PET template
after oxidative pretreatment was investigated based on the complexation between toluidine
blue dye and carboxyl groups according to the procedure described elsewhere [37]. The
calculations were based on the assumption that 1 M of dye is complexed with 1 M of the
carboxyl group and expressed in nM/cm2.

The composites produced were characterized with various techniques. Scanning
electron microscopy (SEM) images were taken using a JEOL JFC-7500F microscope (Tokyo,
Japan). Prior to the SEM analysis, a 15 nm layer of gold was sputtered onto the membranes.
In order to analyze the MTs filling the channels of PET, the PET template was dissolved in
a mixture of 1,1,1,3,3,3-hexafluoro-2-propanol and chloroform. Then, the released copper
MTs were analyzed by SEM. The chemical composition and morphology of the released
copper MTs do not change, as discussed in our previous study [38]. To obtain high-quality
cross-sectional images of the composite films, the composite membrane was irradiated
by a UV lamp for 10 days from each side. The elemental composition of the composites
was studied by a Hitachi TM3030 SEM (Hitachi Ltd., Chiyoda, Tokyo, Japan) equipped
with a Bruker XFlash MIN SVE (Bruker, Karlsruhe, Germany) microanalysis system at
an accelerating voltage of 15 kV. The specific surface area was determined from the N2
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adsorption isotherm using the single-point BET method by a 3H-2000PS1 GVD3 pore size
and surface analyzer (Xiamen Lith Machine Ltd., Guangzhou, China) at 77 K at a relative
pressure range of 0.05 to 0.25. Prior to measurements, the samples were degassed at 373 K
under vacuum for 12 h, and all measurements were repeated in triplicate.

The pore size of the pristine template and the structural parameters of the compos-
ites obtained were determined by porometry using the Hagen–Poiseuille equation [39].
X-ray diffraction (XRD) patterns were obtained on a D8 Advance diffractometer (Bruker,
Karlsruhe, Germany) to study the crystalline structure of the samples. X-ray was gen-
erated at 25 mA and 40 kV, and the scanning position ranged from 30◦ to 90◦ 2(θ). The
average crystallite size was determined using the Scherrer equation [40]. The surface
morphology of the composite membranes was studied by a scanning probe microscope
(SmartSPM-1000, NT-MDT, Novato, CA, United States of America) in semicontact mode
using an NSG10 (TipsNano, Tallinn, Estonia) rectangular-shaped silicon cantilever (length,
95 ± 5 µm; width, 30 ± 5 µm; thickness, 1.5–2.5 µm; probe tip radius, 10 nm; resonance
frequency, 200 kHz). Initial scanning of a 10 × 10 µm2 sample was performed at a speed
of 5.0 µm/s. The average roughness was calculated from a 3 × 3 µm2 scanning area. The
data obtained were processed and analyzed by using the IAPRO-3.2.2 software.

The amount of copper deposited was determined gravimetrically based on the differ-
ence in the weights of the composite before and after plating with an accuracy of 0.1 mg
(AS 220.R2, Radwag, Radom, Poland) and expressed in units of mg/cm2.

2.4. Bath Absorption Experiments

All experiments conducted to determine the As(III) adsorption performance of com-
posite TeMs and pristine templates were carried out using batch equilibrium techniques.
Feed As(III) solution (10 ppm, pH 4.0) was prepared by diluting the certified As(III) refer-
ence solution (0.1 g/L, Ecroskhim, Russia). Adsorption kinetics were studied at an As(III)
concentration of 50 µg/L (pH 4.0). Disposable plastic vials (Isolab, Eschau, Germany) con-
taining 15.0 mL of solution and 2 × 2 cm of composite adsorbate were shaken (100 rpm, IKA
KS 3000 IS control, (IKA, Konigswinter, Germany) at room temperature for different times
between 15 min and 10 h. Each experiment was repeated in triplicate. The concentration of
As(III) in aliquots was determined by ICP–MS (Thermo Fisher Scientific, XSeries 2, Bremen,
Germany). The adsorbed amount of As(III) was calculated using Equation (1) [41–43]:

Qe =
(C0 − Ce)× V

m
(1)

where Qe is the amount of As(III) adsorbed by the unit mass of copper (mg/g), C0 is the
feed concentration (mg/L), Ce is the concentration of As(III) in aliquots (mg/L), V is the
volume of the solution (L), and m is the amount of Cu loaded on the membrane used (g). In
the case where the pristine template was tested, the weight of PET TeM was used in m (g).

The effect of pH on As(III) adsorption was studied in the pH range of 3 to 10. Other
parameters were kept constant (initial As(III) concentration: 50 ppm; adsorbent dose:
2 × 2 cm2; contact time: 420 min). The pH of the solution was adjusted dropwise with
1.0 N HCl(aq) and 1.0 N NaOH(aq). The pH was measured using a digital pH meter,
HANNA HI2020-02 (HANNA Instruments, Smithfield, United States of America). All
experiments were performed in triplicate.

3. Results and Discussions
3.1. Characterization of the Composite Membranes

The development of new methodologies for the synthesis of functional materials
aimed at obtaining samples with an improved structure and characteristics is one of the
promising areas of materials science. As shown in our previous studies, the concentration of
carboxyl groups directly affects the degree of sensitization; thus the oxidative pretreatment
results in an increase in the catalytic activity of the composite membrane compared with
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a sample synthesized in “etched-only” PET TeM [35,44]. In this study, higher efficiency
properties obtained with pretreated templates were utilized in As(III) sorption.

Both types of PET templates used (“etched-only” and “oxidized”) were studied by
XPS technique. High-resolution C1s and O1s spectra of oxidized and etched-only PET
templates are shown in Figure S1 of the Supplementary Material. The C1s spectrum is
characterized by three peaks: C-C/C-H groups located at the binding energy of ~284.6 eV,
C-OH/C-O-C groups at ~286.2 eV, and –COOH groups at ~288.6 eV. It is clear from the
C1s spectra that the oxygenated C content is higher in the oxidized sample compared
with the etched-only membrane. High-resolution O1s spectra have two peaks located at
~531.5 eV (O=C) and ~533.8 eV (O-C) [37]. After oxidation, there is a relative increase in
the amount of O=C species compared with oxygen atoms attached to C atom with a single
covalent bond (O-C). As a result of the analysis of the surface with XPS, it is clear that after
the oxidative treatment of the PET template in the H2O2/UV system, the oxygen content
increases compared with the “etched-only” PET template.

The terminal carboxyl group concentration ([–COOH]) was determined by the tolui-
dine blue dye assay and was calculated as 6.4 ± 0.5 and 10.8 ± 0.2 nM/cm2 for the pristine
and oxidized PET templates, respectively. The significant increase in the –COOH amount
was also confirmed by the FTIR data presented in Figure S2 of the Supplementary Material.
The main difference was observed at around 1715 cm−1 corresponding to the stretching
vibrations of the C=O groups. After oxidation, the intensity of C=O peak increases due to
the increasing concentration of polar carboxyl groups.

The electroless deposition of copper has been studied extensively, and a wide variety
of plating solutions and various additives have previously been used in order to obtain
thin copper layers or nanostructures [45–48]. As a result of the method we apply, the
wall thickness and inner diameter obtained by SEM, specific surface area determined by
BET analysis, and gravimetrically calculated amount of copper loaded to the sorbent are
presented in Table 1. When comparing the amount of copper loaded, it is noted that more
copper deposition occurs when the oxidized PET template is used due to the increase in
the functional carboxyl groups. Furthermore, the results in this table clearly show that
the specific surface area of the composite prepared using the oxidized PET is significantly
higher than that obtained using the etched-only template. These results are in line with the
atomic force microscopy (AFM) results that will be presented later. Both increased copper
loading and surface area are associated with high As(III) adsorption capacity, which is
obtained in the presence of oxidized PET and will be discussed in the following sections.

Table 1. Structural properties of the composite track-etched membranes (TeMs).

Composite

Structural Parameters of
Embedded MTs, nm Specific

Surface Area,
m2/g

Deposition
Rate, R,

mg/(cm2 h)

Amount of
Cu Loaded,

mg/cm2Wall
Thickness

Inner
Diameter

Cu/PET 73.7 ± 8.5 269.0 ± 10.5 11.4 ± 1.7 5.52 0.77 ± 0.03
Cu/Ox_PET 64.0 ± 6.5 288.2 ± 13.8 14.5 ± 2.1 5.45 0.82 ± 0.01

As can be seen from the SEM images shown in Figure 1, all the samples studied are
porous and homogeneously covered with copper. From the SEM images of the released
MTs (Figure 1c–d), it is clear that the electroless plating of copper allows for synthesizing
hollow tubular MTs with an outer diameter equal to the pore diameter of the pristine
polymer template.
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Figure 1. Scanning electron microscopy (SEM) images of the composite membranes of Cu/PET (a)
and Cu/Ox_PET (b). SEM images of corresponding microtubes (MTs) released after the dissolution
of the PET template (c,d).

The chemical composition of the composite membranes was studied further by energy
dispersive X-ray analysis (EDX). EDX spectra and element percentages for Cu/PET and
Cu/Ox_PET samples are presented in Figure S3 of the Supplementary Material. Strong
signals from the C and O elements can be attributed to the PET template. The absence of
any impurity is clear in the spectra. Additionally, in accordance with other analysis results,
the amounts of the Cu and O elements in the oxidized composite structure were higher.

To evaluate the crystal structure and phase contents, XRD analysis of composite TeMs
was carried out. As can be seen from the XRD patterns of composites (Figure 2), four peaks
(111, 200, 220, and 311) can be assigned for Cu MT arrays, which possess a polycrystalline
structure with a face-centered cubic (fcc) phase without the presence of oxide compounds
in the structure. An additional broad peak in the region from 53◦ to 56◦ relates to the
amorphous structure of the PET template, as can be seen from the XRD pattern of the
pristine PET presented in the inset of Figure 2. The location and intensity of the peaks
in the XRD diffractograms, their corresponding interplane distances, the full width at
half maximum (FWHM) values, and the unit cell parameters and average crystallite sizes
calculated for the studied composites are summarized in Table 2.

Table 2. Crystal structure of the composites according to XRD data.

Composite Phase Symmetry Group hkl a 2θº d b Å L c nm a d Å DC e % FWHM f Phase Ratio %

Cu/PET Cu Fm3m (225)

111 43.46 2.081

18.0 ± 2.7 3.602 43.8

0.455

100
200 50.60 1.803 0.626
220 74.29 1.276 0.557
311 90.06 1.089 0.788
222 - - -

Cu/Ox_PET Cu Fm3m (225)

111 43.55 2.076

15.0 ± 2.8 3.604 52.5

0.401

100
200 50.70 1.799 0.553
220 74.37 1.275 0.537
311 90.13 1.088 0.704
222 - - -

a Miller indices for corresponding planes, b spacing between planes, c average crystallite size, d crystal lattice parameter, e degree of
crystallinity, f full width at half maximum.
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Figure 2. X-ray diffraction (XRD) patterns of the studied composite TeMs. The inset shows the XRD pattern of the
PET template.

According to X-ray diffraction data, the unit cell is characterized by a cubic syngony
(Fm3m) with a cell parameter of a = 3.604, slightly different from the reference value
(a = 3.6150, PDF #040836). A small deviation of the reference value of the unit cell pa-
rameter and the sample value can be explained by microstresses arising in the structure
during synthesis process. When the lines on the diffractogram were approximated by the
necessary number of symmetric pseudo-Voigt functions, the width of the registered lines
at half of their height (FWHM) was measured, which allowed us to estimate the degree of
perfection of the crystal structure and the degree of crystallinity (DC). For the Cu/PET and
Cu/Ox_PET samples, the DC values were calculated as a 43.8% and 52.5%, respectively.

3.2. Sorption Kinetics of As(III) on Composite TeMs

Adsorption is a time-dependent process and is affected by physical/chemical inter-
actions between the adsorbent and the adsorbate. Studying adsorption kinetics is very
important to understand the adsorption mechanism of new adsorbents. To investigate the
adsorption kinetics of As(III) on composite TeMs, we used three kinetic models, namely,
Elovich, pseudo-first-order, and pseudo-second-order models [49–52]. Figure 3 shows
the amount of arsenic(III) adsorbed by composite TeMs with deposited metallic copper
microtubes depending on the adsorption time. In order to exclude the effect of the PET
template on the sorption activity of the prepared composites, etched-only (pristine) and
oxidized PET species were also examined in As(III) sorption along with both types of
composites. As can be seen in Figure 3, the PET template has a very low arsenic sorption
capacity both when oxidized and only-etched, and the equilibrium sorption capacities (Qe)
are 33.2 and 36.3 µg As(III)/g for the etched-only and oxidized PET templates, respectively.

It is clear from Figure 3 that when oxidized PET is used as the template, a much higher
equilibrium sorption capacity (Qe) is achieved compared with what is obtained in the
case of etched-only PET. While Qe was found as 802 µg As(III)/g for Cu/Ox_PET, it was
521 µg As(III)/g when un-oxidized PET was applied as a template. Since the PET template
alone does not have much effect on adsorption, this significant increase is attributed to the
increase in the amount of copper loaded to the membrane and the specific surface area
(Table 1). Although the time required to reach the equilibrium sorption is slightly longer in
oxidized PET (360 min) compared with the pristine counterpart (300 min), this is far from a
problem given the high amount of equilibrium adsorption obtained.
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Figure 3. Effect of contact time on the sorption of As(III) (50 ppm) by the composite TeMs.

The relative distribution of As(III) species and the ionization of functional groups on
the adsorbent surface depend on the pH of the solution [53,54]. When the effect of pH
on As(III) sorption was examined, it was found that the maximum sorption capacity was
obtained at pH 4 (Figure 4).
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Figure 4. Removal of arsenic as a function of solution pH (As(III) concentration: 50 ppm; composite
TeMs: 2 × 2 cm2; contact time: 420 min).

At pH > 9, the membranes lost their integrity due to the destruction of the PET
template and were unable to function. As the pH increased from 3 to 4, the adsorption
efficiency increased from 40% to 60%. As(III) removal decreased dramatically at pH > 4.0.
The results show that the interactions between the composite absorbent and As(III) are
highest at pH 4, which is related to both the surface charge of the absorbent and the charge
and structure of As(III) species at this pH [55].

The pseudo-first-order model proposed by Lagergren [56] as the earliest adsorption
kinetic model is used to describe the adsorption behavior of solid adsorbents in liquid
media. The differential form of the pseudo-first-order model is given by Equation (2) [56]:

dqt

dt
= k1(qe − qt) (2)
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Equation (2) can be expressed as follows after integration to obtain a linear form:

ln(qe − qt) = ln qe − k1t (3)

where qt is the adsorption capacity at time t, mg/g, and k1 is the first-order reaction rate
constant. As shown in Figure 5a and listed in Table 3, the values of k1 and qe and the
coefficient of determination, R2, are determined by the linear graph dependency. For
the pseudo-first-order kinetic model, the lower value of R2 indicates that the adsorption
kinetics do not match the pseudo-first-order reaction kinetic model.
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Figure 5. Kinetics of As(III) sorption by composite TeMs according to the pseudo-first-order (a) and
pseudo-second-order (b) and Elovich (c) kinetic models.

Table 3. Comparison of the pseudo-first- and pseudo-second-order kinetic parameters and Elovich α and β values of As(III) sorption
by Cu/PET and Cu/Ox_PET.

Composite
Adsorbent

Pseudo-First-Order Model Pseudo-Second-Order Model Elovich Model

k1, min−1 qe, mg/g R2 k2 × 10−4,
g/mg × min

qe, mg/g R2 α,
mg/g × min

β,
mg/min R2

Cu/PET 0.012 0.283 0.982 0.74 0.55 0.999 1.45 0.014 0.979
Cu/Ox_PET 0.012 1.942 0.897 0.07 1.0 0.995 3.95 0.005 0.941
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When the concentration of adsorbate ions reaching the adsorbent functional groups
is extremely low compared with the active centers, the first-order kinetic model can be
applied to the initial stage of the adsorption process [57]. In this case, the number of active
centers involved in the adsorption changes slightly over time, and the adsorption process
can be reduced mathematically by including the concentration of the functional groups of
the adsorbent in the reaction rate constant. In the latter stage of the adsorption process, the
adsorption rate is affected by the concentration of the two components, so the order of the
adsorption becomes two.

If the process is defined by the pseudo-second-order model (Equation (4)), the in-
teraction between the adsorbate and the functional group of the adsorbent is strictly
stoichiometric; that is, a metal ion occupies an adsorption site [58].

In general, this model is similar to the pseudo-first-order kinetic model, but it can be
used to describe the entire adsorption process [59].

dqt

t
= k2(qe − qt)

2 (4)

By integrating t from 0 to t and q0 from 0 to qt, we obtain

qt =
k2q2

e t
1 + k2qet

(5)

In linear form, the equation becomes

t
qt

=
1

k2q2
e
+

t
qe

(6)

where k2 is the pseudo-second-order rate constant of the adsorption, g
mg×min , and qe

is the equilibrium sorption amount, mg/g. These two values and the corresponding
linear regression correlation coefficient R2 are calculated from the linear graph shown in
Figure 5b, and the results are presented in Table 3. The calculated qe values of Cu/PET
and Cu/Ox_PET are 0.545 and 1.0 mg/g, respectively, which are very consistent with the
experimental data under the pseudo-second-order kinetics.

The pseudo-second-order equation also covers the intermolecular interactions of the
adsorbate. The Elovich model described in Equation (7) takes into account the contribution
of the adsorption process and the desorption phenomena to material extraction kinetics,
which will have a significant impact when the adsorption is close to the equilibrium
state [59].

qt =
1
β
(ln αβ) +

1
β

ln t (7)

where qt is the amount of adsorbate at time t, µg/g; α is the initial rate of the adsorption
process, mg/g × min; and β is the desorption constant (g·mmol−1). The kinetic parameters
of this model are calculated from the linear dependence of qt on ln(t) (Figure 5c), and the
results are given in Table 3. Compared with β, the higher-value α indicates that arsenic
absorption, rather than its desorption, is dominant [59]. As can be seen in Table 3, the α
value for Cu/Ox_PET is much higher than in the case where the non-oxidized PET template
is used. The results presented in Figure 3 confirm that the PET template contributes to the
adsorption process. The lower β value obtained in the case of the oxidized template states
that the desorption of As(III) occurs at a lower amount, indicating favorable interaction
between the adsorbate and the adsorbent through the oxidized species. When these two
parameters, α and β, are evaluated together, the high equilibrium sorption obtained from
the use of oxidized PET becomes quite expected.

The value of the correlation coefficient R2 shows that the pseudo-second-order model
best describes the adsorption of arsenic(III) by both composite adsorbents. The linear
dependence in Figure 5b over the entire time interval is obvious. The applicability of the
pseudo-second-order kinetic model to both composite sorbents leads to the conclusion that
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chemisorption is the rate-determining step of the process, and the effect of the diffusion
stage is insignificant [49,51].

As can be seen in Table 1, the specific surface area and the amount of copper loaded
are higher in the case of Cu/Ox_PET. The oxidation process is expected to increase surface
porosity, and this morphological difference also positively contributes to the adsorption
process. To confirm this expectation, we performed atomic force microscopy (Figure 6) and
found that the roughness (Ra) of the composite obtained when using the oxidized PET
template was 30% higher compared with the use of its untreated counterpart. In addition to
all these, the Cu/Ox_PET composite has a smaller crystallite size (15.0 ± 2.8 nm) compared
with Cu/PET (18.0 ± 2.7 nm), as was shown earlier [35]. Therefore, we think that smaller
copper crystallites also contribute to increased adsorption performance with their increased
surface areas.
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Figure 6. Atomic force microscopy (AFM) images of the surface of composite adsorbents. The
scanning area was 3 × 3 µm2.

3.3. Investigation of As(III) Adsorption Mechanism

The presence of toxic pollutants in the aquatic environment and the subsequent devel-
opment of removal methods have promoted the rapid development of new adsorbents. It is
very important to understand the adsorption process correctly and to reveal the adsorption
equilibrium clearly. Correct understanding and interpretation of adsorption isotherms
are essential for the improvement of adsorption pathways and an efficient sorption sys-
tem design [12,60]. The equilibrium in the adsorption system depends on the nature
of the interactions between the adsorbent and the adsorbate. Well-known adsorption
models—Langmuir, Freundlich, and Dubinin–Radushkevich (DR)—describe these inter-
actions in different ways [42,61]. Therefore, the purpose of this section is to clarify the
applicability of these models in interpreting the experimental data for the adsorption of
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As(III) on composite TeMs with embedded copper MTs and to select the model that best
describes the adsorption process.

3.3.1. Langmuir Isotherm

According to the Langmuir adsorption theory, adsorption is local; it occurs on the
active centers, and the active centers are equivalent. Each active site retains only one
molecule, and adsorption saturation occurs when the active sites are filled. The adsorbed
molecules do not interact with each other, and after a while, they are desorbed, thus
achieving a dynamic equilibrium [60,62]. For reactions occurring in solution, the linear
form of the Langmuir adsorption isotherm equation, derived on the basis of the molecular
kinetic theory and concepts of the monomolecular nature of the adsorption process, can be
presented in the following form [51]:

Ce

qe
=

Ce

Q0
+

1
Q0b

(8)

where b is a constant related to the energy of adsorption (Langmuir constant); Ce is the
equilibrium concentration of the adsorbate, mg/L; qe is the amount of arsenic adsorbed per
gram of the adsorbent at equilibrium (mg/g); and Q0 is the maximum monolayer coverage
capacity (mg/g), which characterizes the amount of adsorbate that can be absorbed by a
unit mass of the adsorbent to form a monolayer on the surface.

Both parameters b and Q0 are characteristic values that reflect the basic properties of
the “adsorbent–adsorbate” pair. The linear plot of Ce vs. Ce/qe dependence is shown in
Figure 7. The values Q0 and b were calculated from the slope and intersection of straight
lines, respectively, and the results are presented in Table 4. As can be seen in Table 4,
a higher Q0 value was attained when using oxidized PET compared with its pristine
counterpart, which indicates a higher sorption potential for Cu/Ox_PET and is consistent
with previous discussions.
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Figure 7. Langmuir adsorption isotherms of As(III) adsorption on composite TeMs.

Table 4. Langmuir and Freundlich isotherm constants for the adsorption of As(III) onto composite
TeMs.

Sorbent
Langmuir Isotherm Freundlich Isotherm

Q0, µg/g b, L/µg R2 kF, µg/g n R2

Cu/PET 158.7 0.027 0.97 3.65 0.99 0.99
Cu/Ox_PET 238.1 0.118 0.92 3.82 1.0 1.0
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3.3.2. The Isotherm of Freundlich

The Freundlich isotherm model (9) is used to describe adsorption on a heterogeneous
surface. According to this model, since the adsorption centers have different energy values,
the active sorption centers with maximum energy are filled first [51].

lnqe = lnkF +
1
n

lnCe (9)

where kF is the Freundlich isotherm constant related to the adsorption capacity (µg/g), and
n is the adsorption intensity indicating the extent of the adsorbent–adsorbate interaction.

Figure 8 shows the experimental data adapted to the linear Freundlich equation. The
n constant is an empirical parameter related to the adsorption strength, which varies
depending on the heterogeneity of the adsorbent. To facilitate adsorption, the value of
n should be in the range of 1–10 [63]. The kF values of Cu/PET and Cu/Ox_PET were
3.65 and 3.82 µg/g, respectively, indicating that the adsorption capacity of the composites
improved after chemical modification (i.e., oxidation) of the polymer template. This is
consistent with the Langmuir isotherm. For both composites, the adsorption intensity
(n) is equal to unity (Table 3), which indicates the possibility of As(III) adsorption on
the surface of the composites. The regression coefficients (R2) are also equal to unity in
Figure 8, indicating a very good agreement with the Freundlich adsorption isotherm. It is
obvious that the Freundlich isotherm model describes the adsorption process better than
the Langmuir model. This confirms the existence of a heterogeneous adsorption surface in
which both the copper MTs and PET template are involved in the adsorption process.
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Figure 8. Freundlich adsorption isotherms of As(III) adsorption on composite TeMs.

3.3.3. Dubinin–Radushkevich (DR) Isotherm

The DR isotherm model is often used for the description of adsorption, especially in
microporous materials [64]. It is a semi-empirical equation suitable for adsorption following
the pore-filling mechanism and assumes that adsorption has a multilayer nature involving
Van der Waals forces. This isotherm is best suited for physical adsorption processes [59].
The linear form of the DR isotherm is defined by Equation (10) [65]:

lnqe = lnQd − βε2 (10)

where Qd (µg/g) is the adsorption capacity of the DR monolayer, β (mol2/kJ2) is a constant
associated with the free energy of sorption, and ε is the Polyanyi potential determined by
the following relationship:

ε = RTln(1 +
1

Ce
) (11)
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The β and Qd values were calculated from the slope and intersection, respectively
(Figure 9), and the results are shown in Table 5. The average free energy of adsorption, EDR,
which characterizes the free energy of the system due to the transfer of one mole of ions
from the solution to the solid surface, was calculated from the β values using the following
equation:

EDR =
1√
−2β

(12)
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Figure 9. Dubinin–Radushkevich (DR) adsorption isotherms of As(III) adsorption on composite
TeMs.

Table 5. DR isotherm constants for the adsorption of As(III) on composite TeMs.

Sorbent Qd, µg/g β, mol2/kJ2 EDR, kJ/mol R2

Cu/PET 217.0 0.002 17.2 0.87
Cu/Ox_PET 379.9 0.001 31.6 0.80

The importance of determining the value of EDR stems from the fact that its numerical
value can be used to gain insight into the nature of the interactions between As(III) and
active centers on the composite surface. Physical adsorption is considered to occur when
the adsorption energy EDR is less than 8 kJ/mol. When EDR is between 8 and 16 kJ/mol,
the process proceeds according to ion exchange theory, and chemisorption is observed at
EDR values in the range of 20–40 kJ/mol [59]. The high EDR value observed for the Cu/Ox-
PET composite indicates that the interaction between the adsorbate and the composite
is based on chemisorption. However, very low R2 values indicate that the experimental
data fit the DR adsorption isotherm model poorly, and therefore, the values obtained may
fall outside the confidence interval. In other studies, for example, using magnetite NPs,
the adsorption free energy was calculated as 7.6 kJ/mol, and the interactions between
As(III) and the NPs were of physical type [66]. Similar results (0.84 kJ/mol) have been
reported for the adsorption of arsenic by copper slug [67]. The sorption energy of the
aluminum doped manganese copper ferrite/polymer composite prepared by chemical
coprecipitation technique was found to be 40.98 kJ/mol, which confirms the chemisorption
phenomenon [68]. A comparison of the adsorption capacities of different As(III) adsorbents
with those attained in this study is presented in Table 6.
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Table 6. Comparison of the As(III) adsorption capacity of the composite TeMs loaded with copper MTs and other sorbents.

Adsorbent
Sorption Conditions

Qe, mg/g Ref.Initial Concentration of
Adsorbate, ppm

Amount of Adsorbent
Utilized, mg

CuO nanoparticles (NPs) 100.0 2000.0 26.90 [69]
Fe/Cu NPs 5.0 10.0 19.70 [70]
TiO2 NPs embedded in the
chitin hydrogel 0.1 200.0 3.10 [71]

Copper oxide incorporated
mesoporous alumina 1.0 200.0 2.16 [72]

Fe3O4 NPs 0.13 10.0 1.38 [66]
Aluminum doped manganese copper
ferrite/polymer composite 0.2 50.0 0.05 [68]

Granular Ce–Ti sorbent 5.0 10.0 0.90 [73]
Activated alumina 1.0 1000.0 0.08 [74]
Cu/PET composite TeMs 50.0 3.8 0.52 This study
Cu/Ox_PET composite TeMs 50.0 4.0 0.80

It should be noted that it is rather difficult to directly compare the data of various
studies as some determining parameters, such as amount of loaded sorbent, agitation
speed, pH value, and temperature of sorption, are not exactly the same. Still, it can easily
be said that our results closely compete with the existing alternatives and that the obtained
composite membranes are promising, particularly considering their practicality, ease of
use, and low cost.

4. Conclusions

The present study suggests that PET track-etched membranes loaded with copper MTs
have a very high potential for the removal of As(III) from aqueous medium. Kinetics and
adsorption isotherms well explain the adsorption mechanisms for composite adsorbents
prepared using an oxidized or pristine PET track-etched template. The adsorption of As(III)
was rapid and reached equilibrium in ~6 h. The pseudo-second-order equation fitted well
in both composites (i.e., Cu/PET and Cu/Ox_PET).

Three adsorption isotherm models were examined, and the relevant constants and
parameters were determined. The analysis revealed a very good correlation between
experimental data and the Freundlich isotherm, suggesting a multilayer adsorption on an
energetically heterogeneous surface. The removal efficiency of As(III) is increased when an
oxidized template is used. The amount of copper loaded to the template and the specific
surface area of the composite was significantly higher when the track-etched PET template
was oxidized. The oxidation process provides an increase in surface porosity too, which
positively contributes to the adsorption process. As a result of these effects, and because the
size of copper crystallites is smaller when an oxidized template is used, arsenic absorption
was found to be higher for Cu/Ox_PET. We, therefore, recommend oxidation as a step
that can be considered in the preparation of similar membranes to achieve higher removal
efficiencies. Given the high adsorption capacity and ease of use of the composite adsorbent,
the prepared samples offer a promising alternative for the removal of As(III) from the
aqueous medium.

Supplementary Materials: The following are available online at https://www.mdpi.com/2077-037
5/11/2/116/s1: Figure S1. XPS high resolution C1s spectra of the “etched-only” (a) and oxidized (b)
polyethylene terephthalate (PET) template (b), O1s spectra of the “etched-only” (c) and oxidized (d)
PET template; Figure S2. Fourier-transform infrared spectroscopy (FTIR) spectra of “etched-only”
and oxidized PET templates; Figure S3. An Energy-dispersive X-ray spectroscopy (EDX) spectra with
percentage of elements (at.%) for a Cu/PET and Cu/Ox_PET composite track-etched membranes.
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Abbreviations

TeM track-etched membrane
PET polyethylene terephthalate
XRD X-ray diffraction
Cu/PET composite membrane synthesized using an “etched-only” template
Cu/Ox_PET composite membrane synthesized using an oxidized template
MT microtube
SEM scanning electron microscopy
XPS X-ray photoelectron spectroscopy
EDX energy dispersive X-ray analysis
Qe amount of As(III) adsorbed by the unit mass of copper (mg/g)
C0 feed As(III) concentration (mg/L)
Ce concentration of As(III) in aliquots (mg/L)
DC degree of crystallinity (%)
L average crystallite size (nm)
qt adsorption capacity at time t (mg/g)
k1 First-order reaction rate constant (min−1)
k2 pseudo-second-order rate constant of adsorption ( g

mg×min )
α initial rate of the adsorption process, mg/g × min
β desorption constant (g·mmol−1)
Ra roughness of the composite (nm)
b constant related to the energy of adsorption (i.e., Langmuir constant (L/µg))
Ce equilibrium concentration of adsorbate (mg/L)
Q0 maximum monolayer coverage capacity (mg/g)
kF Freundlich isotherm constant related to the adsorption capacity (µg/g)
Qd adsorption capacity of the Dubinin–Radushkevich monolayer (µg/g)
β constant associated with the free energy of sorption (mol2/kJ2)
EDR free energy of adsorption (kJ/mol)
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