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Bone Health: Part 2, Physical Activity
Sarah L. Manske, MSc,* Caeley R. Lorincz, BSc,* and Ron F. Zernicke, PhD, DSc†‡

Mechanical loading is a crucial factor for maintaining skeletal health. Physical activities, exercise, and sports provide a 
wealth and variety of mechanical loads to bones, through muscle forces, ground reaction forces, and other contact or impact 
forces. Weightbearing activities can be effective exercises to enhance bone health—particularly, those that involve jumping 
and impact loads (with greater strain magnitudes, rates, and frequencies). Physical activity appears to be acutely beneficial 
for enhancing bone health in the early pubertal period and in older age, such as in postmenopausal women. In preparing 
this article, PubMed, Web of Science, and relevant edited books (English language) were reviewed from 1961 to present.
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Bone is dynamic, and it is influenced by genetic, intrin-
sic, and environmental factors. In particular, mechani-
cal loading—as generated during physical activity and 

exercise or diminished because of inactivity or weightlessness—
can have a potent effect on bone homeostasis. Physical activ-
ity transmits mechanical loads to the skeleton that are vital for 
maintaining or enhancing bone strength. The skeleton’s sensi-
tivity to mechanical loads depends on multiple factors, includ-
ing age, sex, and menarcheal status.4,6,32 The mode of physical 
activity determines the mechanical environment, and mechani-
cal parameters such as strain rate,33,66 strain magnitude,12,56 and 
strain frequency50,52,55 have been associated with increases in 
bone formation that lead to changes in bone structure and so 
influence bone strength.

The structural and metabolic demands on bone are linked 
to the ability of bone to functionally adapt to its surrounding 
physical environment. Cortical and trabecular tissues are stra-
tegically arranged to accommodate stress demands (ie, force/
area) and strain demands (ie, deformation with respect to orig-
inal shape) imposed on the skeleton by muscular and ground 
reaction forces during weightbearing activities. Microscopically, 
bone cells—and the signaling pathways that control these 
cells—initiate adaptation in response to physical stimuli, pro-
moting a structure that minimizes metabolic demand while 
maximizing bone strength.12 This implies that increases in bone 
strength attributed to mechanical stimuli are not solely due to 
an increase in the amount of bone added but to improvements 
in the quality of the tissue and its architecture.

This review focuses on the role of physical activity on skeletal 
tissue in athletic and physically active populations. We include 
human and animal studies to emphasize mechanical fac-
tors, activities, and sports and how they promote healthy bone 
growth and prevent bone loss.

Here, we review key mechanical parameters associated with 
adaptation of the skeleton to exercise: strain magnitude, strain 
rate, and strain frequency. A majority of the earlier studies in 
this area were conducted using animal models in which one 
mechanical parameter was manipulated to determine the effects 
of physical loading on the skeleton. Loading regimes applied 
in animal models differ from loading patterns experienced by 
humans while exercising; that is, loads are often applied to the 
animals exogenously while the animal is under anesthetic, and 
they may be applied at supraphysiological strain magnitudes. 
In addition, many studies use rodents. Unlike humans, rodents 
do not normally experience secondary remodeling in cortical 
bone2; they experience longitudinal growth for a greater pro-
portion of their lifespan than that of humans.40 Human stud-
ies have corroborated many of the findings from animal studies, 
however, and have applied this knowledge to develop physi-
cal (ie, exercise) interventions to accumulate and maintain bone 
mass. We describe the effects of these mechanical factors and 
exercise on bone health, which is collectively determined by 
bone mass, structure, quality, and rate of turnover. Bone mass, 
or bone mineral content (BMC), is typically assessed in humans 
using dual-energy X-ray absorptiometry. Bone mineral density 
(BMD), when assessed by the same technology, is reported as 



342

Manske et al Jul • Aug 2009

a 2-dimensional quantity termed areal bone mineral density 
(aBMD), and measured in g/cm2. Areal BMD represents a com-
bination of properties, including bone mass and material prop-
erties. Volumetric BMD, measured in g/cm3, is assessed with 
quantitative computed tomography.

STRAIN MAGNITUDE

Peak strain magnitudes measured in diverse vertebrates are 
remarkably similar, ranging in amplitude from 2000 to 3500 µε 
(0.20% to 0.35% strain), suggesting that skeletal morphology 
is adjusted such that functional load-bearing elicits a specific 
and potentially beneficial level of strain to the bone tissue.53,54 
Rubin and Lanyon56 found that in functionally isolated turkey 
ulnae, as strain magnitude was increased from 1000 to 4000 µε, 
change in bone mass increased in a linear fashion (r = 0.83), 
suggesting that bone adaptation was roughly proportional to 
the magnitude of strain induced during loading. Furthermore, 
strain magnitudes below 500 µε were associated with 10% 
to 15% bone loss after 8 weeks, increased remodeling activ-
ity, increased endosteal resorption, and increased intracortical 
porosity.56 Whereas more complex models have been proposed 
to explain bone adaptation—and have been validated to some 
extent5,59—bone is similar to other musculoskeletal tissues 
where reasonable increases in function lead to tissue hypertro-
phy and where decreases in function lead to tissue atrophy.65

For humans, tennis players provide a useful model to under-
stand the effects of mechanical loading on bone, because the 
nondominant (ie, nonplaying) arm can be used as an inter-
nal control. Large side-to-side differences have been reported 
in BMC and aBMD between the dominant and nondomi-
nant humerus and radius of high-caliber tennis players (eg, 
17% greater BMC in the dominant humeral shaft of experi-
enced tennis players).17,24 Similar trends have been reported 
between dominant and nondominant arms of nontennis play-
ers, although the differences were smaller in magnitude. Such 
differences are attributed to site-specific geometric adaptations 
rather than increases in volumetric BMD.18

Similarly, a 3-year longitudinal study showed that female 
gymnasts, compared with normally active controls, had consis-
tently greater total body BMC, from prepubertal to postpuber-
tal stages.48 The large increases in BMC and aBMD observed in 
gymnasts have been attributed to the substantial strain magni-
tudes and rates experienced by these athletes during training.63 
Likewise, nonelite ballet dancers had significantly greater pre-
pubertal BMC than that of controls.43 Similar results have been 
reported for other sports involving large strain magnitudes—
for example, competitive rope skippers had significantly higher 
total body aBMD versus athletes who experienced smaller 
strain magnitudes, such as soccer players.49

Most evidence suggests that repetitive nonweightbearing 
activities have minimal benefit to bone.8,45 Bone has a lazy 
zone in which certain modes of exercise or loading, such as 
cycling or swimming, may not elicit strain effects large enough 
to promote adaptive osteogenesis.8 A recent study compar-
ing the aBMD of runners, swimmers, cyclists, and triathletes 

found that long-distance runners had the greatest aBMD of all 
4 groups and that swimmers, despite extensive training (about 
15 hours per week) in nonweightbearing environments (ie, 
pool), had aBMD no different from that of nonathletic con-
trols in upper body and lower body sites.8 In contrast, a recent 
peripheral quantitative computed tomography study compared 
several types of sports and found that the polar section mod-
ulus (a geometric factor associated with bone strength) of the 
humeral midshaft was similar between swimmers and ath-
letes of impact-loading sports such as volleyball and racquet 
sports.46 This finding suggested that in addition to large ground 
reaction forces produced from weightbearing activities, large 
magnitude forces can be produced via muscular contraction 
that can significantly alter bone geometry and quality.

STRAIN RATE

To discern the effects of strain rate on adaptive osteogenesis, 
Turner and colleagues applied bending loads, equal in peak 
strain magnitude and frequency but varying in strain rate, to 
adult rat tibiae for 2 weeks.66 Bone formation was significantly 
increased in the 2 experimental groups with the highest strain 
rates, and the amount of new bone formation was directly pro-
portional to the rate of strain in the bone tissue.66 LaMothe and 
colleagues33 substantiated those results using skeletally mature 
female mice exposed to cantilever bending, with similar peak 
magnitude and frequency but varied strain rate. After 4 weeks 
of loading, periosteal mineral apposition rate, mineralizing  
surface, and bone formation rate were increased in all 3 strain  
rate groups relative to control tibiae. A monotonic, dose-response  
relation was observed between applied strain rate and perio
steal bone formation rate.

Higher strain rates occurred in jumping activities, rather than 
running activities, despite similar strain magnitudes.22,23 In 
immature male roosters, drop jumps were more effective than 
treadmill locomotion at stimulating bone formation.22,23 This 
finding has been supported by several randomized controlled 
trials of young and elderly humans.11,20,68

Supporting the theory that strain rate, in addition to strain 
magnitude, is an important osteogenic stimulus, power lifting— 
using fast, explosive concentric contraction exercises and 
slow eccentric contraction exercises—was more effective than 
strength training at improving lumbar spine and hip aBMD of 
postmenopausal women.62 However, the participants in this 
study were involved in a 3-year resistance training program 
before commencing the power training; thus, the authors were 
hesitant to generally recommend power loading to the post-
menopausal population.

Jumping interventions have also been employed for chil-
dren.30 A 16-month randomized controlled trial using a school-
based daily jumping program, in addition to 15 minutes of 
daily classroom physical activity, increased the bone strength 
index at the distal tibia of prepubertal boys, as assessed with 
peripheral quantitative computed tomography (775-mg2/mm4 

increase in intervention, compared with 651-mg2/mm4 increase 
for controls).36 This jumping intervention took less than  
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3 minutes of classroom time and used various jumping styles 
(eg, countermovement jumps and side-to-side jumps) to create 
unique strain environments.

More extensive interventions have been effective. For  
example, a 12-minute program, 3 days per week, of diverse 
weightbearing activities implemented into regular physical edu-
cation classes resulted in a 4% to 5% greater increase in lumbar 
spine and femoral neck BMC of prepubertal and early puber-
tal girls, compared with controls after 2 years.38 Similarly, pre-
pubertal boys had 4% greater gains in femoral neck BMC.39 
Another school-based exercise program for prepubertal  
children—requiring 20 minutes per day, 3 days per week for 
7 months—elicited significantly greater gains in lumbar spine 
aBMD (3%) and femoral neck aBMD (5%), compared to con-
trols.13 These results suggested that less-time-consuming exer-
cise interventions can be employed to increase peak aBMD in 
children and perhaps maintain aBMD in adult populations.

STRAIN FREQUENCY

Skeletal adaptation is generally considered to be proportional 
to loading frequency. In cortical bone, Rubin and Lanyon 
found that a mechanical signal induced at 2000 µε and 0.5 Hz 
maintained bone mass with just 4 cycles per day.55 By increas-
ing the loading frequency to 3 Hz, bone mass was maintained 
with 1800 cycles with a peak strain magnitude of 800 µε.50  

Only 200 µε was necessary to maintain cortical bone mass if 
applied at 30 Hz,57 suggesting that the sensitivity of cortical 
bone to mechanical loads increased quickly with increasing 
frequency. Possibly more influential to the skeleton than high-
magnitude events that occur at low frequencies were extremely 
small strains (2 orders of magnitude below peak strains) 
induced at sufficiently high frequencies, such as those gener-
ated from muscle activity. As such, the loss of the 20- to 50-Hz 
spectral content of muscle contraction—subsequent to the loss 
of fast-twitch muscle fibers with sarcopenia—was suggested as 
a potential factor in bone loss with age.21

Gilsanz and colleagues14 investigated the application of 
extremely low-magnitude mechanical signals applied at high 
frequencies (30 Hz), daily for 12 months, on young women 
with low trabecular BMD—specifically, its effect on skeletal 
growth of the axial skeleton (spine) and appendicular skele-
ton (femur), as well as on the musculature of the spine. After 
1 year, as little as 2 minutes per day of this physical interven-
tion incurred significant benefits: 3.9% increase in cancellous 
bone in the spine, 2.9% increase in cortical bone of the femur, 
and 7.2% increase in musculature of the spine.14 Similar results 
were found in 70 postmenopausal women exposed to low-
magnitude, high-frequency signals. After 1 year of treatment, 
the control group lost 3.3% aBMD in the lumbar spine, com-
pared to an attenuated loss of 0.8% in the experimental group 
(2.5% benefit of treatment). In addition, the controls lost 2.9% 
aBMD in the trochanteric region of the femur, whereas the 
experimental group exhibited a gain of 0.4% (3.5% benefit of 
treatment).52

REST INSERTION

Adaptive osteogenesis saturates quickly in response to 
mechanical strain.34 Rubin and Lanyon55 found that osteo-
genesis in avian ulnae did not increase as the number of 
loading cycles per day increased from 36 to 1800 (a 50-fold 
increase). Similarly, Umemura and colleagues67 observed that 
rats trained to jump 100 times per day did not significantly 
increase their hind limb adaptive responses over rats trained 
to jump 40 times per day. Consequently, methods to attenuate 
that saturation response have been investigated. Researchers 
have found the insertion of rest periods within loading 
regimes can circumvent adaptive response saturation. Robling 
et al51 found a significant increase in osteogenesis with the 
division of a 360-cycle loading regime into discrete bouts. 
Increases in osteogenesis were positively correlated with the 
number of discrete bouts introduced. For example, 6 bouts 
of 60 cycles of loading per day were more osteogenic than 2 
bouts of 180 cycles.51

Srinivasan and Gross61 found that the insertion of 10-second  
rest periods between 1-Hz loading cycles transformed an 
otherwise mild low-frequency regime into a potent anabolic 
stimulus for bone growth. LaMothe and Zernicke34 substan-
tiated those results using skeletally mature female mice ran-
domly assigned to a continuous-loading group or a rest inser-
tion group. Both cohorts received mechanical loading signals 
of equal strain magnitude (800 µε) and frequency (1 Hz) for 
100 seconds. The rest-inserted group had loads applied in 
1-second pulses, followed by 10-second periods of rest. After 
3 weeks, bone formation rate relative to control (ie, contra
lateral) tibiae was significantly increased in the continu-
ous-loading group (> 88%) and rest-inserted group (> 126%). 
Loaded tibiae in the rest-inserted group had significantly 
greater mean periosteal bone formation rate relative to loaded 
tibiae in the continuous group (>72%), despite a 10-fold 
decrease in loading cycles.

These results and others support the premise that bone 
fluid flow affects skeletal adaptation. Studies revealed that 
bone pore fluid pressure relaxation occurred at approximately 
1.5 seconds, suggesting that at high frequencies, not enough 
time existed for fluid relaxation to take place between load-
ing cycles.58,60 As such, load-induced fluid flow near osteo-
cytes would be substantially decreased in subsequent cycles 
beyond the first few load cycles. Periods of rest would dimin-
ish that effect, essentially resensitizing bone cells to mechani-
cal stimuli.34

To our knowledge, exercise interventions using defined rest 
periods have not been systematically tested against continu-
ous exercise in humans. However, results from these animal 
studies have been used to design human trials. For example, 
Macdonald and colleagues,36 whose exercise intervention had 
positive effects on bone strength, asked their human partici-
pants to perform 3 bouts of jumping per day, rather than a sin-
gle continuous jumping session, to prevent the desensitization 
that has been reported in animal studies.eg,61
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IMPLICATIONS FOR TYPE OF EXERCISE

The most osteogenic exercise activities appear to be those  
that have high-strain magnitudes and/or high-strain rates, such 
as jumping (for the lower body) and racquet sports (for the 
upper body). Repetitive activities, such as running, may be 
more osteogenic if continuous movement is separated by  
short rest bouts (eg, interval training). Although high- 
frequency, low-magnitude loading appears osteogenic when 
applied through force platforms, it is unknown whether 
any specific exercise activities would mimic this pathway. 
Nevertheless, physical activities incorporating increased  
muscle activity can be positive and more beneficial to bone 
health than inactivity.

EXERCISE AND BONE GAIN ACROSS  
THE LIFESPAN

Not only do different types of exercise have differential  
effects on the skeleton, but the skeleton appears to be more 
responsive to exercise at different times across the lifespan.24 
There is also evidence for sex-specific bone responses to 
exercise.18,31

Adolescence

Adolescence is a critical time for bone development. Boys and 
girls gain approximately 40% of their peak bone mass between 
the ages of 12 and 16 years.19,64 In addition, 35% of total body 
BMC is laid down in the 2 years around peak height veloc-
ity.1 Early puberty may provide a window of opportunity to 
enhance bone mass and strength.37 Kannus and colleagues 
found a significant benefit to BMC in the dominant arms of 
female racquet sport players who began playing before or at 
the age of menarche.24 The researchers have also shown that 
side-to-side differences of female tennis players become signifi-
cant only around the age of menarche.17

A review of exercise interventions aimed at enhancing bone 
health found that the majority of trials showed increased 
improvements in BMC at the conclusion of the study.20 The 
type of exercise used varied among studies, but all were 
weightbearing activities, including aerobics, football, plyomet-
rics, and jumping activities. All studies intervening with early 
pubertal children showed significant improvements in BMC,20 
and the magnitude of the improvements of early pubertal chil-
dren, as extrapolated over a 6-month period, was greater than 
that of prepubertal and pubertal children, ranging from 1.1%38 
to 5.5%,7 depending on the intervention and site measured. 
Children in the study with the greatest effect were not ran-
domly assigned to receive an exercise intervention but had 
been recruited from local sports clubs.7 Unfortunately, there 
are few studies of older children (pubertal or postpubertal), 
and those that have been performed were poorly designed20; 
thus, it is difficult to draw conclusions about the effectiveness 
of exercise interventions in this maturity group.

Premenopausal Women

Far fewer controlled studies have been conducted with pre-
menopausal women as compared with postmenopausal 
women. One of 4 meta-analyses of controlled trials conducting 
exercise interventions with premenopausal women reported a 
significant treatment effect,70 whereas the other meta-analyses 
found no treatment effect.26,29,69 The smaller magnitude effect in 
this age group is likely associated with the attainment of peak 
bone mass around age 20.16

Postmenopausal Women

Because of the high prevalence of osteoporosis in postmeno-
pausal women, most exercise interventions have focused on 
improving aBMD in postmenopausal women. Although there 
has not been an overwhelming number of studies performed, 
several meta-analyses of controlled clinical trials have been 
performed showing varying degrees of exercise effectiveness. 
In general, aerobic, weightbearing, and resistive exercises can 
all have positive effects on lumbar spine aBMD.3,41

Regarding postmenopausal women, a meta-analysis of con-
trolled clinical trials using exercise to enhance aBMD found 
that a trend toward increased aBMD in the femoral neck,27 
although it was not significant. Previous meta-analyses, which 
did not use individual patient data, found that site-specific 
aerobic exercise and progressive resistive training increased 
hip aBMD by approximately 2% in pre- and postmenopausal 
women.25,29 Because these previous analyses included the 
aBMD measurement throughout the proximal femur, these 
analyses suggested that the effects of exercise were likely site-
specific and did not always affect the femoral neck.

Martyn-St James and Carroll42 found that walking exercises 
alone were insufficient to maintain lumbar spine aBMD. Effects 
on femoral neck or total hip aBMD were less consistently 
reported, with varying results.41,42 However, the way that the 
exercises were delivered would have a large influence on the 
bone structural outcomes.

Observational studies have indicated that involvement in  
leisure-time physical activity or walking reduces the risk of 
hip fracture in older women.10,15 However, to our knowledge, 
fracture has not been used as an outcome in any exercise 
interventions.

Men

Comparatively far less research has been conducted on the 
effects of exercise interventions on men. A meta-analysis of 
available randomized controlled trials found positive effects 
of exercise for elderly men but not younger men.28 However, 
many cross-sectional studies have demonstrated that partici-
pation in physical activity has a benefit to bone mass and/or 
aBMD, compared with nonathletic controls.eg,35,44,47 As with pre-
menopausal women, more studies are needed to fully under-
stand the effects of exercise on bone health in men.
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CLINICAL RECOMMENDATIONS 

Many factors interact to maintain bone health, including 
genetic, intrinsic, and environmental factors. Physical activity is 
one of the strongest nonpharmacological means to develop and 
maintain healthy bone mass; moreover, it represents a modifi-
able risk factor to achieving skeletal health. Although the blend 
of mechanical parameters that best enhance bone growth and 
prevent loss has not been identified, the skeleton responds to 
a combination of ground reaction forces from weightbearing 
activities, as well as muscular forces incurred through locomo-
tion and movement, to create a mechanical profile suited to 
augment skeletal growth. The effectiveness of physical activ-
ity in enhancing skeletal health appears to depend on the tim-
ing within the lifespan. Recommendations for physical activity 
to maintain and/or enhance bone health are being made based 
on the current evidence and the SORT guidelines.
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