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Studies on dual-task (DT) procedures in human behavior are important, as they can

offer great insight into the cognitive control system. Accordingly, a discrete-continuous

auditory-tracking DT experiment was conducted in this study with different difficulty

conditions, including a continuous mouse-tracking task concurrent with a discrete

auditory task (AT). Behavioral results of 25 participants were investigated via different

factors, such as response time (RT), errors, and hesitations (pauses in tracking tasks).

In DT, synchronization of different target neuron units was observed in corresponding

brain regions; consequently, a computational model of the stimulus process was

proposed to investigate the DT interference procedure during the stimulus process. This

generally relates to the bottom-up attention system that a neural resource allocates

for various ongoing stimuli. We proposed a black-box model based on interactions

and mesoscopic behaviors of neural units. Model structure was implemented based

on neurological studies and oscillator units to represent neural activities. Each unit

represents one stimulus feature of task concept. Comparing the model’s output behavior

with the experiment results (RT) validates the model. Evaluation of the proposed model

and data on RT implies that the stimulus of the AT affects the DT procedure in

the model output (84% correlation). However, the continuous task is not significantly

changed (26% correlation). The continuous task simulation results were inconsistent

with the experiment, suggesting that continuous interference occurs in higher cognitive

processing regions and is controlled by the top-down attentional system. However, this

is consistent with the psychological research finding of DT interference occurring in

response preparation rather than the stimulus process stage. Furthermore, we developed

the proposedmodel by adding qualitative interpretation and saving the model’s generality

to address various types of discrete continuous DT procedures. The model predicts a

justification method for brain rhythm interactions by synchronization, and manipulating

parameters would produce different behaviors. The decrement of coupling parameter

and strength factor would predict a similar pattern as in Parkinson’s disease and ADHD

disorder, respectively. Also, by increasing the similarity factor among the features, the

model’s result shows automatic task performance in each task.
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INTRODUCTION

Humans can regularly perform several tasks simultaneously in
their daily lives. However, it appears that the human mind
faces difficulties when performing two tasks simultaneously,
occasionally failing to exhibit proper output behaviors (Telford,
1931). Studies have shown that performing dual-task (DT)
involves more limitations compared to performing a single
task (ST; Welford, 1952; McCann and Johnston, 1992; Yogev
et al., 2005; Sigman and Dehaene, 2006; Kiesel et al., 2010;
Klapp et al., 2019). An ST may consist of several stages before
achieving a response, such as stimulus perception, response
selection, and execution; meanwhile, in the DT condition, the
time coordination of several task features would be added to this
complexity (Pashler, 1994; Meyer and Kieras, 1997; Pashler et al.,
2000). The challenging aspect of the DT condition often results in
impairments in one or both tasks, causing longer response times
(RTs) and more errors (Telford, 1931; Welford, 1952; Kahneman,
1973; McCann and Johnston, 1992; Schubert et al., 2008; Ewolds
et al., 2017).

Considering a task as a paradigm consisting of three parts,
namely, input, perceptual process, and output (Kiesel et al., 2010),
various stages of DT performance analysis with different features
can reveal the limitations and potentials of human cognitive and
motor systems (Buss et al., 2014; Ewolds et al., 2017). There
have been behavioral responses to the challenging aspect of the
DT condition in many neurodegenerative diseases. For example,
stride signal has severely deteriorated in patients with Parkinson’s
disease while walking along with the n-back experiment (Yogev
et al., 2005; Bazanova et al., 2018; Möhring et al., 2018). The
variability of stride signals and fall risk were shown to be higher
under DT conditions (Hung et al., 2020; Kahya et al., 2020;
Penko et al., 2020; Mishra and Thrasher, 2021). Also, research
studies on children with attention deficit hyperactivity disorder
(ADHD) indicated more problems in children with ADHDwhile
performing gait tasks concurrent with hearing and memorizing
numbers (Manicolo et al., 2017). Similar results were observed
for children with ADHD under oculomotor and postural DT
conditions (Caldani et al., 2019).

Despite numerous differences between the DT and ST
conditions, the sensory processing stage (i.e., the first stage
of the task process) in DT and ST is considerably similar.
This stage receives information from the associated device or
simply the environment (Manor et al., 2016). Then, the bottom-
up attentional system attempts to connect the sensory clue to
the bold pre-defined response features (e.g., color, movement,
appearance, etc.) (McCann and Johnston, 1992). The sensory
information can be obtained from different sensory sources, such
as visual, verbal, and movement as well as response presenting
output (Kiesel et al., 2010). When a DT condition operates, one
or more sensory inputs may appear simultaneously, possibly
causing cross-talk interference (Kinsbourne, 1981; Swinnen and

Abbreviations: DT, Dual Task; ST, Single Task; RT, Response Time; H, Hesitation;

AT, Auditory Task; PT, Pursuit Tracking; trg, target; ntrg, non-target; S, Speed;

D, Direction; Seq, Sequence; SRT, Simple Response/Reaction time; CRT, Choice

Response/Reaction time; EPT, Easy Pursuit Tracking; HPT, Hard Pursuit Tracking.

Wenderoth, 2004). This typically occurs when both sensory
inputs use same neuronal streams (e.g., two vocal or two visual
inputs that overlap; Pashler, 1994; Meyer and Kieras, 1997;
Schubert, 1999; Schubert et al., 2008; Duncan et al., 2021).
The DT interference examined in this study is defined as two
different streams of sensory inputs that take place at the same
time, requiring simultaneous motor responses. Such a definition
necessitates the DT process to follow the bottleneck theory
(Welford, 1967; McCann and Johnston, 1992).

In brief, the bottleneck theory implies that there is a central
attentional limitation that does not allow the processes of
two tasks to proceed (Pashler, 1994). The reason behind this
limitation has been associated with the limitation of the central
processor andmemory. Therefore, in the DT condition, two tasks
cannot be processed at the same time, which, in turn, creates
bottleneck interference (Welford, 1952; Netick and Klapp, 1994;
Schubert, 2008; Reimer et al., 2015).

There have been several hypotheses as to what causes DT
interference. In this regard, Netick and Klapp (1994) designed
an experiment to analyze DT in different stages (Netick and
Klapp, 1994); they defined three process stages, namely, stimulus
perception, response preparation, and response execution.
Stimulus perception refers to the comprehension of a stimulus
and relating it to a response. Response preparation consists of
the processes before response execution. The response execution
stage refers to a movement that occurs to generate a response
(Netick and Klapp, 1994; Watter and Logan, 2006). Their
experiment consisted of an auditory stimulus-based response and
a pursuit-tracking (PT) task using a joystick displayed on a screen
(continuous task). The continuous task would continuously be
executed when discrete auditory stimuli appear; in other words,
participants must not stop the PT as they simultaneously respond
to the auditory stimulus. The details of this experiment are
elaborated in themethod section. To reach this aim, they used the
analysis results of hesitations that happened during the PT task
in the DT condition with the auditory task (AT). Observations
showed that responding to the AT while performing PT leads to
pauses in PT performance, which freezes the position for a short
period. These pauses were measured and called “hesitations”
(H). H occurrence is somehow associated with RT appearance
in the discrete task; therefore, both RT and H are time-based
representatives of DT interference. Accordingly, different ATs
were implemented to examine the limitations of this new factor
and investigate how H varies at a different level of AT difficulties
(Netick and Klapp, 1994). However, there were some gaps in their
experiment. Importantly, no changes were made in the PT task
throughout the entire experiment. As a follow-up to this research,
the experiment was repeated in this study with added difficulty
in the PT task, based on manipulations made on the target area.
This was done to observe if the interference would be affected
by PT task difficulty level or if it is a variable that depends on
AT difficulty.

According to the results of the analysis by Netick and Klapp
(1994), the interference of discrete-continuous DT condition
occurs in the response preparation stage as opposed to the
stimulus perception and execution stages based on analysis of the
H factor in PT task (Netick and Klapp, 1994). This study would
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repeat their experiment with different difficulty levels added to
the PT task while using a behavioral black box synchronization-
based model to interpret the stimulus perception stage.

Dual-Task Models in Prior Research
Studies
The attention system is divided into bottom-up and top-down
controllers. The role of the bottom-up controller is to analyze
sensory input and stimuli that happen involuntarily. This role
requires the bottom-up attention to be sensitive to the stimuli’s
features. The bottom-up process is fast and involves a low
level of the sensory region activated in the brain, such as the
occipital and temporal lobes for visual and auditory stimuli,
respectively. Contrary to the bottom-up controller, the top-down
controller’s role is to recognize predefined targets and aims as an
attentional system that activates voluntarily; therefore, it involves
delays similar to all voluntary actions. The top-down attention
activates higher levels of cognitive-based brain regions, such as
the prefrontal lobe (Katsuki and Constantinidis, 2013; Ramirez-
Moreno et al., 2013).

Studies show that irrelevant signals and distractors in the
environment may cause false alarms for sensory information
processing, resulting in misleading interpretations, wrong
responses, or delays in behaviors (Gazes et al., 2010; Parmentier
et al., 2011). In this situation, what would happen if there was
a second target that should be processed alongside the first
one? As mentioned earlier, the processing of an additional task
would be postponed by the bottleneck until the first one is
processed. On the other hand, there can be a competition among
bottom-up units to respond to the second stimulus. Notably,
since this competition becomes an attentional demand process,
higher processing resources can be affected by this challenge
among tasks. Certain studies have demonstrated that when DT
is performed alongside relevant regions of two tasks in the brain,
the dorsolateral prefrontal cortex is activated remarkably (Buss
et al., 2014; Heinzel et al., 2017; Kimura et al., 2021; Mishra
and Thrasher, 2021). This phenomenon has been observed in
different types of DT conditions. Therefore, it appears that
this region may have been activated because of competition
between two tasks (Heinzel et al., 2017; Ljubisavljevic et al.,
2019). Consequently, understanding how bottom-up attention
handles competition features is of substantial importance. Since
this competition for highlighting targets is associated with higher
processing regions, such as the parietal and prefrontal lobes, this
can be considered as activities, including synchronization and
desynchronization (Gross et al., 2004; Bridwell and Srinivasan,
2012). Besides, previous studies have shown that the superior
parietal and parieto-occipital regions are activated in pursuit of
tracking tasks (Hill, 2014; Kobler et al., 2018).

The “adaptive resonance theory,” which is applied in
investigations on learning and memory, can be taken into
account to explain synchronization as well (Proulx and Egeth,
2006). Based on this theory, the neural procedure consists of the
attentional demand dilemma, synchronization, and resonance.
Here, dilemma means requiring a type of stability that is flexible
for new information and preserving the old ones (Mermillod

et al., 2013). Consequently, there would be a trade-off between
stability and plasticity in this case. As a result, synchronization
may be a key factor, given its modulatory effect on sensory input
processing. The concept of top-down and bottom-up attention
has been investigated in Baghdadi’s model with respect to the
oscillatory behavior for features of sensory input. This model
represented the relationship between top-down and bottom-
up attention through various Van der Pol oscillators based on
synchronization and desynchronization (Baghdadi et al., 2019).

In this study, a DT black-box model is proposed based
on Baghdadi’s model (Baghdadi et al., 2019) structure. The
proposed model explains several aspects of the behavioral
observation related to bottom-up attention as well as a number of
interpretations regarding top-down attention. It is important that
the model does not take the structure of brains and functionality
into account. Also, the behavioral-acquired data are obtained
and compared to model results to validate the mesoscopic
proposed model. However, it was attempted to consider the
oscillatory nature of the neuronal system and characteristics of
the experiment. The results of the proposed model also reveal
information about the nature of hesitation, which is a type of
error in the continuous task.

In the prediction section, the proposed model’s generality
is investigated by parameter manipulations. The comparison of
neural unit’s activities with ERD and ERP signals is generally
described in qualitative method and focused on differences in
alternations of patterns. Based on previous studies, the ERP signal
unfolds some behavioral components in peaks and latencies
like P300 (Gerson et al., 2005; Kida et al., 2012). Also, the
amplitude of ERP signals can reveal some features of behavioral
results. For example, the longer the time between two stimuli,
the more significant the peak of P300 would happen in the ERP
signal, so the stimuli’s properties would affect the amplitude of
ERP peaks (Mugruza-Vassallo and Potter, 2019). In addition,
the difficulty of visual and auditory stimuli and the required
response’s complexity have been shown to be effective in gamma-
band activity (Gundel and Wilson, 1992; Lachaux et al., 2005;
Mulert et al., 2010).

The information on ERP can be interpreted as behavioral
information, such as latencies associated with response time
and alternations (amplitudes and frequencies), which reveal
deeper information on brain activities (Keil et al., 2001).
Therefore, extracting behavioral features from ERP signals is not
inconsistent with the general idea of the model.

On the other hand, a critical aspect of this model is that
we used the concept of threshold. The threshold can be action
potential, the level of dopamine (Guthrie et al., 2009), or
any measurable physiological activity that triggers a function.
Therefore, using the black-box model, we defined the output
signal as “activity,” which is not precisely the action potential
and is scalable for any known physiological component that can
have effective levels in functionality. Therefore, one contribution
of such a model can be the ERP signal’s components, as
explained earlier. Predictions generally showed effectiveness
in investigating motor problems in certain neurodegenerative
diseases, such as Parkinson’s disease, and attentional deficit
disorders, such as ADHD.
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METHODS

Here, we will explain the details of the experiment and then the
structure of the proposed model.

Experiments
In this section, Details of the experiment are elaborated. As
mentioned earlier, the experiment was based on the study by
Netick and Klapp (1994), and we added two different difficulties
in the PT task by changing the target’s area, and the experiment
was conducted with a mouse rather than a joystick.

Participants
A total of 25 healthy subjects with normal hearing and motor
responses participated in the experiment [10 male and 15 female
subjects with age range of 20–35; Mean (M)= 27, SD= 4.5]. The
experiment was performed under the approval of the Psychology
Department Laboratory of the Martin Luther Halle University of
Germany and under the supervision of Prof. Torsten Schubert.1

The subjects were all healthy and right-handed people; in
addition, they were all Martin Luther students who took part in
the study as volunteers and received either course credits or 8
euros/h as payment for completing the experiment. Importantly,
they were informed about the concept of the experiment andwere
asked to maintain the positions of their hands and chairs still
during the entire experiment period, except for break times. The
experiment consisted of two types of tasks, the auditory task (AT)
and the pursuit-tracking (PT) task, displayed on the screen.

The Auditory Task Experiment

Setup
The AT experiment was entirely performed with the same setup:
The participants listened to different tones constructed by the
programming software MATLAB (ver. 2009b) in four different
sound frequencies played using headphones with a frequency
response of 18–22,000Hz, Dynamic Transducer principle, and
sound pressure level: 110 dB (1 kHz/1V RMS). The experiment
was conducted inside a soundproof room, and the subjects
were asked to select the related answers and implement motor
responses on a computer system (CPU: Intel Core i5-4670,
3.4 GHz). All the participants listened to the same trials with
333ms in randomized order. The fixed features of sound waves
involved an amplitude of 5 (on a scale of 1–10) and a sampling
rate (fs) of 44,100Hz. The stimuli were characterized by pitch,
i.e., recognized by sound frequency. This experiment used two
different pitches, 500 and 2,000Hz, which were regarded as
low-pitched and high-pitched sounds, respectively. Two more
frequencies (200 and 1,600Hz) were used for the training section
to eliminate confounding variables that interfere with stimuli
recognition. The participants were asked to respond to the AT
stimulus by pressing specific buttons on a keyboard (model:
Logitech K120, depth/height: 23.5 +/- 1mm). The participants
were also instructed to place their left-hand fingers on four
keys (A, S, D, and F) and maintain this position during the
whole experiment.

1Prof. Torsten Schubert: Professor of general psychology institute at the Martin

Luther University Halle-Wittenberg.

Design
The two ATs in the task included the simple response time
(SRT) task and the choice response time (CRT) task. Both
ATs were established and conducted similar to the study by
Netick and Klapp (1994). Moreover, there were single ATs
and dual-task conditions, in which AT and PT tasks were
simultaneously performed.

Simple Response Time. The simple response time (SRT) auditory
task is the basic AT defined as the auditory stimulus and response
time with certain features, such as sound frequency of 2,000Hz.
In this research, the participants were asked to respond to the
stimulus as fast as they could by pressing the F key.

Choice Response Time. The choice response time (CRT) task is
described as two different responses to two different stimuli. The
participants were asked to distinguish between the two stimuli.
Based on given instructions, they had to press the F and D
keys as fast as possible when they hear the 2,000 and 500Hz
stimuli, respectively.

Pursuit-Tracking Task Experiment

Setup
The force function2 of PT was established using the same
computer system and software. The PT target was displayed
on a 24-inch LED screen (1,920 × 1,080 @120 FPS3), and a
mouse (optical USB mouse, 800 dpi resolution) was used for
pursuit. The participants were asked to maintain their hands in a
relaxed position and place their right hand on the mouse as they
concentrate on the PT.

Design
As shown in Figure 1, target pursuit in PT was performed
exclusively in the vertical axis, with a 2.6-mm square cursor
(Netick and Klapp, 1994). As intended, the square-shaped target
was 3–4 times larger than the cursor (three times larger in hard
tracking and four times larger in easy tracking). The participants
were instructed to keep the cursor inside the target during the
task. Notably, the PT task was established with the tracking force
function of the sum of different pseudo-sinusoidal frequencies.
This study used different frequencies and amplitudes to offer
an attention-demanding tracking task. Additionally, to avoid
artificial hesitations at the sinusoidal peak, tracking speed was
changed from positive to negative acceleration with regard to the
peak of the sinus to the sum of different constant speeds that
vary through small time intervals. As a result, the pattern was
still sinusoidal in which accelerations showed a pseudo-triangle
function. This change was implemented to prevent confounding
force functions of natural hesitation when calculating human
hesitations in DTs. Alternatively, considerable attempts were
made to present the tracking as a sinusoidal function by
examining different velocities in the pilot study. Accordingly,
constant speed values were decided as 3.62, 4.57, 5.17, 5.5, and
6.72 cm/s, along with amplitudes of 2.1, 2.7, 3, 3.3, and 3.9 cm.

2The path that the target of pursuit-tracking task is moving along that is established

based on a function like sum of sinusoidal function that is called “force function”.
3Frame per second.
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FIGURE 1 | Schematic representation of the pursuit-tracking (PT) task’s environment and force function curve is depicted in the right and left picture, respectively.

(A) Shows the general screen of the PT task (not to scale). The screen background color was decided to be neutral gray to be comforting to the eyes. The schematic

also presents the target (the square, 3 or 4 times larger than the cursor), and the cursor (the smaller square) is also demonstrated. Target movement was limited to the

vertical axis via the pseudo-sinusoidal force function. The participants were asked to maintain the cursor inside the target (Sadeghi Talarposhti et al., 2020). (B) Shows

the pseudo-sinusoidal force function of the PT task with random change in amplitude and dot’s density, which determines the speed of movement. Sharp amplitudes

avoid artificial hesitations in peaks that are caused by the sinusoidal force function.

TABLE 1 | Combination of auditory task (AT) and pursuit-tracking (PT).

Tasks Values 0 1 2

AT PT Single Task

(No AT

included)

SRT (Single

Reaction Time

task)

CRT (Choice

Reaction

Time task)

PT AT Single Task

(No PT

included)

EPT (Easy

Pursuit-Tracking

task)

HPT (Hard

Pursuit-

Tracking

task)

Each AT type and PT difficulty level establish a dual/single-task condition; the conditions

remained the same during the sequence, represented as seq (AT, PT). The first and second

elements represent the AT and PT conditions, respectively.

We employed a random combination of force function speed
and amplitudes, which offered 25 conditions that were nearly
impossible for the participants to predict the following change
in direction; therefore, tracking was an attention-demanding task
throughout the whole experiment.

Experiment Procedure
We assigned three different values to the AT and PT tasks, where
each value represents a different task under its sensory system’s
category. Accompanied by PT, AT generated eight different task
combinations. The experiment procedure consisted of eight 180-
s sequences (each entailing 14 AT trials) with a time interval of
10–15 s. The task combination condition remained fixed during
the sequence with both essential (10 s) and optional break times
between sequences. As shown in Table 1, each sequence was
referred to as seq (AT, PT).

As pointed out earlier, the term “sequence” refers to 180 s of
performing tasks that entail STs and DTs. Sequences with a value
of “0” refer to an ST. The experiment started with two training
parts, both the AT and PT training, and results were not recorded
for further analysis. Considering the values listed in Table 1 and

the seq (AT, PT) format, sequences following training would be
seq (0, 1) and seq (0, 2), which indicate the ST for EPT and HPT,
respectively, as the PT control condition. Seq (1, 0) and seq (2,
0) represent ST for SRT and CRT, respectively, as the AT control
condition. Other sequences with no zero in their entries indicated
a DT condition. In DT conditions, the participants were asked to
simultaneously perform the determined AT and PT. The order of
the entire experiment is explained in Figure 2.

Consequently, the experiment consisted of six sequences,
including the ST and DT tasks. Certain data were excluded, such
as key press location and timing of AT task, cursor position, time
of key press content, and timing in the PT task. Therefore, RT and
error rates for AT tasks are generally calculable. Regarding the PT
task, position information was used to calculate the time during
which the cursor was outside of the target, and we reported
the result as percentage of the associated sequence. This value
pertains to PT error. Another analysis was conducted to calculate
hesitation based on both position and timing. Pauses made by a
participant during PT tasks were calculated; these were defined as
duration when the cursor was fixed at one y position for longer
than 333 ms.

The Proposed Model
It was stated in the previous section that certain parts of
the brain are involved in AT and PT, as well as in DT
conditions. Here, one neural system can be considered to
respond to stimuli (auditory and visual) following their control
policies. The proposed model is based on synchronization
and desynchronization behaviors inspected during responses to
sensory inputs and their interactions to generate a response.
Since the model was considered as a black box, precise
information on activated regions of the brain was not taken
into account. To this end, oscillatory units were employed
to show the synchronization/desynchronization behavior as it
occurs when the time scale adjusts along with oscillatory unit

Frontiers in Computational Neuroscience | www.frontiersin.org 5 March 2022 | Volume 16 | Article 829807

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Sadeghi Talarposhti et al. Neuro-Computational Model of Dual-Task

FIGURE 2 | In the experiment procedure diagram, each circle shows a sequence of trails that continue for 180 s, shown as two-component matrices. Circles with

blue and yellow colors represent ST and DT, respectively. In seq (AT, PT), the first and second components represent the number of AT and PT tasks, respectively.

Notably, there were 10-s breaks between sequences that are shown with blue dashed lines. The sequences started with a training part, i.e., seq (0, 0), as two 150-s

pieces of training that are not recorded. In addition to the PT in the training sequence, different pitch stimuli were initiated. The duration of the entire experiment was

∼33min. ST, single task; DT, dual task; AT, auditory task; PT, pursuit-tracking; seq, sequence; SRT, simple reaction time; CRT, choice reaction time; EPT, easy

pursuit-tracking; HPT, hard pursuit-tracking.

interactions. This adjustment is possible with forced and mutual
synchronizations (Balanov et al., 2009).

Frequency or phase-locking synchronization happens
between unit oscillations. As a result, one or both system
unit dynamics may be suppressed. In other words, if two
system frequencies are the same or there are no phase differences
between them, they are synchronized; however, if the two systems
oscillated with different frequencies or in different phases,
desynchronization would occur. Subsequently, synchronizing
two systems by external imposition of another oscillating system
is possible. Force-frequency/phase synchronization can be
achieved by fixating the coupling weight between two units.
In this study, a Van der Pol oscillator was used to show unit
synchronization or desynchronization. Notably, the Van der Pol
oscillator was selected for various reasons; first, it is a popular
oscillator in biological and neural modeling carried out in
previous studies (Nomura et al., 1993; Hu and Chung, 2013;
Euzébio and Llibre, 2016). Second, as the Van der Pol oscillator
ignores details of neuronal reactions, avoiding complexities in
the model would be quite suitable. Third, the oscillation of Van
der Pol is easily tractable analytically by adjusting its amplitude
and frequency, and simulation results can focus on the main
goal of the model. However, the simplistic aspect of Van der Pol,
which is an advantage in this study, can be replaced by a more
complex oscillator to enhance the generality and capability of the
proposed model.

The Van der pol oscillation equation is presented as a
second-order differential equation [equation (1)]. Equation
(1) represents the second-order Van der Pol oscillator in its
general form:

Ÿ−
(

λ−Y2
)

Ẏ+ p2Y = 0 (1)

where λ is the bifurcation parameter, and its value represents the
oscillation stage; if it was lower than zero (λ ≤ 0), no oscillation
would occur, and if it was higher than zero, oscillation begins

with a frequency and amplitude regulated by p and λ. Y shows
the output variable of oscillation (Baghdadi et al., 2019).

Basic assumptions of this model were employed for the
functional behavioral model similar to the study by Baghdadi
et al. (2019). Structural parameters and variables of the model
were considered to match the behavior and nature of the
neuronal unit, with reasons behind choosing the Van der
Pol oscillator being those mentioned earlier. The model can
represent the oscillatory nature of the activity of neuronal units
using the variable Y. The parameter λ represents the intrinsic
amplitude of the oscillation of the neuronal unit (Baghdadi
et al., 2018), and the parameter p demonstrates neuronal unit
oscillation frequency.

There were two sensory neuronal stream pathways in this
study, one for responding to AT and one for PT. An AT neuronal
system, similar to the study by Baghdadi et al. (2019), was
considered target and non-target, which had a distractor context
that is the same with that in a previous study. In our experiment,
the target in the SRT task is to press the key, and the non-target
is “not press the key;” in the CRT task, the target is to press the
correct key regarding stimuli, and the non-target is not to press
the non-target key. CRT task performance has a more complex
process; however, it was assumed that it would not affect the
number of neuronal units, as the number of choice channels
(Guthrie et al., 2009) relates to the number of choices, which is
the same as that in the SRT task. Consequently, two functional
neuronal unit clusters were taken into account, one for target and
one for non-target choices.

The situation in the PT task is different, because it is not
a discrete task with a specific stimulus time to account for.
Nevertheless, certain specifications can help in finding feature
candidates. Similar to previous studies (Hill, 2014; Kobler et al.,
2018), the size of the target was believed to have been accounted
for as a visual sensory feature; however, given the existence
of only one target size in the whole sequence, it appears that
the effects of easy and hard tracking would be applicable in
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other performance parameters. Therefore, target size was not
taken into account as a separate neuronal unit. In addition,
according to the primary assumption regarding vertical tracking,
target movement speed can be a feature as well (Kobler et al.,
2018; Kieslich et al., 2020). As previously pointed out in the
PT experiment section, the issue pertains to significantly rapid
changes in constant target speeds, rendering them undetectable
by the participants; however, it remains an attention-demanding
feature. Subsequently, the average speed was considered constant
during the experiment and attention-demanding at all times.
Considering this explanation, we assume that the average speed is
a separate DT feature. Another feature appears to be movement
direction. Since a change in directions solely occurs at the positive
and negative peaks of the force function with random amplitudes,
it can also be considered as an attention-demanding feature. As a
result, there were two separate neuronal units for representing
the PT task functional procedure process, which entailed the
average speed (S) and change in direction of the positive and
negative peaks (D).

The bottom-up process is based on sensory inputs and their
responses, which are the auditory stimuli in AT. We considered
one oscillator for each neuronal unit cluster tomodel the bottom-
up system process. As a result, two Van der pol oscillators were
taken into account for the AT process in the bottom-up attention
model. These two oscillators are assumed to be sensitive to
target and non-target features. In other words, when the target
is being decided, the neuronal unit of the related response would
represent the highest activity, and the other unit would be in
its prior activity. As this study was conducted as DT, it would
be practical to consider the interaction between the two PT
and AT tasks. The model’s structure is depicted in Figure 3A.
According to the statistical results, fewer errors happened during
higher performances of both tasks in the majority of sequences.
Therefore, a connection coefficient exists between AT and PT
performances that couple them together. By drawing inspiration
from a previous study (Baghdadi et al., 2019) where another
oscillator was regarded as the top-down controller system applied
to the feature oscillation, only certain relevant coupling phrases
were added to the oscillators to enable PT-AT interaction, and
a new term was added to state the differences between the
sequences. The coupling term is as shown in (2).

BAT
(

0.5+
√
aAT .π .t/2

)

(A
trg

sin
(

ωtrg

)

+ Antrg sin
(

ωntrg

)

)

+ BPT
(

0.5+
√
aPT .π .t/2

)

(A
S
sin (ωS)+ AD sin (ωD)) (2)

where BAT and BPT are the coefficients of AT and PT and
are considered as “coupling parameters”, and Atrg , Antrg , As,
and AD represent the coefficients of the target, non-target, S,
and D, respectively. Values of the coupling parameters change
between 0 and 2, in which 0 is referred to as two independent
units, and two determines two fully interacted units (0 < A <

2). A = 1 is considered a normal interaction condition of the
coupling parameter between two units. These values have been
chosen hypothetically and do not have physiological references.
The source of the features is applied by sinusoidal reference that
ωtrg, ωntrg, ωS, and ωD are defined as the target, non-target, S,

and D’s unit’s frequency, respectively. It has been understood
from previous studies that when all tasks are performed
simultaneously, they do not use the processor’s full capacity
(Schubert, 2008; Schubert and Strobach, 2018). According to the
bottleneck theory, the second task is delayed until the first task is
done (Netick and Klapp, 1994; Pashler et al., 2000; Schubert and
Szameitat, 2003). Since all relationships in the brain happen based
on neurotransmitters, it is reasonable to assume that this role is
executed by one neurotransmitter and, is therefore, limited (Lo
and Wang, 2006). Since the activity of the units are dependence
to each other, to make the brain resources optimum, we used
the additional term to control the activity order of the feature
unit’s so all the units would not activate at their highest capacity
constantly. Each task’s process is like a substrate that tries to
absorb energy and attention, and the term (0.5 +

√
a.π .t/2)

seems to be proper, because it can make oscillatory resources
with on and off conditions and fast switching between the two
tasks. This oscillatory alternative term will be addressed as “on-
off term.” The on-off term controls the unit’s activity and, in
some aspects, can be considered as attentional control policy
(Cliff, 1973; Thissen et al., 2014; Baghdadi et al., 2019). The on-
off term could describe different performances that the units
are involved in and characterize the tasks’ nature, since each
task requires a specific amount of attention (Castellanos et al.,
2005; Ghorbanian et al., 2013; Katsuki and Constantinidis, 2013).
The aATand aPT parameters are related to the variability of
the performance, since variability is counted as the attentional
diversion indicator in various studies (Voss et al., 2004; Thissen
et al., 2014; Loveys et al., 2021). Therefore, the value of
aATand aPT is estimated based on the scale of the variance of
each task in different sequences. The coefficients aAT and aPT
represent the on-off term parameters (0.5 +

√
a.π .t/2) of AT

and PT tasks, respectively. A sample of the alternative change

for units’ activity based on the term
(

0.5+
√
a.π .t
2

)

is shown

in Figure 3B.
According to Figure 3, the activity of the units is assumed to

be in a one and zero condition based on the level of attention
required for the tasks, i.e., for the most attentional-demanding
task, the on-off term would be mostly in the one and rarely in the
zero condition. Therefore, saturation on-off diagrams would be
defined simply as the constant one value. So, the non-attentional
demand task would be looking more like zero all the time.
Based on simulations, we are convinced that the on-off term
(0.5 +

√
a.π .t/2) would always be in the “on” condition when

the difference between the “on” and the “off” is <0.05 (a < 0.05).
The 0.05 interval acquires a = 20, so we consider the saturation
value for the a parameter in the on-off term to be 20 (0 < a <

20), and the variability of the tasks in different sequences would
be scaled to be between the minimum and the maximum of
these limits.

The equations represent the two neuronal units
that are sensitive to target and non-target, respectively,
Equations 3, 4:

ŸATtrg −
(

λATtrg−Y2
ATtrg

)

ẎATtrg+p2ATtrgYATtrg

= Atrg sin
(

ωtrg

)

+Antrg sin
(

ωntrg

)

+Coupling (3)
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FIGURE 3 | Schematic of the proposed model’s structure and illustration of alternative change in unit’s activity based on the on-off term are represented in pictures

(A,B), respectively. The parameter a varies for each task in each sequence based on the variability of the task’s output and provides a representation of different

activities in each task of each sequence.

ŸATntrg −
(

λATntrg−Y2
ATntrg

)

ẎATntrg+p2ATntrgYATntrg

= Atrg sin
(

ωtrg

)

+Antrg sin
(

ωntrg

)

+Coupling, (4)

where the subscripts ofAtrgandAntrg represent the auditory task’s
target and non-target, respectively. Equations 3, 4, respectively,
respond to the target and non-target, which are the options of
the task’s choice. Stimulation features affect the sensory system
by controlling oscillation system frequency as a characteristic of
neuronal unit activity (Gabbiani and Metzner, 1999; Koepsell
et al., 2010; Watrous and Ekstrom, 2014; Goris et al., 2015). For
instance, the sound sample’s pitch can be a feature encoded into

different activities of neuronal units. Moreover, previous studies
have shown that the amplitude of neural activity can also be

affected (Röhl and Uppenkamp, 2012). As a result, the target and

non-target characteristics represented by different frequencies of

oscillatory waves ofωtrg andωntrg were considered here. Atrg and

Antrg represent the amplitude and the strength of the target and

the non-target, respectively. If the frequency ω was close enough

to the oscillator’s frequency (p), then t stimulus wave could force

the Van der Pol oscillator to synchronize. In this study, the

effect of the top-down controller was not investigated, as the

purpose involved examining the bottom-up effect on different
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features of DT’s components. The terms of resources (right part)
of both equations are similar, because we try to consider the units’
interaction together. Therefore, the PT and AT units would be
involved in all the features via synchronization occurrence, and
all the units need to interact to make this happen.

Regarding the PT task, two neural units were assumed to be
representatives of the S and D features. Subsequently, these two
oscillators were assumed to be sensitive to speed and direction
change, as in Equations 5, 6, respectively.

ŸPTS −
(

λPTS − Y2
PTS

)

ẎPTS + p2PTSYPTS

= ASsin (ωS)+ ADsin (ωD) + Coupling (5)

ŸPTD −
(

λPTD−Y2
PTD

)

ẎPTD+ p2PTD
YPTD

= ASsin (ωS)+ ADsin (ωD)+ Coupling, (6)

where the subscripts of PTS and PTD are the neural units of S
and direction in the PT task, respectively. The direction feature
responds to any change in direction on the vertical axis (positive
and negative). Each equation is sensitive to its feature changes.
Therefore, if the frequency of the oscillator (p) was close to each
frequency of the features’ frequency (ωS or ωD), that unit would
involve maximum oscillation with input sensory wave.

According to neuropsychological studies, the activity of a unit
can be detectable in the next layer when it reaches a specific
threshold (Kurten, 1988; Izhikevich, 2001; Lo and Wang, 2006).
This threshold appears to be changeable depending on the nature
of the brain’s pathway or the accuracy-speed trade-off of the task’s
performance (Lo and Wang, 2006). In theory, the threshold of
activating a unit is assumed to be 1, since this threshold can have
relationships with dopamine arising from active units (Guthrie
et al., 2009), but for simulation’s sake, with a slight change, we
assumed the threshold to be 1.1 to get more acceptable results.

Sampling time of the entire modeling simulation was set
to 0.01 s, and the initial condition was determined as Ytrg (0)
= Yntrg (0) = YS (0) = YT (0) = 0.5, since we assumed all
neural units to act at a medium level before any task starts
(Ghorbanian et al., 2015; Baghdadi et al., 2018). In addition,
the bifurcation parameter λ was set to 0.2. Since oscillations
require the value of λ to be greater than 0, it is considered as
the oscillation amplitude. The λ’s value should also be lower
than 1, because the stimuli (for both AT and PT) are coded
to be a simple wave with certain frequency and amplitude.
If λ was greater than 1, there would be no frequencies,
and the model would become more problematically complex.
Any change in initial values may also lead to uncontrollable
conditions, as they depend on the previous state of the
units. Uncontrollable condition refers to any condition that
makes oscillator decay zero and not oscillate or cause chaos.
Therefore, the arbitrary parameters should be fixated within
an acceptable range to be associated with the definition of
force synchronization and be significant for task indices. In
AT, considering the study by Baghdadi et al. (2019), the target
and non-target were represented by ωtrg = 6Hz and ωntrg =
10Hz, respectively.

Additionally, prior research shows that PT contains
information about the target and direction coded in a low-
frequency EEG signal while activating the parietal area (Kobler
et al., 2018; Hung et al., 2020). Therefore, we considered
two lower frequency values for the features of PT as ωS =
3.5Hz and ωD = 4.5, and were used regarding the S and D
features in PT. These frequencies were decided to be closer
together (3.5 and 4.5Hz) in comparison to target and non-
target features (6 and 10Hz), because the S and D features
are both desired and depend on each other. In other words,
when one cannot change direction in the proper moment,
it probably would also lose the speed pursuit. Besides, we
choose the target frequency closer to the S and D feature
instead of the non-target (4.5 < 6 << 10), since acceptable
performance is mainly defined under the three desired features,
S, D, and target, and based on results of the simulation, more
similarity in frequencies makes stronger bound between the
units and produces higher activity in output. Notably, every
AT stimulus occurs at pseudo-random time intervals in the
range of 10–15 s; however, for the continuous task (PT), there
was no interval time or very small intervals for features that
entail attention-demanding factors. Consequently, it appears
that their frequency should be higher than the input wave of
the AT features. Alternatively, there is a significant difference
between target and non-target in AT, as the target neural
unit is desired. In turn, this would cause a discriminative
difference between their activity frequencies. In PT, however,
both features are desired together, i.e., attention should be spent
on both speed and direction. Consequently, their frequencies
should not vary considerably. As mentioned in the simulations
section, the higher similarity between S and D features leads
to more effective activities in both neural units. Nonetheless,
increasing signal strengths can work both ways for target and
non-target units.

Results
In this section, the results of the experiment and the model’s
simulations are presented.

Pre-Statistical Analysis
We interpreted the results by conducting repeated measured
ANOVA tests on RT and H. However, before conducting the
ANOVA, general assumptions for the analysis of variance were
checked. These general assumptions included the continuous
variables, normal distribution, and homogeneity of variance
for the dependent variables (Ghasemi and Zahediasl, 2012).
Independence of the variables is assumed, because each
participant is experimenting thoroughly independent from the
others. Since the subject’s number is 25, we can assume that the
variables are normally distributed; however, the Kolmogorov-
Smirnov test in SPSS confirms that the assumption of normality is
not rejected (p> 0.05). The homogeneity of Levene’s equality test
of errors in variance shows that the errors in variance are equal
across the groups (p > 0.1). Also, the result of Mauchly’s test on
RT and H shows that the assumption of sphericity is not violated
(p > 0.05).
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TABLE 2 | Mean response times, error rates, and hesitation rates in the experimental conditions.

Overall statistics

Seq (AT, PT) Time-based features Error-based features

RTs:

Time of response made -

stimulus time

(ms)

H rates

(% ratio to sequence= hesitated

duration /

sequence duration*100)

AT error rates

(% Wrong answers= Correct

answers / whole stimuli *100)

PT error rates

(% Cursor out of target=

duration of cursor inside the

target/ whole sequence*100)

SRT CRT EPT HPT SRT CRT EPT HPT

Single tasks

Seq (1,0) 330 (± 7) 0.29 (± 0.01)

Seq (2,0) 550 (± 11) 8.86 (± 0.08)

Seq (0,1) 4.16 (± 0.36) 0.09 (± 0.06)

Seq (0,2) 4.5 (± 0.38) 0.21 (± 0.011)

Dual tasks

Seq (1,1) 329 (± 7) 5.08 (± 0.34) 0.57 (± 0.03) 0.1 (± 0.07)

Seq (1,2) 357 (± 8) 5.24 (± 0.41) 0.29 (± 0.01) 0.26 (± 0.14)

Seq (2,1) 593 (± 12) 9.43 (± 0.08) 0.05 (± 0.04)

Seq (2,2) 629 (± 13) 7.7 (± 0.52) 4.86 (± 0.06) 0.24 (± 0.16)

Seq, sequence; RT, response time; H, hesitation; ms, milliseconds.

For more information on the sequences, see Table 1. The values in brackets represent mean standard errors.

Experiment Results
Mean RTs and error rates of AT k and hesitation, and the error
rate of PT are presented in Table 2.

The results of a repeated measures ANOVA on ATs (SRT vs.
CRT) and PTs (EPT vs. HPT) under both ST and DT conditions
showed that the participants had more AT errors in the CRT task
than in in SRT [F(1,24) = 45.23, p < 0.001, n2p = 0.65], and more

AT errors in HPT than in EPT tasks [F(2,19) = 4.73, p= 0.013, n2p
= 0.17]. Given the interaction between AT and PT, the AT error
rate between SRT and CRT was larger in HPT compared to the
EPT task [F(2,19) = 3.93, p = 0.026, n2p = 0.14]. RTs associated
with correct responses were larger for CRT than for the SRT task
[F(1,24) = 232.8, p < 0.001, n2p = 0.91] and larger for HPT than

for EPT [F(2,48) = 12.75, p < 0.001, n2p = 0.35]. Similarly, the

interaction between AT and PT [F(2,48) = 6.34, p = 0.004, n2p
= 0.21] confirmed a stronger RT difference between HPT and
EPT tasks in the CRT task than in SRT. Regardless of the AT
error rate, the PT error rate exclusively showed relevance of the
results to PTs. In other words, the participants made more PT
errors in HPT than in EPT [F(2,46) = 58.96, p < 0.001, n2p =
0.72]. According to the analysis, the H factor demonstrates larger
pauses in CRT than in SRT in DTs [F(2,44) = 9.08, p < 0.001,
n2p = 0.29], and no significant differences were found regarding
H factor results in HPT and EPT [F(1,22) = 3.18, p = 0.088,
n2p = 0.13]. An interaction of AT and PT tasks showed a greater
difference in H rates between CRT and SRT in HPT than in EPT.

These results support the general idea that HPT is more
challenging than EPT in both ATs (CRT and SRT). It also
indicates a speed-accuracy trade-off between the CRT and HPT
tasks, both of which are recognized as hard tasks in their
respective categories. In addition, the PT errors and H findings
indicate that raising the level of difficulty is more effective in AT
performance than PT performance.

Simulation Results
In this section, the simulation results are presented as the push
of the activities of each neural unit defined earlier. According
to Baghdadi et al. (2018), push of the signal is the pattern
of peaks of sinusoidal activity that a signal alters, which is
reasonable, since it shows the highest level of activity change.
Here, push of the activity signals was employed without losing
the content of the neuronal unit’s activity to offer more clarity
and easier traceability. It should be noted that the simulations
are considered for one stimulus, and that the units of ω are
considered to be in Hz, but for the sake of brevity, the unit
is not mentioned in captions of the Figures. Besides, the x-
axis represents time, but we did not mention the unit of time
as in Baghdadi et al. (2018) since we are investigating the
behavior in the output, and comparisons aremade on the output’s
pattern with recorded behavioral data (second) and EEG signals
(millisecond) that include different time units. This would not
lose any content, since our purpose is to investigate change in the
behavior of the signals.

The results are obtained for one general stimulus of a discrete
task but not a specified event of PT. Therefore, parameters based
on these feature frequencies apply the determined frequency of
speed and direction change for PT, and, the general results are
not obtained from specific speed or direction change during
a sequence.

Since we would compare the simulation results with other
research studies, including the EEG signals in the prediction
section, it is acceptable to use the RMS4 value as a measure
of comparing simulated results together. The RMS value of the
signal is known as quadratic means, which would consider the
alternation effects of sinusoidal curves. Regarding that, in the

4Root mean square.
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FIGURE 4 | Activity of AT’s target and non-target units for seqs (1, 0) and (2, 0) is shown in (A,B), respectively, and the RMS value and variability of the signals are

shown in the table. The sequences are considered under ST conditions and do not include the activity of PT units (AS = AD = 0). The tasks parameters are estimated

from the variability of observations (RT and H) and errors: aAT = 0.25; aPT = 0 for seq (1, 0) and aAT = 0.95; aPT = 0 for seq (2, 0). The blue curve represents the

activity of the neuronal unit oscillator sensitive to the AT’s target (Equation 3). The yellow curve represents the activity of the neuronal unit oscillator sensitive to the AT’s

non-target (Equation 4). The green dashed curve demonstrates the stimuli’s onset and duration. The black dashed line shows the effective threshold that activates the

related unit [λtrg = λntrg = 0.2; Atrg = Antrg = 1; BPT = 0; BAT = 1; Ytrg (0) = Yntrg(0) = 0.5; ptrg = 6; pntrg = 10; ωtrg = 6; ωntrg = 10].

proposed model, more alternations can be interpreted as higher
activity of the related unit. A higher RMS value can be interpreted
as the reaction of parameters to the unit’s activity (Altahat et al.,
2012). To reach this aim, we decomposed the output signal into
3–8 (depending on the complexity of signal) sine harmonies, and
then we calculated the RMS value. Due to brevity, we only report
the result of the RMS value and the variability of signals.

Simulation Results of Experiment Sequences
The results of task sequences are presented here. Each sequence
contains all common parameters along with aAT and aPT , the
parameter in the on-off term that separates each task in every
sequence. Here, the result of AT under ST conditions (SRT and
CRT) is shown in Figure 4.

Figure 4 represents the simulation of target and non-target
ATs. The RMS value of the target and non-target features of
seqs (1, 0) and (2, 0) shows that the target feature in the CRT
single task is activated more than the other units and the non-
target feature in the SRT single task. The unit of non-target
is more activated than the target unit to avoid an unwanted

response. This may be because of the simplicity of the target of
the SRT task. However, the variability of both conditions shows
more alternations in target units than the non-target. There is
a stimuli period during which the oscillator would be activated,
similar to the real AT. Following the period of stimuli, the signal
would decrease to baseline level. According to Figure 4, the
push activity of both AT’s target and non-target units passed
the activation threshold after a period of desynchronization.
To avoid complications, we decided not to consider the top-
down controller in this study; subsequently, the non-target
can be activated in bottom-up system simulation. Next, the
results of PT features under ST conditions are represented in
Figure 5.

Figure 5 shows that PT feature-related neuronal units are
activated following a desynchronization period and remain
activated during the procedure as expected. Notably, the
difference between the RMS values of each unit describes
the similarity between the features. In the EPT in seq (0,
1), the RMS value represents lower activity than in seq (0,
2). The HPT task requires more attention to perform, which
leads to higher activity of the neural units. It is expected to
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FIGURE 5 | Activity of the PT’s speed and direction units for seqs (0, 1) and (0, 2) is shown in (A,B), respectively, and the RMS value and variability of the signals are

shown in the table. The sequences are considered to be under ST conditions and do not include the activity of AT units (Atrg = Antrg = 0). The tasks’ parameters are

estimated from the variability of observations (RT and H) and errors: aAT = 0; aPT = 6.4 for seq (0, 1) and aAT = 0; aPT = 7.57 for seq (0, 2). The red curve represents

the activity of the neural unit oscillator sensitive to the PT’s speed (Equation 5). The purple curve represents the activity of the neuronal unit oscillator sensitive to the

PT’s direction (Equation 6). The black dashed line shows the effective threshold that activates the related unit [λS = λD = 0.2; AS = AD = 1; BPT = 1; BAT = 0; YS (0)

= YD (0) = 0.5; pS = 3.5; pD = 4.5; ωS = 3.5; ωD = 4.5].

have higher values and alternations in seq (0, 2). Also, the
variability of both features in the two conditions shows a slight
change in the patterns. As mentioned earlier, the frequency of
non-target was assumed to have least similarities with target,
S, and D frequencies. In addition, the frequencies of S and
D are assumed to be more similar, as both are the desired
activating units. Under DT conditions, this similarity gains more
importance, as illustrated in Figures 6, 7. The result of AT and
PT under DT conditions (SRT-EPT and SRT-HPT) is shown in
Figure 6.

According to Figure 6, the desired features of the target, S, and
D, which are acceptable in terms of attention demand and energy
resource, are superior to the effectiveness threshold. The non-
target has also reached the threshold in BU. The RMS value shows
that under difficult PT conditions, the amplitude of the target
and speed feature units increases more (0.09 and 0.43 increments,
respectively). However, the variability of signals shifts from speed
to direction in the HPT condition with a slight change in target
and non-target features. The coupling parameter added to the
equations is responsible for the increase in activity. This is
because the coupling parameter generates a strong interaction
between the similar frequencies of the features, given the fact

that no top-down attentional control was applied to the system.
Subsequently, as the frequencies of the desired features were
intended to be closer together, this can be considered a reliable
result. The result of AT and PT under DT conditions (CRT-EPT
and CRT-HPT) is shown in Figure 7.

According to Figure 7, unit synchronization occurs withmore
complications in CRT than in SRT (Figure 6), and this leads to
more delay in passing the threshold, which explains the increased
RT in CRT compared with SRT. The RMS value shows more
activity of neural units in speed and direction features in the HPT
condition of the CRT task. Also, the variability of signals shows
more variations of target and direction features. The RT of the
model activity according to the Figures was calculated as the time
that the push of activity reaches the threshold, and the difference
of target hit time with stimulus time is considered as the RT of
AT, as in (Equation 7).

RT = TTarget pass the threshold − Tstimulus. (7)

It should be noted that this is different from the RT usually
defined in the area of behavioral research, which is the difference
between response time and the end of stimulus duration and
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FIGURE 6 | Activity of AT and PT’s target, non-target, speed, and direction units for seqs (1, 1) and (1, 2) is shown in (A,B), respectively, and the RMS value and

variability of the signals are shown in the table. The sequences are considered under DT conditions (Atrg = Antrg = AS = AD = 1). The tasks’ parameters are estimated

from the variability of observations (RT and H) and errors: aAT = 0.38; aPT = 6 for seq (1, 1) and aAT = 0.66; aPT = 8.63 for seq (1, 2). The blue and yellow curves

represent the activity of the neuronal unit oscillator sensitive to the AT’s target (Equation 3) and non-target (Equation 4), respectively. The red and purple curves

represent the activity of the neuronal unit oscillator sensitive to the PT’s speed (Equation 5) and direction (Equation 6). The green dashed curve shows the AT stimuli’s

onset and duration. The arrows show the time of making a response in AT. The black dashed line demonstrates the effective threshold that activates the related unit

[λtrg = λntrg = λS = λD = 0.2; Atrg = Antrg = AS = AD = 1; BPT = BAT = 1; Ytrg (0) = Yntrg (0) = YS (0) = YD (0) = 0.5; pntrg = 10; ptrg = 6; pD = 4.5; pS = 3.5; ωntrg =
10; ωtrg = 6; ωD = 4.5; ωS = 3.5].

response time. However, here, hitting time is not quite the
response representing time, but it is the time that starts the
comprehension of a stimulus, and then the response-making
process begins. Therefore, the RT here means the time for the
stimulus to be understood and the related unit to start activating.
Moreover, the RT of simulation had an 84% correlation with the
RT of behavioral observations. We also calculated the variability
of the push of S and D featured activity to see if it is related to
hesitation. We suppose that this variability has a high correlation
with hesitation in the data recorded. In that case, we can conclude
that hesitation happens in the stimulus-based response, and that
the correlation was 0.26. Hence, the stimulus comprehension of
bottom-up attention has low dependency on the hesitation that
appears in the experiment.

In all conditions of ST and DT, the non-target feature
responses in AT happened earlier than the target responses,
which is consistent with observations and other studies. Fast
responses (decreased RTs) made after stimulus appearance
included more incorrect responses than slow rated responses
(increased RTs). This is because there is a balance or trade-off
exists between making the fastest response or correct responses
which is possible to make in human performance (Pashler, 1994;
Kiesel et al., 2010).

Simulation of Predicted Results
In this section, EEG studies related to the experiment will be
investigated by different manipulations of models’ parameters:
the coupling parameters, strength factor, and similarity factor.
Here, we assumed that the on-off parameter has the same value
(a = 1.8) for all sequences to make more generality in the
simulation. The purpose of this section is to investigate the
generality of themodel for any discrete-continuous DT condition
under the prediction label. We will explain the simulated results
in qualitative methods, and the comparisons between related
studies and our simulated outputs and the interpretation of
alternations in the patterns. We suggest that this will reveal more
strength and validity of the model.

The Coupling Parameters
Figure 8 shows the effectiveness of the coupling parameters.

As can be seen in Figure 8A, increasing the coupling
parameter (BAT = BPT = 2) of the sensory inputs as a
result of synchronization would increase the activity of the
desired features. Here, the undesired feature also increases
gradually, which can easily be controlled using the top-down
attentional control system (Baghdadi et al., 2019). Decreasing
coupling parameters led to decrement in activity results that
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FIGURE 7 | Activity of AT and PT’s target, non-target, speed, and direction units for seqs (2, 1) and (2, 2) is shown in (A,B), respectively, and the RMS value and

variability of the signals are shown in the table. The sequences are considered under DT conditions (Atrg = Antrg = AS = AD = 1). The tasks’ parameters are estimated

from the variability of observations (RT and H) and errors: aAT = 1.36; aPT = 11.5 for seq (2, 1) and aAT = 1.22; aPT = 14.31 for seq (2, 2). The blue and yellow curves

represent the activity of the neuronal unit oscillator sensitive to the AT’s target (Equation 3) and non-target (Equation 4). The red and purple curves represent the

activity of the neuronal unit oscillator sensitive to the PT’s speed (Equation 5) and direction (Equation 6). The green dashed curve shows the AT stimuli’s onset and

duration. The arrows show the time of making a response in AT. The black dashed line demonstrates the effective threshold that activates the related unit [λtrg = λntrg

= λS = λD = 0.2; Atrg = Antrg = AS = AD = 1; BPT = BAT = 1; Ytrg (0) = Yntrg (0) = YS (0) = YD (0) = 0.5; pntrg = 10; ptrg = 6; pD = 4.5; pS = 3.5; ωntrg = 10; ωtrg = 6;

ωD = 4.5; ωS = 3.5].

are expected in abnormal situations of a neural interaction
(Figure 8). Figures 8C,D represent the average ERPs5 of the
central and posterior areas of the brain during a workingmemory
task in the presence of target and non-target (distractor) stimuli
(Myers et al., 2014). The pattern of the ERP in the posterior
area (Figure 8D) has more resemblance to the low coupling
condition in the results (Figure 8B). On the other hand, when
the coupling increases (Figure 8C), the pattern that matches the
central ERP appears (Figure 8A). Also, the RMS value shows
that the increasing coupling parameter activates the S feature
more than the other features (5.2 difference), which has the most
frequent alternation and is a more attentional demand feature,
but lack of coupling factor leads to ineffective reactions of all solo
units. The variability also shows more alternations in increased
coupling parameters.

As will be explained in the discussion section, the effect of
lowering the coupling parameter, as shown in Figure 8, seems

5Event-related potential (ERP) is the signal extracted from brain activity in

response to a specific sensory or motor-cognitive event (Myers et al., 2014).

to be the interaction results in neurodegenerative diseases like
Parkinson’s disease (Flowers and Robertson, 1995; Talarposhti
et al., 2013). On the other hand, as shown in Figure 8, decreasing
coupling parameters decreases the activity of desired features
because of decreasing synchronization of neuronal units. In this
situation, the desired features can barely cross the threshold. This
situation can be referred to as low neuronal unit activity, which
may result from various impairments. Abnormal interaction of
neuronal units of the frontal area in Parkinson’s disease is shown
to cause abnormality in the frontal area’s functionality (Rowe
et al., 2002). Since the coupling parameter is the interaction
parameter among the units, any decrement is expected to cause
dysfunctionality in the output behavior, which is associated with
neurodegenerative diseases like Parkinson’s disease (Mishra and
Thrasher, 2021).

Strength Factors
In addition to the coupling parameters, there are other
controlling factors; one of them is strength of the input signal that
holds the related sensory input in the signal response stage. The
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FIGURE 8 | Activity of AT and PT’s target, non-target, speed, and direction units, considered under DT conditions (Atrg = Antrg = AS = AD = 1) with increased

coupling parameter of both tasks (BPT = BAT = 2) is shown in (A) and decreased coupling parameter of both tasks (BPT = BAT = 0.3) is shown in (B). The RMS value

and variability of the signals are shown in the table. (C,D) show broadband responses to task-relevant (green signal) and irrelevant (purple signal) stimulus onsets

[adapted from Myers et al. (2014)]. The blue and yellow curves represent the activity of the neuronal unit oscillator sensitive to the AT’s target (Equation 3) and

non-target (Equation 4). The red and purple curves represent the activity of the neuronal unit oscillator sensitive to the PT’s speed (Equation 5) and direction (Equation

6). The green dashed curve shows the AT stimuli’s onset and duration. Finally, the black dashed line shows the effective threshold that activates the related unit [λtrg =
λntrg = λS = λD = 0.2; Atrg = Antrg = AS = AD = 1; BPT = BAT = 2 in the left and BPT = BAT = 0.6 in right pictures; Ytrg (0) = Yntrg (0) = YS (0) = YD (0) = 0.5; pntrg =
10; ptrg = 6; pD = 4.5; pS = 3.5; ωntrg = 10; ωtrg = 6; ωD = 4.5; ωS = 3.5].

strength of AT and PT features is examined in Figure 9 separately
and increases the strength factors.

As shown in Figure 9A, raising the strength of AT’s features
by increasing the oscillator amplitude increases the activation
of related feature units compared to the past. Moreover,
since the coupling factor is not zero, the features of PTs are
increased slightly. Figure 9B shows how the PT’s activity results
would change by increasing the strength of the associated
oscillator. As expected, the increase in PT’s oscillator amplitude

increased the activity of the features’ neuronal units. Similar
to the results obtained from increasing the AT amplitude,
raising the PT’s feature oscillator amplitude would affect the
activities of the AT target and non-target units and enhance
them as well. However, since the target frequency is closer to
the PT’s feature unit’s frequencies, it affects the target’s units
more than those of the non-target. Figure 9C demonstrates
that increasing the strength of four oscillators increases the
activity of all units; accordingly, considering the coupling
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FIGURE 9 | Activity of AT and PT’s target, non-target, S, and D units considered under DT conditions with increased strength of AT features is shown in (A) (Atrg =
Antrg = 2; AS = AD = 1); increased strength of PT features is shown in (B) (Atrg = Antrg = 1; AS = AD = 2), and increased strength of both AT and PT features is shown

in (C) (Atrg = Antrg = AS = AD = 2). The RMS value and variability of the signals are shown in table. (D) shows the ERP of the parieto-occipital region during correct

trials for control and ADHD groups [adapted from Cowley et al. (2020)]. The blue and yellow curves represent the activity of the neuronal unit oscillator sensitive to AT’s

target (Equation 3) and non-target (Equation 4). The red and purple curves represent the activity of the neuronal unit oscillator sensitive to the PT’s speed (Equation 5)

and direction (Equation 6). The green dashed curve shows the AT stimuli’s onset and duration. The black dashed line demonstrates the effective threshold that

activates the related unit [λtrg = λntrg = λS = λD = 0.2; BPT = BAT = 1; Ytrg (0) = Yntrg (0) = YS (0) = YD (0) = 0.5; pntrg = 10; ptrg = 6; pD = 4.5; pS = 3.5; ωntrg = 10;

ωtrg = 6; ωD = 4.5; ωS = 3.5].

parameter, such increase is mostly due to synchronization.
Figure 9D shows the ERP of the parieto-occipital area in correct
response trials on healthy patients and patients with ADHD.
The synchronization decreases in under ADHD condition,

as what happens in the lower strength factor of simulation
results. Also, the RMS value shows higher increment in
features’ amplitude in both strengths, increasing compared to
increasing AT and PT’s strength separately. Also, the variability
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of target and direction is higher when the strength of features
is increased.

Similarity Factors
Another effective factor is similarity that can generate
higher effectiveness in the activity results, as shown
in Figure 10.

According to Figure 10A, closing the frequency of non-
target to target in AT leads the non-target unit to qualitatively
behave similarly to the target unit as a result of facilitated
synchronization. If the target unit frequency was indicated close
to that of the non-target, then both features would be treated
as non-targets, as expected. Therefore, if the features could
oscillate together to a greater extent, their activation would
become easier, with a lower attentional level. Nonetheless, if
one of them is not desired, this similarity can cause difficulty
for higher control levels to reduce it (Baghdadi et al., 2019).
The RMS value shows more activity amplitude in the increased
similarity of PT’s features than those of AT. That may be
because of the lower frequency of PT’s features. Also, the
variability of increased similarity of PT features is higher
than AT’s. Figure 10B shows how PT features can oscillate
together with more similarities in their neuronal units. If
the oscillators of PT’s features were indicated to be closer
together, then their synchronization would become easier, and
the activity of the units would become enhanced. In this
case, the top-down controller would have an easier task to
perform, as this similarity can help the system to treat both
units as one. Figure 10C shows the ERP of the central area
of the brain during the mouse tracking task (Hill, 2014). The
more the frequencies get close in the simulation, the more
correspondences would appear to the ERP signal. Therefore,
this indicates that the D and S features’ more synchronization
together would make a more actual brain activity signal of
tracking and make the task closer to becoming automatic
(Pashler, 1994; Annac et al., 2019).

DISCUSSION

A behavioral black box bottom-up attentionmodel is proposed in
this study. The model is based on neuronal oscillatory behavior,
shown as the neuronal unit’s activity presented by the Van der Pol
oscillator. Additionally, effects of different levels of difficulties of
AT and PT output under ST and DT conditions were examined
considering the features of behavior outputs, such as RTs, AT
errors, hesitation, and PT errors.

According to the statistical results, AT performance is more
affected when the PT becomes harder (HPT) than the PT
performance itself. The participants’ attention is more involved
in generating the correct output in the AT response as opposed
to the PT task performance. Even when the PT becomes more
difficult, the performance continues at an acceptable output
feature rate. This can also be seen in the model’s results. It should
be noted that the related feature parameters are assumed to
characterize the selective or movement feature and interact with
the coupling of cortical neural units. The interaction is assumed
to be directly effective, and the delays in intermediate interactions

between cortical and subcortical areas have not been applied.
This is consistent with previous studies that have assumed a
bidirectional architecture for a bottom-up model in selective
auditory attention (Trenado et al., 2009).

Figure 4 shows a situation in which no PT is running, and
there is only one AT. Figure 5 demonstrates PT performance
with a consistent behavior compared to the single AT. This
behavior indicated that the bottom-up system synchronizes in
the beginning of the continuous task, so the eyes could explore
salient areas of the screen where there are potentially relevant
features (Lungarella and Sporns, 2005). When both activate,
as shown in Figure 6, the peak of activity rises higher, and
the non-target becomes lower through the contribution of the
coupling parameter. This was expected mathematically because
of the higher difference of non-target frequency compared to
the frequency of the other three features. Nevertheless, the
interpretation of this behavior explains the component of the
attention system. Since the entire model was designed for
involuntary attention allocation, it appears that the resonance of
the features is a contributional factor to the bottom-up filtering
of salient stimuli (Knudsen, 2007). This may suggest that if
there are more features with close frequencies, then bottom-
up attention mechanisms could boost the manipulation of the
initial task’s knowledge (Ognibene et al., 2010). As shown in
Figure 6, the bottom-up attentional system with matching initial
information prevented the non-target from exploring using the
units. A comparison of RMS values in Figure 4 shows that the
performance reacted more to the S and target features (1.58
and 1.76, respectively) when the DT condition began. However,
PT performance becomes synchronized after a short period of
desynchronization. The consistency of movement features in PTs
is evident in all Figures. Any change in amplitude and similarity
results in slight asynchrony and subsequent fast synchronization.
One interpretation associates this behavior with the non-zero use
of attentional source. In other words, AT is receiving attention
only during the application of a stimulus, while PT receives
attention in all sequences.

The results of event-related synchronization (ERS) and
event-related desynchronization (ERD) were used to compare
the simulation findings against the brain activity unit. The
alternation of brain activity under ST and DT conditions and the
simulation results of the bottom-up attention system are found
to be significantly similar to each other, as depicted in Figure 11.
Notably, certain irregularities on the results that distinguish
them from the real recorded brain activity can be associated
with the fact that the proposed model does not include top-
down attention and would not completely match the signals of
brain activity.

The effect of the coupling parameter is illustrated in Figure 8.
Under DT conditions with regular coupling between features and
non-target frequency, intended to be considerably different from
the target features, the bottom-up attention is capable of reducing
non-target activity. However, when the coupling parameter was
increased, the non-target activity exceeded the threshold. The
reduction in non-target activity may have resulted from the role
of the top-down attention system (Baghdadi et al., 2019). It
has been found in previous studies that despite the top-down

Frontiers in Computational Neuroscience | www.frontiersin.org 17 March 2022 | Volume 16 | Article 829807

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Sadeghi Talarposhti et al. Neuro-Computational Model of Dual-Task

FIGURE 10 | Activity of AT and PT’s target, non-target, speed, and direction units considered under DT conditions (Atrg = Antrg = AS = AD = 1) with increasing of the

similarity between AT task’s features shown in (A) (pntrg = 8; ωntrg = 8; ptrg = 7; ωtrg =7) and increased similarity between PT’s features shown in (B) (pD = 4.1; ωD =
4.1; pS = 3.6; ωS = 3.6). The RMS value and variability of the signals are shown in the table. (C) Shows the ERP of mouse tracking [adapted from Hill (2014)]. The

blue and yellow curves represent the activity of the neuronal unit oscillator sensitive to AT’s target (Equation 3) and non-target (Equation 4). The red and purple curves

represent the activity of the neuronal unit oscillator sensitive to the PT’s speed (Equation 5) and direction (Equation 6). The green dashed curve demonstrates the AT

stimuli’s onset and duration. The black dashed line shows the effective threshold that activates the related unit [λtrg = λntrg = λS = λD = 0.2; Atrg = Antrg = AS = AD =
1; BPT = BAT = 1; Ytrg (0) = Yntrg (0) = YS (0) =YD (0) = 0.5].

attention that is deteriorating at all levels of a disease, the bottom-
up attentional system shows deficits only at the severe level of
neurodegenerative diseases like Parkinson’s’ disease, because the
retinal effect occurs in the high severity of the disease (Flowers
and Robertson, 1995).

Effects of increasing the strength of input signals are
shown in Figure 9. When AT strength increases, PT features

demonstrate enhanced activity, which is also the case for
AT activity, illustrated in Figure 9. Increasing the strength
of both AT and PT features is similar to boosting the
bottom-up attentional system to synchronize eatures. The
difference among the strength results is very similar to the
performance of brain activity of children with ADHD, as
explained in the Results section (Manicolo et al., 2017).
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FIGURE 11 | Consistency of simulation results with event-related synchronization (ERS) and event-related desynchronization (ERD) signals. (A,C) Show the simulation

results of PT and AT features under DT conditions, respectively. The ERD and ERS signals have appeared in (B,D), a multi-task condition with different difficulties

[adapted from Fournier et al. (1999)]; and Da discrete DT condition [adapted from Isreal et al. (1980)].

As shown in Figure 9, the pattern of oscillation and RMS
value shows that the most reaction of activity is when the
strength of both AT and PT increases, so with lack of signal
strength, synchronization effectiveness lowers like the lower
synchronization that leads to lower activity and attentional
deficits in ADHD. Therefore, it can be concluded that enhancing
the attention paid to one task generates higher awareness of the
other task.

The increased similarity between the target and non-target
shown in Figure 10 indicates the importance of initial decision
regarding the frequency of units. In case a predefined task
is non-existent with no targets and no feature coupling, then
the similarity approaches zero, which can be observed in
performance behavior. In addition, Figure 10 shows how a
target unit would behave in the absence of similarity with PT

feature coupling. According to the RMS value, more similarity
leads to increase in activity of most attentional-demanding
units, and this ends to consume the optimum energy for
the whole procedure. If two PT features resonated with more
similar frequencies, then the task would be performed with
absolutely no difficulty. This may suggest the influence of
skills and learning of PT. As depicted in Figure 10, increased
similarity increases synchronization, and better synchronization
leads to better performance, which is the purpose of learning,
and more skills. It suggests that automatic performances are
expected to have behaviors like close similarities of units (Yogev
et al., 2005; Ulrich et al., 2015; Annac et al., 2019). The
more units oscillate together, the more unity happens in task
features and becomes an automatic task that is performed
and learned.
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The stability of the PT behavior under all conditions was
not found to be consistent with the results of hesitation rate or
even with the existence of hesitation in the results. This possibly
suggests that the occurrence of hesitation can be associated with
higher levels of attention, such as top-down attention control
system, competitive selective attention, and the working memory
system, which are voluntary features of the attention system.
Given this explanation, hesitation cannot result from stimulus
perception stage interference, a finding consistent with those of
previous studies (Netick and Klapp, 1994; Klapp et al., 2019). It is
also not the result of a startling AT occurrence (Netick and Klapp,
1994), considering the absence of a considerable activation drop
observed in PT following the onset of the stimulus.

In the proposed model, synchronization was performed to
create different behavior conditions. To this aim, parameters,
such as strength, similarity, and coupling between features, were
manipulated to create different unit behaviors.

CONCLUSION

This study used a behavioral black-box model to investigate
a discrete-continuous DT procedure. The possible effect of
synchronization and desynchronization of features is shown
to improve task performances. The model results were based
on stimuli featuring neuronal units; the target and non-target
features were defined for AT while the speed and direction
features were used for continuous PT. The model’s results
showed that the RT of AT has a great correlation (84%) with
the recorded RTs, while the PT’s results showed no appearance
of the hesitation factor (26% correlation with hesitation’s
variability). Along with comparing the results with figures from
observations of ERP- and ERD-related studies, we can conclude
that some aspects of RT’s causes can appear in the stimulus
detection and comprehension sections (occipital and parietal
areas of the brain); however, no aspect of hesitation cause
was observed to be situated in these areas. It was shown that
the hesitation interference in PT could not have been due to
stimulus perception, and that it pertains to higher cognitive
attentional levels.

The model also demonstrated some activation pattern
predictions in the results based on manipulation of the coupling
parameters, strength, and similarity factors of the continuous
task, and discrete task features. It was revealed that incrementing
the coupling and strength factor can enhance bottom-up
attentional system execution. An increment in similarity factor
would lead to the performance of a more automatic task.
However, there exist certain gaps in the procedure that indicate
the importance of the role of the top-down attentional system.
One of these gaps, as mentioned earlier, is the occurrence of

hesitation, which does not appear in our proposed model’s
results. Adding the top-down model to the structure could solve
this matter based on hesitation. Another gap would be the lack
of ERD signals of the participants to compare with the model
results. However, we compared the results of our simulations
with other research reports, such as Fournier et al. (1999), Hill
(2014), and Cowley et al. (2020). The model predicts the behavior
of severe level of Parkinson’s disease in decrement of coupling
parameter representing the connectivity factor between units
that represent the pattern of the severe level of parkinsonian in
patients, and reduction of the strength factor would bring out
the pattern that is representative of the behavior of ADHD. To
improve the model, we suggest adding top-down attention as
another unit to oscillate and couple with features; subsequently,
the entire attentional system would be available to proceed.
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