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The electroencephalogram (EEG) and surface electromyogram (sEMG) fusion

has been widely used in the detection of human movement intention for

human–robot interaction, but the internal relationship of EEG and sEMG

signals is not clear, so their fusion still has some shortcomings. A precise fusion

method of EEG and sEMG using the CNN-LSTM model was investigated to

detect lower limb voluntary movement in this study. At first, the EEG and

sEMG signal processing of each stage was analyzed so that the response

time difference between EEG and sEMG can be estimated to detect lower

limb voluntary movement, and it can be calculated by the symbolic transfer

entropy. Second, the data fusion and feature of EEG and sEMG were

both used for obtaining a data matrix of the model, and a hybrid CNN-

LSTM model was established for the EEG and sEMG-based decoding model

of lower limb voluntary movement so that the estimated value of time

difference was about 24 ∼ 26 ms, and the calculated value was between

25 and 45 ms. Finally, the offline experimental results showed that the

accuracy of data fusion was significantly higher than feature fusion-based

accuracy in 5-fold cross-validation, and the average accuracy of EEG and

sEMG data fusion was more than 95%; the improved average accuracy

for eliminating the response time difference between EEG and sEMG was

about 0.7 ± 0.26% in data fusion. In the meantime, the online average

accuracy of data fusion-based CNN-LSTM was more than 87% in all subjects.

These results demonstrated that the time difference had an influence on
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the EEG and sEMG fusion to detect lower limb voluntary movement, and

the proposed CNN-LSTM model can achieve high performance. This work

provides a stable and reliable basis for human–robot interaction of the lower

limb exoskeleton.

KEYWORDS

lower limb voluntary movement, precise detection, EEG and sEMG fusion, response
time difference, CNN-LSTM

Introduction

The exoskeleton robot is used as an assistive device for
disabled people, rehabilitation for paraplegics, and power
augmentation for military or manual workers (Hamza et al.,
2020). This robot can augment or restore a measure of their
motor function to enable them to regain or enhance the partial
function of their limbs (Sawicki et al., 2020). For the exoskeleton
robot in the application of early rehabilitation training, the
prespecified targeted task such as trajectory tracking control is
the common control strategy to help patients recover muscle
strength passively. The middle or later rehabilitation training
and power-assisted exoskeleton robot need to follow the user’s
movement intention (Ajayi et al., 2020). The detection of human
movement intention is an indispensable part of the robot, and
this ability is based on large quantities of human or interaction
information for precise tracking control of the exoskeleton robot
because this robot is a typical human–machine coupling system.

As early as 2007, the lower extremity powered exoskeleton
(LOPES) robot detected the human movement intention by
the human–robot interaction (HRI) through bundle connectors.
The EMG-based evaluation result showed that the limb
orientations of the LOPES robot and the walking subject agree
well (Veneman et al., 2007). The HIT load-carrying exoskeleton
(HIT-LEX) measured the human–machine interactive forces at
the kinematic terminals for human movement identification
and exoskeleton control; the load-bearing walk experimental
result showed this method was feasible (Chao et al., 2016).
Yuxiang et al. (2019) developed a newly split embedded intrinsic
sensor, which can accurately measure the HRI force applied to
extract the human movement intention without being affected
by differences in the wearing status; the proposed method
enhanced the identification accuracy from 96.2 to 99.7%. The
advantage of the HRI-based method is the simplicity of signal
measurement, and it is also the most stable and mature method
in exoskeleton robot control. However, there are some problems
too difficult to overcome. The most important problem is
related to response delay in the robot control loop, which
is caused by the HRI generated after human movement, as
well as the information processing time of the robot system.
This response delay will reduce the system’s performance
(Fleischer et al., 2006).

Electrophysiological signals are electrical signals generated
during human physiological activities, which can reflect the
relevant information about the human body. The typical
electroencephalogram (EEG) and electromyogram (EMG)
signals have been widely studied and applied in medicine
and human–computer interaction. Fleischer et al. calculated
the knee torque from EMG signals and applied it to the
control of the exoskeleton robot, and there was a remarkable
performance without complicated dynamic models (Fleischer
et al., 2006). Palayil Baby et al. used the support vector
machine (SVM) classifier to identify the intended motion
patterns based on three-channel sEMG signals, developed
nonlinear mathematical models for joint torque estimation,
and utilized swarm techniques to identify model parameters
for each movement pattern of the ankle (Palayil Baby et al.,
2020). Longbin et al. estimated ankle joint torques by using
an EMG-driven neuromusculoskeletal (NMS) model and an
artificial neural network (ANN), which includes fast walking,
slow walking, and self-selected speed walking. The ANN-
predicted torque had a lower root mean square error (RMSE),
and it contributes to compensate the assistive torque for the
user’s remaining muscle within exoskeleton control (Longbin
et al., 2021). Dezhen et al. employed principle component
analysis (PCA), factor analysis (FA), and nonnegative matrix
factorization (NMF) to extract muscle synergy from EMG
signals, and a bidirectional gated recurrent unit (BGRU)-
based deep regression neural network has been established
for gait tracking at different walking speed. The results
showed that the proposed methods can reach R2

var scores
of 0.83–0.88, and it demonstrated that muscle synergy of
EMG has a good correlation with gait tracking (Dezhen
et al., 2021). Chao-Hung et al. proposed an EMG-based
single-joint exoskeleton system by merging a differentiable
continuous system with a dynamic musculoskeletal model.
It can solve the problem that the process of transforming
the input of biomedical signals into the output of adjusting
the torque and angle of the exoskeleton is limited by a
finite time lag and precision of trajectory prediction, which
results in a mismatch between the subject and exoskeleton. Its
results revealed accurate torque and angle prediction for the
knee exoskeleton and good performance of assistance during
movement (Chao-Hung et al., 2022).
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The EEG-based brain–computer interface (BCI) provides a
direct connection path to detect human movement intention.
BCI-based control technology has achieved considerable
progress. The steady-state visual evoked potential (SSVEP) EEG
signals were decoded into columns of instructions to drive the
exoskeleton tracking the intended trajectories in the human
operator’s mind, and the experimental result verifies the validity
of BCI-based control method (Shiyuan et al., 2016). Kwak et al.
(2015) decoded the five movements of the subject based on the
SSVEP paradigm while wearing the exoskeleton and achieved
average accuracies of 91.3% and an information transfer rate of
32.9 bits/min. This work indicated that an SSVEP-based lower
limb exoskeleton for gait assistance is becoming feasible (Kwak
et al., 2015). Choi et al. developed an motor imagery (MI)-based
hybrid BCI controller for the lower limb exoskeleton operation;
it can control the exoskeleton to stand up, gait start/stop, and
sit down without any steer or button press using the real-time
EEG decoder, but the online experimental results showed that
the proposed method spent 145% of the control time compared
with the conventional smartwatch controller (Junhyuk et al.,
2020). The real-time performance of the BCI using a specific
paradigm in exoskeleton control is not satisfactory. Continuous
decoding of voluntary movement is desirable for closed-loop,
natural control of the neuro-robot (Valeria et al., 2020).

The EEG or sEMG-based control method has some
shortcomings: the decoding accuracy and stability of EEG are
not good enough, and the performance of sEMG decoding has
no advantage in movement prediction. Therefore, EEG and
sEMG signals are combined or fused to further improve the
decoding performance. It forms EEG and EMG-based hybrid
and EEG and sEMG fusion methods. The hybrid method
combines different control commands in series or in parallel to
improve the performance of system; it expands a conventional
“simple” BCI or human–machine interface (HMI) in different
ways (Pfurtscheller et al., 2010). The fusion of EEG and
sEMG fuses the two signals in the data level, feature level, or
decision level to improve classification accuracy, allowing each
to compensate for the weakness of others (Tryon et al., 2019).

Rouillard et al. proposed a hybrid BCI coupling EEG and
EMG for severe motor disabilities using virtual reality; a 5-
fold cross-validation test was used to assess performances of
the left hand (0.99) and right hand (0.98) classifiers (Rouillard
et al., 2015). Hooda et al. explored the fusion of EEG and
sEMG to identify unilateral lower limb movements. Those
signals were analyzed for parallel and cascaded classification of
different movement tasks, and high performance was achieved
(Hooda et al., 2020). Gordleeva et al. presented a rehabilitation
technique based on a lower limb exoskeleton integrated with
the HMI, and EMG + EEG classification based on the CSP
feature with subsequent linear discriminant analysis (LDA)
classification showed an accuracy of 80%, which was less than
EMG-based accuracies (89%). However, it can be significantly
more informative of patients (trauma, stroke, etc.) (Gordleeva
et al., 2020). Tortora et al. proposed and evaluated a hybrid HMI

to decode walking phases of both legs from the Bayesian fusion
of EEG and EMG signals; the results showed that the fusion
of EEG and EMG information helps keep a stable recognition
rate of each gait phase of more than 80% independently
on the permanent level of EMG degradation (Tortora et al.,
2020). Using low-cost sEMG and EEG devices in tandem can
achieve high accuracy with decision-level fusion, which reported
accuracies of up to 99% (Pritchard et al., 2021). So, the fusion of
EEG and sEMG can keep a stable recognition rate of tasks with
high accuracy.

Nevertheless, our previous work showed a response time
difference between EEG and sEMG of limb movement
(Xiaodong et al., 2021). Using simulated data, Yuhange
et al. demonstrated that under certain conditions, the time
lag between EEG and EMG segments at points of the
local maxima of corticomuscular coherence with time lag
(CMCTL) corresponds to the average delay along the involved
corticomuscular conduction pathways. The result showed that
all delays estimated were in the region of 19.5± 3.9 ms (Yuhang
et al., 2017). Jinbiao et al. proposed a rate of voxel change (RVC)
to estimate the time lag between EEG and EMG, and the results
showed that the time lag was 22.8 ms for healthy subjects with
30% maximum voluntary contraction (MVC), and 34.5 ms for
patients with cognitive difficulties (Jinbiao et al., 2022).

Therefore, the direct fusion of EEG and sEMG has a
problem: the current time information of EEG and sEMG
is inconsistent. So, eliminating the time difference between
those signals can improve recognition performance. This work
aims at detecting human lower limb movement intention for
the exoskeleton robot, and EEG and sEMG fusion will be
employed in this work. Starting with the EEG and sEMG
generation mechanism of lower limb movement, this work will
estimate and calculate the response time difference between
EEG and sEMG signals according to physiological parameters
and symbolic transfer entropy, respectively. Eliminating this
time difference between EEG and sEMG signals will ensure the
consistency of information of the two signals at the same time,
to further improve the recognition accuracy. The hybrid CNN-
LSTM model will be established for EEG and sEMG fusion-
based decoding of lower limb movement intention. This work
will provide a stable and reliable basis for human–computer
interaction control of the lower limb exoskeleton.

Methodology

Estimation of electroencephalogram
and surface electromyogram response
time difference based on physiological
parameters

The lower limb movement of humans is produced
by the response of skeletal muscles; under the control
of the brain, the activities of brain neurons and skeletal

Frontiers in Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2022.954387
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-954387 September 17, 2022 Time: 14:27 # 4

Zhang et al. 10.3389/fnins.2022.954387

muscles generate corresponding bioelectric signals (EEG and
sEMG), and these signals contain important information about
lower limb movement.

The mechanism of EEG and sEMG generation and
transmission in the process of lower limb movement is shown
in Figure 1.

The high-level central nervous system with the brain as
the center performs information integration, processing, and
decision-making, and controls the skeletal muscles of the lower
limb to achieve a purpose of movement. In this processing, the
low-level central nervous system and peripheral nervous system
transmit these nerve signals. The neuromuscular junction, as
the bridge connecting nerves and skeletal muscles, will translate
nerve signals into endplate potential that can drive skeletal
muscles. Then, the skeletal muscle fibers will contract or expand
to produce lower limb movements.

Analysis of the generation and transmission process of
EEG and sEMG signals can be divided into an upstream and
downstream pathway. The upstream pathway is a process from
electrocorticogram (ECoG) to EEG, and the cost time for this
process was defined as t1. The downstream pathway is a process
from ECoG to sEMG, and it can be divided into three stages. The
first stage is the transmission from ECoG to the neuromuscular
junction, and the cost time was defined as t2. The second stage
is the conversion of the neuromuscular junction, and the cost
time was defined as t3. The third stage is the process from an
endplate potential to EMG or intramuscular EMG (iEMG) and
then to surface EMG, and the cost time was defined as t4. The
cost time at each stage was shown in the left side of Figure 1.

Based on the reference time of ECoG, the response time
difference (1T) between EEG and sEMG was estimated as
follows:

1T = −t1 + t2 + t3 + t4 (1)

First, the research shows an apparent phase lag and signal
amplitude attenuation in the transmission from ECoG to EEG.
The simulation result showed that the time delay from ECoG to
EEG was a few microseconds (µs) (Yi, 2021). It meant that t2

was in microseconds (µs).
Second, nerves perform the transmission function as a wire.

t2 can be calculated based on the motor nerve conduction
velocity and transmission distance as follows:

t2 =
Dn

v
(2)

where v is the motor nerve conduction velocity and Dn is the
conduction distance of the nerve.

The l was estimated by the human height based on the
structural characteristics of the spinal cord and peripheral
nervous system. The research report showed that the average
height of Chinese men and women aged 18∼44 years was 169.7
and 158 cm, respectively (Yang, 2020). In this work, the distance
from the brain to the tibialis anterior is about 1.4∼1.5 m.
Previous research showed that the motor nerve conduction

velocity is about 60 m/s (Bano et al., 2020; Nobue et al., 2020). t2

was obtained based on those data, so t2≈23∼25 ms.
Regarding the cost time t3 of neuromuscular junction

conversion, our previous simulation result of the neuromuscular
junction showed the peak offset of the model response
was delayed by about 1 ms compared to the peak of the
activation function. So, the cost time of neuromuscular junction
conversion was 1 ms (t3 = 1 ms) (Xiaodong et al., 2021). Medical
research indicated that the cost time of the chemical conversion
of the neuromuscular junction is about 0.5∼1.0 ms (Yudong and
Jianhong, 2007). Hence, t3 = 0.5∼1.0 ms in this work.

For the cost time t4 from EMG to sEMG, there was no
published article on the response time difference between EMG
to sEMG. However, the performance of EMG- and sEMG-based
decoding had a good consistency; there were small differences in
decoding stability and some statistical indicators (Crouch et al.,
2018; Hofste et al., 2020; Knox et al., 2021). The transmission
process from EMG to sEMG goes through the fat and the skin,
that is, filtering and spatial superposition of signals. Referring
to the simulation of EEG signals, the cost time of these volume
conductors is about microseconds (µs). Therefore, t4 was also in
microseconds (µs).

The aforementioned results indicated that t1 and t4 were in
microseconds, and t2 and t3 were in milliseconds. Therefore, t1

and t4 were ignored in this work, and response time difference
(1T) between EEG and sEMG was as follows:

1T ≈ t2 + t3

≈ 24 ∼ 26 ms (3)

Calculation of electroencephalogram
and surface electromyogram response
time difference based on symbolic
transfer entropy

Fusing EEG and sEMG for human movement detection,
EEG and sEMG signals need to be synchronized to ensure
the consistency of information contained at the same time
and improve the accuracy of recognition. The coherence
analysis and the Granger causality analysis are often used
to determine the homologous coupling relationship between
EEG and sEMG signals. However, these methods ignore some
nonlinear information. Transfer entropy analyses nonlinear
information without relying on the established model. In this
work, the transfer entropy method was used to calculate
the coupling characteristics between EEG and sEMG signals
and quantify the response time difference between EEG and
sEMG signals.

The EEG and sEMG signals are typical dynamic signals
with some noise. For extracting features of the EEG and sEMG
signals, symbolization of signals is needed. The traditional
symbolic methods cannot meet the requirements of EEG and
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sEMG because of the positive and negative transitions. At the
same time, the scale parameters of symbolism are an essential
factor affecting the performance, and the improved multiscale
symbolic method is as follows (Yunyuan et al., 2017):

S (i) =



−
Ps

2
, min (x) ≤ x (i) < (min (x)+ δ)

−
Ps

2
+ 0.5, (min (x)+ δ) ≤ x (i) < (min (x)+ 2δ)

...

0, (min (x)+ (Ps − 1) δ) ≤ x (i)
< (min (x)+ Psδ)

...

Ps

2
− 0.5, (max (x)+ 2δ) ≤ x (i) < (max (x)− δ)

Ps

2
, (max (x)− δ) ≤ x (i) < max (x)

(4)
where x(•) is the signal sequence, S(•) is the symbolic signal
sequence, δ is the increment per interval (δ = (max(x)-
min(x))/(Ps+1)), and min(•) and max(•) are their minimum
and maximum values, respectively. Ps is the scale parameters
of symbolic, the value of Ps proportional to the fine level of
symbolic, the larger the finer (Ps = 30 in this work).

For two signal sequences X = {x1, x2,. . ., xN ,} and Y = {y1,
y2,. . ., yN ,}, N is the length of signals. The transfer entropy (TE)
from x to y is defined as follows (Staniek and Lehnertz, 2008):

TEx→y =
∑

yi+u,yi,xi

prob
(
yi+u, yi, xi

)
× log

prob
(
yi+u, yi, xi

)
prob

(
yi
)

prob
(
yi+u, yi

)
prob

(
yi, xi

) (5)

where prob(•) denotes the transition probability density and u
is the time step.

The larger the value of TE, the stronger the coupling between
EEG and sEMG, and vice versa. The combination of symbolic
and transfer entropy is to replace the signal sequence with the
symbolic signal sequence, and the multiscale transfer entropy of
symbolic EEG and sEMG signals is expressed as TEPs

EEG→EMG.
It denotes the transfer entropy under the symbolic scale
parameter Ps.

Electroencephalogram and surface
electromyogram fusion-based
detection method

There are three common information fusion methods: data
fusion, feature fusion, and decision fusion. Aiming at the
detection of lower limb movement intention based on EEG and
sEMG fusion, this work will use data and feature fusion to use
the advantages of EEG and sEMG signals fully. The framework
of EEG and sEMG fusion-based is shown in Figure 2.

Data fusion of electroencephalogram and
surface electromyogram

There were three steps in the data fusion of EEG and
sEMG signals. The first step was the data selection of EEG and
sEMG, which was to eliminate the response time difference
(1T) between EEG and sEMG by ensuring the consistency of
information in the same time window. The second step was the
preprocessing of EEG and sEMG. The preprocessing is mainly
band-pass filtering and baseline calibration. The spatial filter and
Butterworth filter are commonly used. Typical representatives of
spatial filters are common average reference (CAR), Laplacian
filters, and bipolar manners. A spatial filter can effectively
improve the signal-to-noise ratio of signal (Delisle-Rodriguez
et al., 2017; Jochumsen et al., 2018; Lipeng et al., 2020;
Tsuchimoto et al., 2021). The Butterworth filter can remove part
artifact and keep the original information (Ranran et al., 2018);
it is also widely used in EEG and sEMG preprocessing (Ioana
Sburlea et al., 2015a,b; Romero-Laiseca et al., 2020). So, the EEG
data were filtered by a 0.5- to 64-Hz band-pass filter and a 50-Hz
notch filter using the Butterworth filter. The sEMG data were
filtered by a 20- to 200-Hz band-pass filter and a 50-Hz notch
filter. The EEG and sEMG signals were normalized separately.
The normalization calculation was given as follows:

X (n) =
1− (−1)

xmax(n)− xmin(n)
× (x(n)− xmin(n))− 1,

n = 1, 2, · · · , N (6)

where x(n) is the signals; N is the length of signals; xmax(n) and
xmin(n) are the maximum value and minimum value of x(n),
respectively; and X(n) is normalized value of x(n).

The last step was combing the EEG and sEMG data to obtain
the data fusion matrix. The data fusion matrix will be used to
detect lower limb movement intention.

Feature fusion of electroencephalogram and
surface electromyogram

Considering the nonlinear characteristics of EEG signals,
wavelet packet transformation (WPT) was employed for feature
extraction in this work. WPT is a time–frequency analysis
method, and low- and high-frequency information can be
obtained at the same time (Liwei et al., 2019). According to the
decomposition of the wavelet packet spatial structure, the rth
wavelet packet decomposition coefficients of the (j+1) layer and
the g point are obtained by the following recurrence formula: d2r

j+1,g =
∑

g∈Z hm−2gdr
j,m

d2r+1
j+1,g =

∑
g∈Z lm−2gdr

j,m

(7)

where j,k∈Z, r = 1,2,. . .,2j-1, j is the layer of WPT, g is the
translation factor, m is the scale parameter, r is the frequency
band, and h and l are the high-pass filter and low-pass filter as a
set of mutually orthogonal filters, respectively.
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FIGURE 1

Generation and transmission process of EEG and sEMG signals.

To obtain the EEG signals of delta (0–4 Hz), theta
(4–7 Hz), alpha (8–12 Hz), and beta (13–30 Hz) (Hashimoto
and Ushiba, 2013; Kline et al., 2021), the five-layer wavelet
packet transformation was conducted after downsampling to
128 Hz. Variance and energy of decomposition coefficients were
calculated as the EEG feature:


V2

m = var{(Df )m,r} ≈
1

NWPT

∑
n

∣∣(Df )m,r
∣∣2

PE
i =

Ei

Etot
=

||d(j, i)||2∑2i−1
i=0 ||d(j, i)||2

(8)

where NWPT is the total number of wavelet packet
decomposition nodes and Df are each nodes of layer.

The feature matrix of EEG signals of M channels is defined
as follows:

FeaEEG = [F1, F2, · · · , FM] (9)

where fi is the EEG feature vector of the ith channel, i∈M.
The time domain and frequency domain characteristics

of sEMG signals are significant, and its indexes in the time
domain, frequency domain, and time–frequency domain are
often used as features (Phinyomark et al., 2012). In this work,
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FIGURE 2

Framework of EEG and sEMG fusion-based detection.

the variance (VAR), slope sign change (SSC), zero crossing (ZC),
root mean square (RMS), mean power frequency (MPF), and
Fourier cepstrum coefficient (FCC) of sEMG were selected for
feature extraction.

(1) Variance (VAR)

VAR =

√√√√ 1
N − 1

N∑
k=1

(xk − xm)2 (10)

where xk is the sEMG signals, k = 1, 2, . . ., N, N is the
length of signals, and xm is the mean value of signals.

(2) Slope sign change (SSC)

Initial value SSC = 0
SSC = SSC + 1(xk − xk−1)(xk − xk+1) ≥ 0 or√

(xk − xk+1)(xk − xk−1) ≥ ε

(11)

where ε is the threshold factor.
(3) Zero crossing (ZC)

Initial value ZC = 0
ZC = ZC + 1xk ∗ xk+1 < 0

(12)

(4) Root mean square (RMS)

RMS =

√√√√ 1
N

N∑
k=1

x2
k (13)

(5) Mean power frequency (MPF)

MPF =
∫ f0

0 fP(f )df∫ f0
0 P(f )df

(14)

where f is the frequency of signals and P() is the
power of the signal.

(6) Fourier cepstrum coefficient (FCC)

X[k] =
N−1∑
n=0

x[k] exp−j 2π
N nk, k = 1, 2, · · · , (N − 1)

FCCi =

N−1∑
k=0

Yk cos

(
(k+ 1

2 )(i− 1)π

N

)
,

k = 1, 2, · · · , (N − 1)

(15)

where X[k] is the Fourier transform of signals x[k], Yk = f (|
X[k]|) is the amplitude logarithm of X[k], and i is the number
of the Fourier cepstrum coefficient.

The feature matrix of sEMG signals of K channels is defined
as follows:

FeasEMG = [G1, G2, · · · , GK ] (16)

where gi is the sEMG feature vector of the ith channel, i∈K.
Due to the dimensionality characteristic of the EEG and

sEMG feature matrix, the cascaded fusion feature matrix was
obtained, as follows:

Fea(EEG, sEMG) = [FeaEEG FeasEMG]
= [F1, F2, · · · , FM, G1, G2, · · · , GK ]

(17)

Hybrid convolution neural network-long
short-term memory model

Deep learning has been applied widely in pattern
recognition and regression fitting. According to the structure
and functional characteristics of deep learning, it includes
typical convolution neural network (CNN), deep brief network
(DBN), recurrent neural network (RNN), etc. The CNN
involves representation learning, and it can conduct shift-
invariant classification based on its hierarchical structure. The
CNN is mainly composed of an input layer, a convolutional
layer, a pooling layer, a fully connected layer, and an output
layer. These layers render the CNN with the characteristics of
local sensing field and downsampling, which can improve the
ability of feature extraction and decrease network complexity.
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In the process of network construction, the network framework,
convolution kernel, activation function, and pooling parameter
are the key points and difficulties. The convolution kernel is
the key to automatic feature extraction. The activation function
is used to overcome the gradient disappearance problem. The
pooling parameter is downsampling the feature matrix from
the convolutional layer; and it can reduce the amount of data
(Yaqing et al., 2020).

The RNN has the characteristics of memory and parameter
sharing, and its typical representative is long short-term
memory (LSTM) networks. The LSTM unit controls three gates,
which are the input gate, forget gate, and output gate. The
framework of the LSTM unit is shown in Figure 3.

The working mechanism of LSTM can be simply described
as three stages: forgetting stage, selective memory stage, and
output stage (Xipeng, 2022). The forgetting stage involves
selectively forgetting the information from the previous
neuron node, remembering the important, and forgetting the
unimportant. The forget gate is ft , which selectively forgets the
previous state ct−1. The selective memory stage is the selective
memory of the input information xt , and the current state ct can
be obtained by the input data and previous system state gate. The
output stage is to determine which information will be regarded
as the current output; it is controlled by ot . The output is ht . The
update of those gates is as follows.

it = σ
(
Wixt + Uiht−1 + bi

)
ft = σ

(
Wf xt + Uf ht−1 + bf

)
ot = σ

(
Woxt + Uoht−1 + bo

) (18)

where Wi, Wf , and Wo are the weight matrix of the input
gate, forget gate, and output gate, respectively, corresponding to
input at the current time. Ui, Uf , and Uo are the weight matrix
of the input gate, forget gate, and output gate, respectively,
corresponding to the external state of the cyclic unit at a
previous time; bi, bf , and bo are the offset vector of the input
gate, forget gate, and output gate, respectively.

The current state output of the LSTM unit ht is as follows
(Jiangjiang et al., 2017; Khataei Maragheh et al., 2022):

ct = ft ⊗ ct−1 + it ⊗ c̃t, c̃t = tanh
(
Wcxt + Ucht−1 + bc

)
ht = ot ⊗ tanh (ct)

(19)
where Wc and Uc are the corresponding weight matrixes,
respectively, and bc is the offset vector.

The CNN performs well in feature extraction, and LSTM
can capture the long-term dependence relationship in sequence
data. So, the combination of the CNN and LSTM can make
full use of the advantages of the two networks, and it
has been proven a good performance in pattern recognition
(Jianfeng et al., 2019).

The schematic diagram of the hybrid CNN-LSTM network
is shown in Figure 4. The CNN has four convolution—average
pooling blocks, and the exponential linear unit layer was used

to connect those blocks. There were two LSTM-dropout blocks,
and the dropout layer was commonly used to solve over-fitting
problems. The folding layer and unfolding layer were used to
connect the CNN and LSTM, and finally to the fully connected
layer and softmax classification layer.

Experimental system and setup

Experimental system
The experimental system mainly includes three parts:

EEG/sEMG acquisition device, computer, and lower limb
exoskeleton robot. The EEG/sEMG acquisition device adopted
the NeuroScan-grael, and it can collect 32-channel EEG signals
and eight-channel sEMG signals synchronously. The computer
with Intel i5 was used for signal processing. The exoskeleton
robot was developed by our team at Xi’an Jiaotong University.
The scheme of EEG and sEMG fusion-based detection for
a lower limb exoskeleton robot is shown in Figure 5. The
NeuroScan-grael sent the EEG and sEMG data to the router by
cable. All the recorded data were simultaneously transferred to a
computer by Wifi, and the computer and robot communicated
via Bluetooth.

Subjects and
electroencephalogram/electromyogram data
recording

A total of eight healthy (seven men and one woman)
subjects were invited to participate in the experiment; they
were 25 ± 1.9 years of age and without limb dysfunction and
any known cognitive deficits. All the subjects gave informed
consent after the nature and possible consequences of the
experiment were explained. The Institutional Review Board of
Xi’an Jiaotong University approved the proposed experiments,
and all the experiments were conducted in accordance with the
Declaration of Helsinki.

The EEG and sEMG data were collected using NeuroScan-
grael at a sampling rate of 1,024 Hz. The EEG channel
distribution was based on the international 10/20 system. FC1,
FC2, FC5, FC6, Cz, C3, C4, CP1, and CP2 were selected for
EEG data; the AFz channel was used as ground, and the CPz
channel was used as reference. The vastus medialis, the biceps
femoris, the lateral gastrocnemius, and the tibialis anterior
were selected to collect sEMG data (Gordleeva et al., 2020;
Tortora et al., 2020). Differential electrodes were used for sEMG
signal collecting. The distance between differential electrodes
was about 1.4 cm, and it shared the reference electrode with EEG
signals.

Experimental procedure setup
The experiments were conducted in a quiet room with

electromagnetic interference being controlled, to verify the
effectiveness of the proposed method.
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FIGURE 3

Framework of LSTM unit.

FIGURE 4

Schematic diagram of CNN-LSTM network.

FIGURE 5

Scheme of EEG and sEMG fusion-based detection for the lower limb exoskeleton robot.

The lower movement task of the experiment included
eight kinds of lower limb movement intentions, such as going
upstairs on right and left legs, going downstairs on right

and left legs, crouching, stepping forward on the left leg,
stepping forward on the right leg, and standing. The subjects
were asked to avoid unnecessary movement in the experiment
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and perform voluntary movement of the lower limb without
any stimulation.

These experiments included eight movement tasks, and
each movement task consisted of several sessions. The subject
repeated the same voluntary movement tasks five times (five
trials) in each session, and the time scheme of each session is
shown in Figure 6. Each movement task contained 10 sessions.

After recording the EEG and sEMG signals, there were more
than 10 s for the subjects to return to the resting stage. The
subjects performed lower limb voluntary movement at any time,
and this movement was consistent for about 3 s. There were also
more than 10 s for resting between each trial, and about a 5-min
intermission after a session of the experiment. The movement
onset was detected by sEMG signals, and it was used for data
partition (Xiaodong et al., 2021).

In online experiments, the lower limb movement tasks were
the same as offline experiments. Reciprocal exoskeleton robot
motion and lower limb movements served as the control targets,
and this robot was controlled based on the finite state machine
(FSM). It took standing as the intermediate state to switch the
movement state. Once the lower limb movement was detected,
the result was sent to the robot controller and displayed on the
PC for the experimenter, and the experimenter recorded this
result and the actual movement dictated by the subjects.

Experimental results

The response time difference between
electroencephalogram and surface
electromyogram

After preprocessing the EEG and sEMG data from the
experiments, the movement onset of the lower limb was detected
by the tibialis anterior sEMG signals. Taking this movement
onset as the data center and zero in the time domain, 2 s of EEG
and sEMG data pre- and post-onset time were segmented for
processing, so the time range of data was from −2.0 to 2.0 s

(Ioana Sburlea et al., 2015a,b; Delisle-Rodriguez et al., 2017;
Dong et al., 2018).

Using the symbolic transfer entropy to calculate the response
time difference between EEG and sEMG, the time step u was set
as 50. The result of subject 1 is shown in Figure 7, and it was the
average of multiple trials.

Figure 7 shows the transfer entropy of Cz EEG to all sEMG
at stepping forward of the left leg, and the marked black point
was the maximum value of each curve. The maximum value
of transfer entropy was distributed in the u range of 27 to 38,
and it meant that the response time difference between EEG
and sEMG was equal to 27∼38 ms. The response time difference
between EEG and sEMG was greater than the estimated value of
25∼26 ms. Comparing the estimated value and calculated value,
they were consistent in the order of magnitude but different
in value. It suggested that the physiological parameter-based
estimation method was correct. In addition, the generation and
transmission of EEG and sEMG were more complex in human
movement.

Taking the representative channel Cz in the central cortex as
an example, the transfer entropy results of EEG to each sEMG
channel signal from crouching are shown in Figure 8. The
response time difference between EEG and sEMG at crouching
of the left leg was equal to 30∼40 ms, and it was equal to
24∼39 ms in crouching of the right leg. The maximum value of
the transfer entropy of the Cz channel EEG signal to different
sEMG signals of the left and right legs was consistent in the
same movement. It indicated that they had almost the same
performance in left and right leg movements (Hashimoto and
Ushiba, 2013; Kline et al., 2021).

For the different movement tasks of the lower limb, the
transfer entropy of Cz EEG to tibialis anterior sEMG is shown
in Figure 9. So, the response time difference between EEG
and sEMG was equal to 24∼42 ms of the left leg, and equal
to 27∼45 ms of the right leg. Those maximum distributions
were mainly concentrated near 35 ms. This result indicated a
slight difference in response time between different lower limb
movement tasks, which can be equal to the same value.

FIGURE 6

Time scheme of offline experiment.
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FIGURE 7

Transfer entropy of Cz EEG to all sEMG at stepping forward of the left leg from S1.

A B

FIGURE 8

Transfer entropy of Cz EEG to all sEMG at crouching from S1. (A) Left leg and (B) right leg.

For different subjects, the transfer entropy of Cz EEG
to tibialis anterior sEMG at stepping forward is shown in
Figure 10. the response time difference between EEG and sEMG
was equal to 26∼43 ms at stepping forward of the left leg,
and there was a little difference between the subjects. The
response time difference was 32∼42 ms at stepping forward
of the right leg. The results demonstrated that each subject’s
results had a good consistency and verified the universality of
the results.

The maximum value of transfer entropy between EEG
and sEMG signals was different in different EEG and sEMG
channels and different lower limb movement tasks of the same
subject. However, the distribution of the maximum value was
still concentrated near a specific value (u = 35). For different

subjects, the distribution of the maximum value also had an
aggregated distribution with an insignificant difference. This
result proved that the response time difference between EEG
and sEMG was insignificant. To simplify the procedure of
eliminating this time difference for EEG and sEMG fusion, the
response time difference between all EEG and all sEMG of all
subjects was set to a constant (1T = 35 ms).

Performance of lower limb voluntary
movement intention detection

Compared with EEG and sEMG fusion-based lower
limb movement intention detection, this lower limb
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FIGURE 9

Transfer entropy of Cz EEG to tibialis anterior sEMG of all movement tasks from S1. (A) Left leg and (B) right leg.

A B

FIGURE 10

Transfer entropy of Cz EEG to tibialis anterior sEMG at stepping forward from all subjects. (A) Stepping forward of the left leg and (B) stepping
forward of the right leg.

movement intention decoding was based on only EEG
and only EMG signals.

After the data segment was conducted for each trial from
−2.0 to 2.0 s, a preprocessing of EEG and sEMG data was
conducted with window length L, respectively, and the length
of the sliding window was set as 0.5∗L. The feature of EEG and
sEMG was also extracted with window length L, respectively.
The data fusion dataset of EEG and sEMG and feature
fusion dataset of EEG and sEMG were constructed for each
subject, respectively. The time window length of signals has an
impact on classification accuracy. The time window length L
was 200, considering the information contained and the cost
time of processing.

Detecting the robustness of the proposed CNN-LSTM
model and preventing an over-fitting problem, 5-fold cross-
validation was employed. The dataset was randomly divided
into five equal-sized subsets. That can avoid the contingency of
a single dataset partition through multiple random partitions
of the dataset. It can ensure the consistency of distribution
of the training set and testing set to avoid over-fitting to a
certain extent and reduce the possibility of falling into the local
optimum (Rui et al., 2018), four of which were used for training,

and one was used for testing. Each subject’s data were used to
train the subject’s own classifier.

Performance of electroencephalogram- and
surface electromyogram-based movement
intention detection

For the recognition of lower limb movement intention based
on only EEG or sEMG signals, this work also used the data and
feature of EEG or EMG to test. The classifier was the established
CNN-LSTM model, and the data window length was equal to
200. The performance of EEG- and sEMG-based lower limb
movement intention detection is shown in Table 1.

The standard deviation (STD) of the average accuracy of
EEG feature-based lower limb movement intention detection
was 82.95± 4.23%, and the average accuracy of EEG data-based
detection was 88.67 ± 1.88%. These corresponded to normal
distribution (p = 0.90 and p = 0.42, respectively, Shapiro–Wilk
test). There was a significant difference between EEG feature-
based and EEG data-based detection (t =−5.43, p= 0.001 with
the paired t-test). The average accuracy of sEMG feature-based
lower limb movement intention detection was 92.87 ± 2.35%,
and the average accuracy of sEMG data-based detection was
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TABLE 1 Performance of electroencephalogram (EEG)- and sEMG-based lower limb movement intention detection.

Subjects Only EEG Only sEMG

Feature-based accuracy Data-based accuracy Feature-based accuracy Data-based accuracy

S1 81.32% 88.77% 97.06% 98.05%

S2 75.61% 86.96% 93.98% 95.08%

S3 87.70% 91.12% 91.42% 93.18%

S4 78.23% 84.77% 95.70% 94.57%

S5 82.69% 89.33% 92.51% 95.60%

S6 83.74% 88.74% 91.87% 95.79%

S7 85.45% 89.15% 90.56% 94.47%

S8 88.83% 90.53% 89.87% 95.04%

Mean± STD 82.95± 4.23% 88.67± 1.88% 92.87± 2.35% 95.22± 1.31%

95.22 ± 1.31%. These corresponded to normal distribution
(p = 0.62 and p = 0.53, respectively). There was a significant
difference between EEG feature-based and EEG data-based
detection (t =−3.39, p= 0.01).

The accuracy of EEG or sEMG data-based detection had a
better performance by using the CNN-LSTM model, and sEMG
data- or feature-based detection achieved a good classification
accuracy compared with EEG data- or feature-based detection
(t = −6.18, p = 0.00 and t = −4.25, p = 0.00, respectively). It
indicated that the sEMG-based method had a distinct advantage
in detecting lower limb movement.

Performance of electroencephalogram and
surface electromyogram fusion-based
movement intention detection

The response time difference (1T) between EEG and
sEMG was obtained by the previous work, and it can be used
to improve classification performance. Eliminating this time
difference, this work took the current time t of EEG signals
as the time benchmark. The current time of time window for
sEMG signals was t+1T, which meant that the sEMG data
lagged EEG data.

It is well known that the signal sequence of longer length
contains more information, and a higher accuracy of pattern
recognition will be obtained to a certain extent. So, the signal
length greatly influences the performance of detection. The
response time difference 1T between EEG and sEMG was set as
35 ms. If the time window length L was set as 200, the proportion
of 1T in L is less than 20%. Therefore, L was set to 50 to increase
the ratio of 1T to reflect its importance. The length of the sliding
window was also set as 50 in this part. With an L of 50, the 5-fold
cross-validation-based average accuracy of EEG and sEMG data
fusion is shown in Figure 11.

The average accuracy of EEG and sEMG data fusion-based
movement detection without eliminating 1T was 84.15± 3.42%
at L of 50 and did not correspond to normal distribution
(p = 0.02). When using EEG and sEMG data fusion to classify
by eliminating 1T, the average accuracy rate was 87.11± 3.34%

and did not correspond to a normal distribution (p = 0.01).
There was a significant difference between whether eliminating
1T in data fusion (t = −7.15 and p = 0.00). It verified the
effectiveness of eliminating this time difference 1T. The average
improvement accuracy was 2.96 ± 1.09%, corresponding to a
normal distribution (p= 0.64).

With an L of 50, the 5-fold cross-validation-based average
accuracy of EEG and sEMG feature fusion is shown in
Figure 12, and the average accuracy without eliminating 1T
was 78.98 ± 11.99% and did not correspond to a normal
distribution (p = 0.00). When eliminating 1T, the average
accuracy was 80.94 ± 11.85% and did not correspond to a
normal distribution (p = 0.00). There also was a significant
difference between whether eliminating 1T in feature fusion
(t = −15.35 and p = 0.00). It also verified the effectiveness of
eliminating this time difference 1T. The average improvement
accuracy was 1.96 ± 0.34%, corresponding to a normal
distribution (p= 0.20).

When the L was equal to 50, although the classification
accuracy was not good enough, eliminating 1T had a significant
impact on the result. It suggested that eliminating the time
difference 1T can improve the EEG and sEMG fusion-based
detection of lower limb movement intention.

The result of L = 50 was not good, and the 5-fold cross-
validation-based average accuracy of whether eliminating 1T
based on EEG and sEMG data fusion with an L of 200 is shown
in Figure 13.

The average accuracy of EEG and sEMG data fusion without
eliminating 1T was 97.21 ± 0.94%, corresponding to a normal
distribution (p= 0.79). When using EEG and sEMG data fusion
to classify by eliminating 1T, the average accuracy rate was
97.96± 0.86%, corresponding to normal distribution (p= 0.58).
With paired t-test on those results, it showed that there was
a significant difference between whether eliminating 1T of
EEG and sEMG to detect the movement. It demonstrated that
eliminating the time difference between EEG and sEMG can
improve accuracy. The average accuracy of improvement was
0.75± 0.26%, corresponding to a normal distribution (p= 0.62).
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FIGURE 11

Accuracy of whether eliminating 1T based on EEG and sEMG data fusion with L of 50.

FIGURE 12

Accuracy of whether eliminating 1T based on EEG and sEMG feature fusion with an L of 50.

The 5-fold cross-validation-based average classification
accuracy of EEG and sEMG feature fusion is shown in Figure 14.
The average accuracy of EEG and sEMG feature fusion without
eliminating 1T was 88.71 ± 3.79%, corresponding to a normal
distribution (p = 0.47). When using EEG and sEMG feature
fusion to classify by eliminating 1T, the average accuracy rate
was 89.32 ± 3.93%, corresponding to a normal distribution
(p = 0.20). The paired t-test on those results showed no
significant difference between the two methods (t = −2.23 and
p = 0.06). It also verified the effectiveness of eliminating this
time difference 1T. The average improvement accuracy was
0.64± 0.76%, corresponding to a normal distribution (p= 0.73).

The eliminating time difference 1T can improve the
accuracy by about 0.7%. Although this increased accuracy was

not considerable, it also proved the impact of the time difference.
With the increase in the window length L, the proportion of 1T
in the data window decreased. So, the accuracy improvement
with an L of 200 was not significant, but there was still a
statistical improvement.

The experimental results showed that the accuracy based
on the data fusion method was higher than the feature fusion-
based method in all offline testing. Feature extraction of EEG
and sEMG signals significantly reduced input data dimension,
and the cost time of single classification was 10∼20 ms. The cost
time of a single classification using data fusion was 70∼80 ms.
However, because there were many channels of EEG and sEMG
signals for classification, it took 200∼250 ms to extract features.
The data fusion method only needed to preprocess the EEG
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FIGURE 13

Performance comparison histogram of whether eliminating 1T based on EEG and sEMG data fusion with an L of 200.

FIGURE 14

Performance comparison histogram of whether eliminating 1T based on EEG and sEMG feature fusion with an L of 200.

and sEMG data, which only took about 100 ms in the offline
experiment. The data fusion method was more appropriate in
performance and cost time than the CNN-LSTM model. This
was the reason for establishing a hybrid CNN-LSTM model,
which can not only make full use of feature extraction of the
CNN but also make full use of the memory and classification
ability of LSTM.

Therefore, EEG and sEMG data fusion-based method
was used for testing in the online experiment. In an online
application, the signal processing algorithm reads the real-time
EEG and sEMG data from the data buffer of the EEG/sEMG
acquisition device. According to our research results, sEMG
after 1T of the current time should be used for processing
and fusion, but this part of sEMG data is not available in the
data buffer at the current time. Solving this problem took the
sEMG signal as the time benchmark. So, the time window of

EEG signals was [t-1T, t+L-1T], and the time window of sEMG
signals was [t, t+L]. The t+L was the end of the data buffer. The
online experimental scene is shown in Figure 15.

In this online experiment, the experimenter recorded the
detection result displayed by the PC and the actual movement
dictated by the subject and judged whether the detection
result was correct based on the actual movement dictated
by the subject. The exoskeleton robot still performed the
predetermined action according to the detection result. The
confusion matrix of online testing from subject 1 is shown in
Figure 16, and the average accuracy was 89.4%. Compared with
the accuracy of the offline experiment, the online accuracy was
significantly reduced. The online experiment was conducted
on several separate days. This phenomenon was caused by the
time variability of EEG and sEMG signals. Furthermore, the
computational cost of processing in online testing was about
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FIGURE 15

Online experimental scene.

220 ms, and a classification result was transmitted from the PC
to the robot controller in a cost time of 45 ms.

The online performance of subjects is shown in Figure 17,
and the average accuracy of EEG and sEMG data feature fusion
was 89.63 ± 1.02%, corresponding to a normal distribution
(p = 0.94). Similarly, the online average accuracy of all subjects
was significantly reduced by about 10% compared with offline
performance. However, the online classification accuracy of all
subjects remained at a high level.

Discussion

The synchronization of
electroencephalogram and surface
electromyogram signals

Electroencephalogram and sEMG signals were the
expression of human movement, and they were related to
each other. These two signals have been widely used in decoding
human movement intention, especially in EEG and sEMG
fusion. It is known that sEMG signals are controlled by EEG
signals, but the generation of those two signals is different. The
characteristics of those two signals should be fully considered
in EEG and sEMG fusion-based decoding. Through theoretical
analysis, the significant difference in EEG and sEMG signals

was reflected in the signal response characteristics, especially
the difference in response time. This time difference will affect
the information consistency of those two signals at the current
time in data fusion. Therefore, obtaining the response time
difference between EEG and sEMG signals is the key to further
improving the performance of fusion decoding. After analyzing
the generation and transmission mechanism of EEG and sEMG
signals, this work concentrated on the signal information
processing of each stage. The response time difference between
EEG and sEMG was estimated based on the physiological
parameters of the subjects, and the result was about 24 ∼ 26ms.
At the same time, the symbolic transfer entropy was used
to calculate this response time difference during lower limb
voluntary movement. The result of the response time difference
was between 24 and 44 ms, and the data center was 35 ms.
Therefore, obtaining the response time difference between
EEG and sEMG signals is the key to further improving the
performance of fusion decoding.

The research on the coupling characteristics of EEG and
sEMG is also called corticomuscular coherence (CMC), proving
their relevance. Ping Xie et al. analyzed the response time
difference between EEG and upper limb sEMG based on the
multiscale transfer entropy, which was about 20 ∼ 25 ms (Ping
et al., 2016). Qinyi Sun et al. calculated the time difference
between EEG and lower limb sEMG based on coherence, and
the average time difference was about 23 ms (Qinyi et al., 2022).
These experiments both controlled the maximum volumetric
contraction (MVC) of the human limb, collecting the EEG and
sEMG signals at the subjects’ stable state. In this work, the
movement task was lower limb voluntary movement, and no
variable control was performed in the experiment. Therefore,
the calculated time difference was more remarkable than others,
but it benefits EEG and sEMG fusion decoding.

Performance of electroencephalogram
and surface electromyogram fusion

The EEG and sEMG fusion-based detection of lower limb
movement intention had a good performance. Starting with the
response time difference between EEG and sEMG, this work
synchronized those two signals to ensure the consistency of
those two signals in fusion. The data fusion and feature of
EEG and sEMG were both employed for testing, and a hybrid
CNN-LSTM was established for the decoding model.

Compared with the performance of EEG- and sEMG-based
movement intention detection, EEG and sEMG fusion-based
detection had a higher classification accuracy. The average
accuracy of sEMG data-based detection was 95.22%, close to the
accuracy of EEG and sEMG fusion-based detection. It indicated
that the sEMG-based method had a massive advantage in lower
limb movement intention decoding. The accuracy of EEG data
fusion was the highest, which was 97.96%. That suggested
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FIGURE 16

Confusion matrix of online testing from subject 1.

FIGURE 17

Online performance of subjects.

that EEG and sEMG fusion is a better method for detecting
lower limb movement.

With different time window length L, the results of
eliminating 1T were significantly different. When the L was
50, the average accuracy of improvement was 2.96 ± 1.09%
in EEG and sEMG data fusion-based decoding and was

0.75 ± 0.26% with an L of 200. These results proved that
this time difference had an influence on the EEG and sEMG
fusion. Qinyi sun et al. also tested the impact of response time
difference with different time window lengths, and the results
of LDA showed that the improvement was from 0.96 to 1.42%
(Qinyi et al., 2022).
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TABLE 2 Performance comparison of previous work.

References Tasks Method details Classifier Accuracy

Rouillard et al., 2015 Two tasks of hand
movements (Left and
right)

1. 10-channel EEG +
2-channel EMG
2. Feature fusion
3. 9 healthy subjects

LDA Left: 99% (online)
Right: 98% (online)

Hooda et al., 2020 Five tasks of foot
movements

1. 12-channel EEG +
2-channel EMG
2. Feature fusion
3. 12 healthy subjects

Bagged decision tree 96.58%

Gordleeva et al., 2020 Standing up, sitting
down, and various types
of walking

1. MI-based 7-channel EEG +
4-channel EMG
2. Feature fusion
3. 8 healthy subjects

LDA 78.13% (online)

Tortora et al., 2020 Gait (Three tasks) 1. 64-channel EEG +
3-channel EMG
2. Bayesian belief feature
fusion
3. 11 healthy subjects

LSTM 91% (only EMG, online)
93% (EEG+EMG, online)

Pritchard et al., 2021 Three tasks of hand
movements

1. 4-channel EEG +
8-channel EMG (Thalmic
Labs Myo)
2. Decision fusion
3. 11 healthy subjects

Random Forest 95.19% (only EMG, offline)
85.56% (only EEG, offline)
99.29% (EEG+EMG, offline)

This work Eight tasks of lower limb
movements

1. 9-channel EEG +
4-channel EMG
2. Data fusion and feature
fusion
3. 8 healthy subjects

CNN-LSTM 95.22% (only EMG, offline)
88.67% (only EEG, offline)
97.21% (EEG+EMG data fusion,
offline)
89.32% (EEG+EMG feature fusion,
offline)
89.63% (EEG+EMG data fusion,
online)

All offline experimental results showed that the accuracy
of data fusion was significantly higher than feature fusion-
based accuracy, and the average accuracy of EEG and sEMG
data fusion was more than 95%. This result proved the
effectiveness of the proposed CNN-LSTM model. Considering
the performance and real-time performance of those two fusion
methods, the EEG and sEMG data fusion method was used for
online testing. The online experimental results showed that the
average accuracy was more than 89.63 ± 1.02%. It has been
reduced by about 10% compared with offline performance.

A performance comparison of previous work is shown in
Table 2. It shows that the proposed method reaches state-
of-the-art performance, which verifies the effectiveness of our
approach. The proposed method and results can achieve a
good classification effect performance for lower limb movement
detection. The proposed method and results of this work
have an advantage in the number of categories. In offline and
online performance, this work realizes a high classification
accuracy. These related studies used the EEG and sEMG feature
fusion-based method to detect movement tasks, and the EEG
and sEMG data fusion-based method was used to recognize
the movement in this work. The advantage of the data fusion
method is that it omits the steps of feature extraction, saves

computational cost, and has significant advantages in the online
application.

The average computational cost of processing and
classification result transmission in online testing was
265 ms, and it took more computational cost than the
offline experiment. Compared with other results, this result was
due to the short data length and simple data processing, which
hid complex processing in the process of CNN-LSTM (Romero-
Laiseca et al., 2020). This experimental result indicated that the
proposed method could detect lower limb voluntary movement
with EEG and sEMG data fusion. But it also reflects that the
generalization ability of the proposed CNN-LSTM model still
needs to be further improved.

The limitations of the study and further
work

Despite the advantages of EEG and sEMG fusion-based
detection, two limitations should be considered. One is that
only eight subjects participated in this experiment. Even
though the experimental group size was not large enough,
the number of subjects was sufficient to demonstrate the
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effectiveness of the proposed method. The average accuracy
of those subjects was more than 97%, which can prove the
effectiveness of the proposed method. Another limitation of
this study is a gender imbalance among subjects, and only one
female subject participated in the experiment. No significant
differences were found between male and female subjects. So,
a large sample size and a balance between male and female
subjects are desired to fully evaluate the robustness of the
proposed method.

Furthermore, it is essential to have asynchronous
detection in human–computer interaction and robot control.
Asynchronous detection or control is the core of making this
technology from laboratory to application. In future work,
another detection method will be added to build a hybrid
detection system for the application.

Conclusion

This work focused on the fusion of EEG and sEMG
to detect lower limb voluntary movement. Analyzing the
generation and transmission mechanism of EEG and sEMG
signals, this work concentrated on the signal information
processing of each stage. The response time difference between
EEG and sEMG was estimated based on human physiological
parameters, the estimated value was about 24 ∼ 26 ms, and
the time difference was calculated using symbolic transfer
entropy. A hybrid CNN-LSTM was established as the decoding
model, which can fully use the advantages of feature extraction
and classification of those two networks. The experiments
also validated the feasibility of the decoding method. The
calculated value of the response time difference between
EEG and sEMG was 25–45 ms, and it was set to a
constant (1T = 35 ms) to simplify the procedure of EEG
and sEMG fusion.

The offline experimental results showed that the CNN-
LSTM eliminating 1T could achieve an average accuracy of
more than 95.00 and 78.00% in data fusion and feature fusion,
respectively. When the L was equal to 50, the improved
accuracy of eliminating 1T was 2.96% in EEG and sEMG data
fusion-based decoding. However, the accuracy of improvement
decreased to 0.75% with an L of 200. The reason is the
proportion of time difference 1T in time window length L. It
is undeniable that eliminating time difference 1T can improve
performance. This offline experiment demonstrated that data
fusion of EEG and sEMG had a better performance by using
CNN-LSTM and eliminating the time difference between those
two signals can effectively improve the accuracy. The online
results demonstrated that the detection accuracy was higher
than 87% for all subjects. But it has been reduced by about 10%
compared with offline performance.

In general, a method to improve the detection of lower limb
voluntary movement intention in the fusion of EEG and sEMG

patterns was proposed, which is significant for the interactive
control of the lower limb exoskeleton robot.
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