Check for updates

# scientific data

#### DATA DESCRIPTOR

## **OPEN** A high-resolution Orbitrap Mass spectral library for trace volatile compounds in fruit wines

Yaran Liu<sup>1,4</sup>, Na Li<sup>1,4</sup>, Xiaoyao Li<sup>2,4</sup>, Wenchao Qian<sup>1</sup>, Jiani Liu<sup>1</sup>, Qingyu Su<sup>1</sup>, Yixin Chen<sup>1</sup>, Bolin Zhang<sup>1</sup>, Baoqing Zhu<sup>1</sup> & Jinxin Chenq<sup>3</sup>

The overall aroma is an important factor of the sensory quality of fruit wines, which attributed to hundreds of volatile compounds. However, the qualitative determination of trace volatile compounds is considered to be very challenging work. GC-Orbitrap-MS with high resolution and high sensitivity provided more possibilities for the determination of volatile compounds, but without the highresolution mass spectral library. For accuracy of qualitative determination in fruit wines by GC-Orbitrap-MS, a high-resolution mass spectral library, including 76 volatile compounds, was developed in this study. Not only the HRMS spectrum but also the exact ion fragment, relative abundance, retention indices (RI), CAS number, chemical structure diagram, aroma description and aroma threshold (ortho-nasally) were provided and were shown in a database website (Food Flavor Laboratory, http:// foodflavorlab.cn/). HRMS library was used to successfully identify the volatile compounds mentioned above in 16 fruit wines (5 blueberry wines, 6 goji berry wines and 5 hawthorn wines). The library was developed as an important basis for further understanding of trace volatile compounds in fruit wines.

#### **Background & Summary**

Among the hundreds of volatile compounds detected in fruit wines, only a small percentage of them could play key roles in the contribution of characteristic aroma<sup>1</sup>. Currently, the gas chromatograph-mass spectrometer has been widely used for the identification and quantification of aroma compounds. The quadrupole mass spectrometer (qMS) could be the most common mass spectrometer for analysis<sup>2-6</sup>. However, some trace analytes were difficult to be detected using qMS due to their low resolution and sensitivity<sup>4,7-12</sup>. These trace compounds needed to be identified by other detectors. The aldehydes and ketones could be detected in Syrah wines<sup>13</sup> and model wine solution by flame ionization detector (FID)<sup>14,15</sup>. The flame photometry (FPD) was used to identify sulfur compounds in Cabernet Sauvignon wines<sup>16,17</sup>. Besides, sulphur chemiluminescence (SCD)<sup>13,18,19</sup> and pulsed flame photometry (PFPD)<sup>20,21</sup> also could be used for the analysis of sulfur compounds in grape wines. The pyrazines could be identified in wines<sup>22</sup> and oak woods<sup>23</sup> by nitrogen-phosphorous detection (NPD). The triple-quadrupole mass spectrometer (QqQ-MS) in selected-reaction-monitoring (SRM) could identify lactones<sup>24</sup>, terpenes<sup>25</sup> and sulfur compounds<sup>26</sup> in wines. Thus, multiple methods had to be used for the detection of various aroma compounds<sup>14,16</sup>. Meanwhile, the use of multiple instruments is time-consuming and costly. And it is also difficult to have so many instruments in a same laboratory. And it is an urgent challenge to identify trace aroma volatile compounds mentioned above simply and effectively in fruit wines.

In recent years, high-resolution mass spectrometry, such as quadrupole-time-of-flight-MS (Q-TOF), could improve the accuracy of identification<sup>22,23,27</sup>. Since Orbitrap-MS technology invented by Alexander Makarov was first commercially available in 2005, this new technique of high resolution and high sensitivity mass spectrometry has been shown great advantages for qualitative and quantitative analysis of compounds<sup>28-30</sup>, and therefore many studies have been focused on metabolomics using liquid chromatography coupling<sup>31-34</sup>. After GC was coupled with Orbitrap-MS in 2015, its resolution could reach 60,000 (219 m/z, FWHM), mass accuracy could reach 1 ppm, and sensitivity could reach femtogram level, which provided more possibilities to advance the

<sup>1</sup>Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China. <sup>2</sup>School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing, 100876, China. <sup>3</sup>China People's Police University, Hebei, 065000, China. <sup>4</sup>These authors contributed equally: Yaran Liu, Na Li, Xiaoyao Li. 🗠 e-mail: zhubaoging@bjfu.edu.cn; chengjx063@163.com

| SeriesJandboxJandboxJandboxJandboxJandboxEhylamethylamethyl1263-2429308AdadanCH,0103130130Ehylamethylamethyl1264-2429308AdamaCH,0130130130Mathylangeta1264-0429308MaklanCH,0130130130Ehylphenanat1264-0729308MaklanCH,0130300Ehylphenanat1264-0729308MaklanCH,0130300Ehylphenanat1114-1529038MaklanCH,0130300Ehylphenanat1114-1529038MaklanCH,0130200Ehylphenanat1114-1529038MaklanCH,0130200Ehylphenanat1114-1529038MaklanCH,0130200Ehylphenanat1114-1529038MaklanCH,0130200Ehylphenanat1114-1529038MaklanCH,0130200Ehylphenanat1114-1529038MaklanCH,0130200Ehylphenanat1114-1529138MaklanCH,0130200Ehylphenanat1124-1529138MaklanCH,0130200Ehylphenanat1124-1529138MaklanCH,0130200Ehylphenanat1124-1529138MaklanCH,0130200Ehylphenanat1124-1529138MaklanCH,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Compounds                          | CAS No.    | Purity            | Manufacturer               | Formula                                       | RI   | Content <sup>h</sup> /µg.L <sup>-1</sup> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------|-------------------|----------------------------|-----------------------------------------------|------|------------------------------------------|
| BindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBindBi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ester                              |            |                   |                            |                                               |      |                                          |
| Birly 1-ouclybanoate192.9-71>98.0%AdaráC, H, Q,<br>107010701030Edhy 1-ouclyate108.4-1.5>99.0%AdaráC, H, Q,<br>113011301300Borny 1-actia102.3-22-2>99.0%MachinC, H, Q,<br>11401201300Ehyl heranoate106.3-0>99.0%MachinC, H, Q,<br>113013003000Ehyl heranoate106.3-0>99.0%MachinC, H, Q,<br>113013003000Ehyl heranoate112.0-1>99.0%MachinC, H, Q,<br>113013003000Ehyl actar107.2-0>99.0%MachinC, H, Q,<br>113013003000Ehyl actar101.2-0-1>99.0%MachinC, H, Q,<br>113013003000Ehyl actar101.2-0-1>99.0%MachinC, H, Q,<br>113013103000Ehyl actar101.3-3>99.0%MachinC, H, Q,<br>115013101370Ehyl actar103.3-3>99.0%MachinC, H, Q,<br>115013101300Ehyl actar103.3-3>99.0%MachinC, H, Q,<br>110013001300Ehyl actar103.3-6>99.0%MachinC, H, Q,<br>110013001300Ehyl actar103.3-6>99.0%MachinC, H, Q,<br>110013001300Ehyl actar103.3-6>99.0%MachinC, H, Q,<br>110013001300Ehyl actar103.3-6>99.0%MachinC, H, Q,<br>11001300 <td< td=""><td>Ethyl butanoate</td><td>105-54-4</td><td>≥99.5%</td><td>Aladdin<sup>b</sup></td><td>C<sub>6</sub>H<sub>12</sub>O<sub>2</sub></td><td>1065</td><td>10020</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ethyl butanoate                    | 105-54-4   | ≥99.5%            | Aladdin <sup>b</sup>       | C <sub>6</sub> H <sub>12</sub> O <sub>2</sub> | 1065 | 10020                                    |
| Birly isocalarate08.45.4>90.96.AdamaséC, H, Q,<br>10031090Isoamy acctate123-92-2>99.95.6MacklinC, H, Q,<br>1203120Birly Incenante126-60>90.06.AladinC, H, Q,<br>13031300Birly Incenante126-60>99.06.MacklinC, H, Q,<br>13041300Birly Incenante127-61≥90.06.MacklinC, H, Q,<br>13041300Birly Incenante112-61≥90.06.MacklinC, H, Q,<br>13041300Birly Incenante112-15≥90.06.MacklinC, H, Q,<br>13021301Birly Incenante106-32-1>90.06.MacklinC, H, Q,<br>15111517Birly Incenante103-84.7≥90.06.MacklinC, H, Q,<br>1522152310180Birly Incenante103-84.7≥90.56.MacklinC, H, Q,<br>1572152010180Birly Incenante103-84.≥90.56.MacklinC, H, Q,<br>1575150210180Birly Incenante102-35.≥90.56.MacklinC, H, Q,<br>1575150210180Birly Inscrinte103-36.6>98.06.AladinC, H, Q,<br>170513021020Birly Inscrinte103-35.6>98.06.AladinC, H, Q,<br>17013021020Birly Inscrinte103-36.6>98.06.AladinC, H, Q,<br>17013021020Birly Inscrinte103-36.6>98.06.MacklinC, H, Q,<br>17013021302Birly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ethyl 2-methylbutanoate            | 7452-79-1  | >98.0%            | Aladdin                    | $C_7H_{14}O_2$                                | 1077 | 5030                                     |
| isoamplaceate123-22>99.9%MachinC, H_u,O,113911390Methylogroate106-70.7>99.0%MachinC, H_u,O,12.030.00Ehyl heanoate103-30-9>99.0%MachinC, H_u,O,13.030.00Ehyl paraoate107-64-3>99.0%MachinC, H_u,O,13.030.00Ehyl actate97.64-3>99.0%MachinC, H_u,O,13.030.00Ehyl actotatoate111-15>99.0%MachinC, H_u,O,13.020.00Ehyl actotanoate110-15.2>99.0%MachinC, H_u,O,13.020.00Ehyl actotanoate103-32-1>99.0%MachinC, H_u,O,15.015.0Ehyl actotanoate103-83-1>99.0%MachinC, H_u,O,15.22080Ehyl actotanoate103-83-1>99.0%MachinC, H_u,O,15.210.80Ehyl actotanoate103-83-1>99.0%MachinC, H_u,O,15.210.80Ehyl actotanoate103-85-1>90.0%MachinC, H_u,O,15.010.00Ehyl actotanoate103-36-1>90.0%MachinC, H_u,O,15.010.00Ehyl actotanoate103-36-1>90.0%MachinC, H_u,O,15.010.00Ehyl actotanoate103-36-1>90.0%MachinC, H_u,O,15.010.00Ehyl actotanoate103-36-1>90.0%MachinC, H_u,O,15.010.00Ehyl actotanoate118-15-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ethyl isovalerate                  | 108-64-5   | >99.0%            | Adamas <sup>c</sup>        | $C_7H_{14}O_2$                                | 1093 | 11050                                    |
| Methylepanethyle1924667>990%MaklainC,H,O,<br>C,HO,12001300Ehylhepanoate106-3092995%MachinC,H,O,<br>C,H,O,1300050Ehylhatain076-412995%MachinC,H,O,<br>C,H,O,1300050Ehylactain111-15290%MachinC,H,O,<br>C,H,O,1301200Ehylactain101-152290%MachinC,H,O,<br>C,H,O,1512200Ehylachylathyl106-32-1290.%MachinC,H,O,<br>C,H,O,152200Ehylachylathylath103-84-7290.%MachinC,H,O,<br>C,H,O,152200Ehylachydray-4methylpentanon103-84-7290.%MachinC,H,O,<br>C,H,O,152200Ehylachydray-4methylpentanot103-83-<br>202-5290.%MachinC,H,O,<br>C,H,O,150200Ehylachydray-4methylpentanot110-38-<br>202-5290.%MachinC,H,O,<br>C,H,O,150200Ehylachydray-4methylpentanot110-37-<br>202-5290.%MachinC,H,O,<br>C,H,O,150200Ehylachydray-4methylpentanot110-37-<br>202-5290.%MachinC,H,O,<br>C,H,O,150200Ehylachydray-4methylpentanot110-37-<br>202-5290.%MachinC,H,O,<br>C,H,O,150200Ehylachydray-4methylpentanot110-37-<br>202-5290.%MachinC,H,O,<br>C,H,O,150200Ehylachylpentanot110-37-<br>202-5290.%MachinC,H,O,<br>C,H,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Isoamyl acetate                    | 123-92-2   | ≥99.5%            | Macklin                    | $C_7H_{14}O_2$                                | 1139 | 11390                                    |
| BindDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionDependencionD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Methyl caproate                    | 106-70-7   | >99.0%            | Macklin                    | $C_7H_{14}O_2$                                | 1200 | 5120                                     |
| Bhylpspanote106.09.0299.0%MacklinC,H,,O,130050810Bhyllactate97.64.3290.0%MacklinC,H,,O,13043280Methyloctanoate111-11.5290.0%ManassC,H,O,13142000Ehyl aprytate160.32.1>90.0%MacklinC,H,O,1111570Ehyl aprytatoxybutyrate530.54.1.4>90.0%MacklinC,H,O,112.11570Ehyl aprytatoxybutyrate103.49.7.7298.0%MacklinC,H,O,152.210300Ehyl apratox110.38.3>90.0%MacklinC,H,O,152.20300Ehyl saccinter110.37.6.8>90.0%MacklinC,H,O,167.22080Ehyl saccinter110.75.3>99.5%MacklinC,H,O,167.21600Ehyl barcencetate110.75.3>99.5%MacklinC,H,O,170.21600Ehyl barcencetate110.75.3>99.5%MacklinC,H,O,170.21600Ehyl barcencetate101.97.3>99.5%MacklinC,H,O,180.21020Ehyl barcencetate101.97.3>99.5%MacklinC,H,O,180.21020Ehyl saccinter103.64>98.0%MadinC,H,O,180.21020Ehyl saccinter137.64>98.0%MadinC,H,O,180.21020Corburg672.92.5>98.0%MadinC,H,O,180.21020Ehyl saccinter672.92.5>98.0%Macklin <t< td=""><td>Ethyl hexanoate</td><td>123-66-0</td><td>&gt;99.0%</td><td>Aladdin</td><td><math>C_8H_{16}O_2</math></td><td>1243</td><td>30300</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ethyl hexanoate                    | 123-66-0   | >99.0%            | Aladdin                    | $C_8H_{16}O_2$                                | 1243 | 30300                                    |
| Bitylactaré97-64-3>290,%IacklinC,H,G,O1309810Ilepti actate112-01-0>290,%AdamasC,H,G,O134200Ehyl-aprylate106-32-1>990,%IadalinC,H,G,O1311570Ehyl-aprylate160-32-1>990,%MacklinC,H,G,O1511570Ehyl-aprylate103-84-17>990,%MacklinC,H,G,O1527250Ehyl-aprylate110-38-3>990,%MacklinC,H,G,O15210180Ehyl-aprylate110-38-3>990,%MacklinC,H,G,O1521020Ehyl-aprylate110-37-3>995,%MacklinC,H,G,O1631400Ehyl-aprylate110-37-3>995,%MacklinC,H,G,O1781400Ehyl-aprylate103-36-6>990,%AdadinC,H,G,O1781200Ehyl-aprylate103-36-6>980,%AdadinC,H,G,O132100Ehyl-aprylate103-36-6>980,%AdadinC,H,G,O132100Ehyl-aprylate103-36-6>980,%AdadinC,H,G,O132100Ehyl-aprylate103-36-6>980,%AdadinC,H,G,O132100Ehyl-aprylate103-36-6>980,%MaddinC,H,G,O132100Ehyl-aprylate123-51>950,%MaddinC,H,G,O132100Ehyl-aprylate123-51>950,%MaddinC,H,G,O132100Ehyl-apryla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ethyl heptanoate                   | 106-30-9   | ≥99.5%            | Macklin                    | $C_9H_{18}O_2$                                | 1340 | 5050                                     |
| Hepplacetate112-06-1298.0%CICIC,H,G,G13982800Methyl octanoate1111-15299.0%AdamaC,H,G,G13942007Ehlyl arylata106-32-1>990.0%MaddinC,H,G,G1511517Ehlyl arydroxybutyrate5405-41-4>990.0%MaddinC,H,G,G152720Ehlyl arydroxy-methylpentanoate10348-7.7298.0%MaddinC,H,G,G1521018Ehlyl arydroxy-methylpentanoate10348-7.7298.0%MaddinC,H,G,G15722098.0%Ehlyl skrichate113-36.8299.5%MaddinC,H,G,G15784760Ehlyl skrichate119-37.8299.5%MaddinC,H,G,G15784760Ehlyl skrichate118-16.5>98.0%AladinC,H,G,G1581340Ehlyl skrichate118-16.5>98.0%AladinC,H,G,G132504Ehlyl skrichate118-16.5>98.0%AladinC,H,G,G132150Ehlyl skrichate118-16.5>98.0%AladinC,H,G,G132150Ehlyl skrichate118-16.5>98.0%AladinC,H,G,G132150Ehlyl skrichate118-16.5>98.0%AladinC,H,G,G132150Ehlyl skrichate118-16.5>98.0%AladinC,H,G,G132150Ehlyl skrichate118-26.5>95.0%MacklinC,H,G,G132150Ejl-24-tengtal1828567.5 <t< td=""><td>Ethyl lactate</td><td>97-64-3</td><td>≥99.0%</td><td>Macklin</td><td><math>C_5H_{10}O_3</math></td><td>1350</td><td>50810</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ethyl lactate                      | 97-64-3    | ≥99.0%            | Macklin                    | $C_5H_{10}O_3$                                | 1350 | 50810                                    |
| MethyNumber of the standNumber of the stand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Heptyl acetate                     | 112-06-1   | ≥98.0%            | TCI                        | $C_9H_{18}O_2$                                | 1380 | 3280                                     |
| Bity capyiesNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormal <t< td=""><td>Methyl octanoate</td><td>111-11-5</td><td>≥99.0%</td><td>Adamas</td><td><math display="block">\mathrm{C_9H_{18}O_2}</math></td><td>1394</td><td>2000</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Methyl octanoate                   | 111-11-5   | ≥99.0%            | Adamas                     | $\mathrm{C_9H_{18}O_2}$                       | 1394 | 2000                                     |
| BirlyBirlySequenceSequenceSequenceSequenceSequenceSequenceBirly10434742800AddinCH_u01521103041Birly10434742800AddinCH_u01521103041Birly10734329030MakinCH_u01523103041Birly10734329030MakinCH_u01520163041Birly10745429030AddinCH_u01520163041Birly10745429030AddinCH_u01520163041Birly10745429030AddinCH_u01520163041Birly10745429030AddinCH_u01520163041Birly10745429030AddinCH_u01520163041Birly10745429030AddinCH_u01520163041Birly10745429030AddinCH_u01520163041Birly10745429030AddinCH_u01520163041Birly10745429030AddinCH_u01520163041Birly10745429030AddinCH_u01520163041Birly10745429030AddinCH_u01520163041Birly10745429030AddinCH_u01520163041Birly10745429130AddinCH_u01520163041Birly10745429130Addin<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ethyl caprylate                    | 106-32-1   | >99.0%            | Aladdin                    | $C_{10}H_{20}O_2$                             | 1439 | 29670                                    |
| BityEndSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequence <th< td=""><td>Ethyl 3-hydroxybutyrate</td><td>5405-41-4</td><td>&gt;99.0%</td><td>Macklin</td><td><math>C_6H_{12}O_3</math></td><td>1511</td><td>15170</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ethyl 3-hydroxybutyrate            | 5405-41-4  | >99.0%            | Macklin                    | $C_6H_{12}O_3$                                | 1511 | 15170                                    |
| Bindle sharesSequenceSequenceSequenceSequenceSequenceSequenceBindle shares123-23SequenceSequenceSequenceSequenceSequenceBindle shares123-24SequenceSequenceSequenceSequenceSequenceSequenceBindle shares123-24SequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequenceSequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ethyl nonanoate                    | 123-29-5   | ≥95.0%            | Macklin                    | $C_{11}H_{22}O_2$                             | 1521 | 7250                                     |
| Bhyl caprate110-38-3990%MackinC, H, Q,<br>C, H, Q,<br>C, H, Q,<br>C, B90802080Bhyl succinate123-25-1995%MackinC, H, Q,<br>C,<br>C, H, Q,16701670Bhyl benzenactate101-97-399.5%AladinC, H, Q,<br>C, H, W,16801690Bhyl benzenactate118-61-6>99.0%AladinC, H, Q,<br>C, H, W,17001680Bhyl hyndroinnanate103-36-6>98.0%AladinC, H, Q,<br>C, H, W,1031040Bhyl chanata103-36-6>98.0%AladinC, H, Q,<br>C, H, W,1031040Monochly laucinate1070-34-0>95.0%AladinC, H, Q,<br>C, H, W,1031040Chrourcomcut1070-34-0>98.0%AladinC, H, Q,<br>C, H, W,1031020Chrourcomcut1282-55>95.0%AladinC, H, Q,<br>C, H, Q,12801020Ch2-2-Cytenal1882-55>95.0%AladinC, H, Q,<br>C, H, Q,12401020Ch2-2-Al-Eptadienal131-03-0>90.0%MackinC, H, Q,<br>C, H, Q,12401020Ch2-2-Al-Eptadienal57.4%>95.0%AladinC, H, Q,<br>C, H, Q,12401250Ch2-2-Al-Eptadienal57.4%>95.0%AladinC, H, Q,<br>C, H, Q,12401260Ch2-2-Al-Eptadienal137.6%28.0%AladinC, H, Q,<br>C, H, Q,12401260Ch2-2-Al-Eptadienal137.6%28.0%AladinC, H, Q,<br>C, H, Q,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ethyl 2-hydroxy-4-methylpentanoate | 10348-47-7 | ≥98.0%            | Aladdin                    | $C_8H_{16}O_3$                                | 1525 | 10180                                    |
| Ehyl succinate123-25-1299.5%MackinC,H,Q,<br>C,H,Q,O159230300Methyl silcylate101-97-8299.5%AladinC,H,Q,<br>C,H,Q,O17001400Ehyl salcylate118-61-6>99.0%AladinC,H,Q,O<br>C,H,Q,O17005480Ehyl salcylate103-36-6>98.0%AladinC,H,Q,O<br>C,H,Q,O17005480Ehyl sucinate1070-34-4>98.0%AladinC,H,Q,O<br>C,H,Q,O17001000Chronetometo1070-34-4>98.0%AladinC,H,Q,O13201020Chronetometo1070-34-4>95.0%AladinC,H,Q,O13201020Chronetometo128-26-5>95.0%AladinC,H,Q,O13201020(£)-2-Hexnal6728-26-3>95.0%MackinC,H,Q,O14201020(£)-2-Arendacinal5748-2>95.0%MackinC,H,Q,O14501020(£)-2-Arendacinal127-81>99.5%AladinC,H,Q,O11212020Boatonol127-81>99.5%AladinC,H,Q,O11212020129-24-Nonaderal129-51295.5%AladinC,H,Q,O12129630Boatonol124-51>99.5%AladinC,H,Q,O12129630129-129-120129-51301-62301-62301-62301-62301-62129-129-120129-51AladinC,H,Q,O11239600129-129-120301-86AladinC,H,Q,O120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ethyl caprate                      | 110-38-3   | >99.0%            | Macklin                    | $C_{12}H_{24}O_2$                             | 1572 | 20980                                    |
| Methylaiskylate119-36-8299.5%MackinC4,H,Q.<br>C,H1Q.16754760Ehly bancyclate118-61-6>990.5%AladinC,H2Q.<br>C,H1Q.18801204Ehly langrance2021-28-5>98.0%AladinC,H2Q.<br>C,H1Q.12031204Ehly langrance1070-34-0>98.0%AladinC,H2Q.<br>C,H2Q.12031204Monoethyl succinate1070-34-0>98.0%AladinC,H2Q.<br>C,H2Q.13021204Carbonyl compondsCarbonyl Componds59.0%AladinC,H2Q.<br>C,H2Q.13226530(E)-2-Hexenal18829-55-5>95.0%MackinC,H2Q.<br>C,H2Q.13231000(E)-2-Cotenal2548-87-0>95.0%MackinC,H2Q.<br>C,H2Q.15481202(E)-2-Cotenal4131-03-5>90.0%MackinC,H2Q.15481202(E)-2-Cotenal257.48-2>95.0%MackinC,H2Q.15481202(E)-2-A-Enptadienal121-27.81->95.0%MackinC,H2Q.15481202(E)-2-A-Enptadienal121-27.81->95.0%MackinC,H2Q.15481202(E)-2-A-Enptadienal121-27.81->95.0%MackinC,H2Q.12727302(E)-2-A-Enptadienal123-78-1>90.0%MackinC,H2Q.12727302(E)-2-A-Enptadienal123-51-3≥95.5%MackinC,H2Q.127263401-Pentanol71-41-0≥95.5%MackinC,H2Q.1272 <td>Ethyl succinate</td> <td>123-25-1</td> <td><math>\geq</math>99.5%</td> <td>Macklin</td> <td><math display="block">\mathrm{C_8H_{14}O_4}</math></td> <td>1592</td> <td>50360</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ethyl succinate                    | 123-25-1   | $\geq$ 99.5%      | Macklin                    | $\mathrm{C_8H_{14}O_4}$                       | 1592 | 50360                                    |
| Ehyl benzeneacetate101-97-3≥99.5%Aladdin $C_{01}H_{12}O_{1}$ 16891940Ethyl salcylate118-61-6>990.0%Aladain $C_{11}H_{10}O_{1}$ 17005400Ethyl shydrocinnamte103-36-6>98.0%Aladain $C_{11}H_{10}O_{1}$ 20315040Monoethyl succinate1070-34-4>95.0%Aladain $C_{4}H_{10}O_{1}$ 20301020Carbourd compounds728-26-3>98.0%Aladdin $C_{4}H_{10}O_{1}$ 13206530(E)-2-Heptanl18829-55->95.0%Aladdin $C_{4}H_{10}O_{1}$ 14321900(E)-2-Heptanl18829-55->95.0%Aladdin $C_{4}H_{10}O_{1}$ 14321900(E)-2-Heptanl18829-55->95.0%Aladdin $C_{4}H_{10}O_{1}$ 14321900(E)-2-Heptanlenal4313-03-5>90.0%Macklin $C_{4}H_{10}O_{1}$ 15451620(E)-2-Heptanlenal4313-03-5>90.0%Macklin $C_{4}H_{10}O_{1}$ 15451620(E)-2-Al-Heptadienal4313-03-5>90.0%Macklin $C_{4}H_{10}O_{1}$ 15451620(E)-2-Al-Heptadienal257.48>95.0%Macklin $C_{4}H_{10}O_{1}$ 15451620(E)-2-Al-Heptadienal257.48>95.0%Macklin $C_{4}H_{10}O_{1}$ 15451620(E)-2-Al-Heptadienal2548-87.0>98.0%Aladin $C_{4}H_{10}O_{1}$ 1545162010-2-178.1259.5%Macklin $C_{4}H_{10}O_{1}$ 152063041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Methyl salicylate                  | 119-36-8   | ≥99.5%            | Macklin                    | C <sub>8</sub> H <sub>8</sub> O <sub>3</sub>  | 1675 | 4760                                     |
| Ehyl sakcylate118-61-6>99.0%Aladdin $C_{\mu}H_{\alpha}O_{1}$ 17.105480Ethyl phyl cinamate2021-28-5>98.0%TCl <sup>4</sup> $C_{11}H_{\alpha}O_{2}$ 2015040Bhyl cinamate103-36-6>98.0%Aladdin $C_{11}H_{\alpha}O_{2}$ 2015040Monoethyl succinate1070-34-4>95.0%Aladdin $C_{11}H_{\alpha}O_{1}$ 1321120Carbony compounds(J2-12-berenal6728-26-3>95.0%Aladdin $C_{11}H_{\alpha}O_{1}$ 132120(J2-2-Heptenal8829-55->95.0%Aladdin $C_{11}H_{\alpha}O_{1}$ 132120(J2-2-Heptenal431-03-5>95.0%Macklin $C_{11}H_{\alpha}O_{1}$ 132120(J2-2-Art-Heptadienal431-03-5>95.0%Macklin $C_{11}H_{\alpha}O_{1}$ 134120(J2-2-Art-Heptadienal431-03-5>95.0%Macklin $C_{11}H_{\alpha}O_{1}$ 134120Benzenezetaldehyde123-51-3≥95.0%Macklin $C_{11}H_{\alpha}O_{1}$ 1377882Botimation74-10≥95.5%Macklin $C_{11}H_{\alpha}O_{1}$ 1366301-Pentand71-41-0≥95.5%Macklin $C_{11}H_{\alpha}O_{1}$ 1326302-Pentony133-9>98.0%Macklin $C_{11}H_{\alpha}O_{1}$ 1326302-Pentony131-0595.5%Macklin $C_{11}G_{\alpha}$ 1529602-Pentony <t< td=""><td>Ethyl benzeneacetate</td><td>101-97-3</td><td><math>\geq</math>99.5%</td><td>Aladdin</td><td><math>C_{10}H_{12}O_2</math></td><td>1689</td><td>1940</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ethyl benzeneacetate               | 101-97-3   | $\geq$ 99.5%      | Aladdin                    | $C_{10}H_{12}O_2$                             | 1689 | 1940                                     |
| Ehyl hydrocinnamate2021-28-5>98.0%TCl <sup>4</sup> C <sub>1</sub> H <sub>1</sub> ,Q17851240Ethyl innamate103-36-6>98.0%AdamasC <sub>1</sub> H <sub>4</sub> ,Q20315040Monoethyl sucinate1070-34-4>95.0%AladinC <sub>4</sub> H <sub>4</sub> ,Q13021020Carbony Compounds6728-26-3>98.0%AladinC <sub>4</sub> H <sub>10</sub> O13226530(E)-2-Hexenal18829-55->95.0%AladdinC <sub>4</sub> H <sub>10</sub> O132265306530(E)-2-Octenal2548-87-0>95.0%AladkinC <sub>4</sub> H <sub>40</sub> O14321020(E)-2-A-Heptadienal413-03-5>90.0%MacklinC <sub>4</sub> H <sub>40</sub> O14321020(E)-2-A-Heptadienal557-48-2≥95.0%AladdinC <sub>4</sub> H <sub>40</sub> O14541020Benzeneacetaldehyde122-78-1>95.0%AladdinC <sub>4</sub> H <sub>40</sub> O14125020(E)-2-4-Heptadienal78-83-1≥95.5%AladdinC <sub>4</sub> H <sub>40</sub> O11278820Boarnylo123-51-3≥95.5%AladdinC <sub>4</sub> H <sub>40</sub> O132787001-Pentanol114-0≥95.5%AladdinC <sub>4</sub> H <sub>40</sub> O13206402-Heptanol133-18-64>98.0%AladdinC <sub>4</sub> H <sub>40</sub> O13206402-Heptanol111-87-5≥99.5%AladdinC <sub>4</sub> H <sub>40</sub> O13206402-Heptanol111-87-5≥99.5%MacklinC <sub>4</sub> H <sub>40</sub> O14105402-Heptanol111-87-5≥99.5%MacklinC <sub>4</sub> H <sub>40</sub> O1320650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ethyl salicylate                   | 118-61-6   | >99.0%            | Aladdin                    | $C_9H_{10}O_3$                                | 1710 | 5480                                     |
| Ethyl cinnamate103·36-6>98.0%Adamas $C_{11}H_{12}O_{2}$ 2015040Monechyl succinate1070-34-4>95.0%Aladdin $C_{4}H_{12}O_{2}$ 2081102 <b>Carbonyt compounds</b> 572-8-6-3>98.0%Aladdin $C_{4}H_{10}O_{2}$ 13297120( <i>B</i> )-2-Heptenal18829-55-5>95.0%Aladdin $C_{4}H_{10}O_{2}$ 13206530( <i>B</i> )-2-At-Heptadienal4313-03-5>90.0%Macklin $C_{4}H_{10}O_{2}$ 14321000( <i>E</i> , <i>C</i> )-2,4-Heptadienal557-48-2≥95.0%Aladdin $C_{4}H_{10}O_{2}$ 14321202( <i>E</i> , <i>C</i> )-2,6-Nonadienal557-48-2≥95.0%Aladdin $C_{4}H_{10}O_{2}$ 152372Benzenze-cateldehyde122-78-1≥95.0%Aladdin $C_{4}H_{10}O_{2}$ 1122620Isoamylol122-51.3≥95.5%Aladdin $C_{4}H_{10}O_{2}$ 1217820Isoamylol123-51.3≥95.5%Aladdin $C_{4}H_{10}O_{2}$ 132178201-Pentanol71-41-0≥95.5%Aladin $C_{4}H_{10}O_{2}$ 13213602-Heptanol11170-6>95.0%Macklin $C_{4}H_{10}O_{2}$ 13213602-Heptanol11170-6≥95.5%Aladin $C_{4}H_{10}O_{2}$ 1313602-Heptanol612-8>95.0%Aladin $C_{4}H_{10}O_{2}$ 13213602-Heptanol612-8>95.5%Aladin $C_{4}H_{10}O_{2}$ 1513242-Heptanol612-8>95.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ethyl hydrocinnamate               | 2021-28-5  | >98.0%            | TCI <sup>d</sup>           | $C_{11}H_{14}O_2$                             | 1785 | 12040                                    |
| Monoethyl succinateIn70-34-4>95.0%AladinC <sub>8</sub> H <sub>10</sub> O <sub>4</sub> 23.0811020Carboury compoundsUSE Set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ethyl cinnamate                    | 103-36-6   | >98.0%            | Adamas                     | $\mathrm{C}_{11}\mathrm{H}_{12}\mathrm{O}_2$  | 2031 | 5040                                     |
| Carbony conspan="4">Carbony conspan=" | Monoethyl succinate                | 1070-34-4  | >95.0%            | Aladdin                    | $\mathrm{C_6H_{10}O_4}$                       | 2308 | 11020                                    |
| (£)-2-Hexenal6728-26-3>98.0%AladdinC <sub>4</sub> H <sub>10</sub> O13297120(£)-2-14pptenal18829-55-5>95.0%AladdinC <sub>4</sub> H <sub>10</sub> O14321600(£)-2-Ctenal2548-87-0>95.0%MacklinC <sub>6</sub> H <sub>10</sub> O143810220(£,2)-2,6-Heptadienal4313-03-5>90.0%MacklinC <sub>6</sub> H <sub>10</sub> O149810220(£,2)-2,6-Nonadienal557-48-2>95.0%MacklinC <sub>6</sub> H <sub>10</sub> O14544160Benzeneacetaldehyde122-78-1>95.0%AladdinC <sub>6</sub> H <sub>10</sub> O11122020High alcohols78-83-1≥95.5%AladdinC <sub>6</sub> H <sub>10</sub> O11127820Isoanylol123-51-3≥95.5%AladdinC <sub>6</sub> H <sub>10</sub> O12778201-Pentanol71-41-0≥95.5%MacklinC <sub>6</sub> H <sub>10</sub> O132778002-Heytanol3391-86-4>98.0%AladdinC <sub>7</sub> H <sub>10</sub> O132454002-Heytanol111-70-6>95.0%MacklinC <sub>7</sub> H <sub>10</sub> O15132402-Heytanol111-70-6>95.0%MacklinC <sub>7</sub> H <sub>10</sub> O15132402-Heytanol111-70-6>95.0%MacklinC <sub>7</sub> H <sub>10</sub> O15132402-Heytanol111-70-6>95.0%MacklinC <sub>7</sub> H <sub>10</sub> O18145402-Heytanol111-70-6>95.0%MacklinC <sub>7</sub> H <sub>10</sub> O18145402-Heytanol111-87-5≥95.5%MacklinC <sub>8</sub> H <sub>10</sub> O18145502-Henoxyethanol628-99-9≥95.0%<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Carbonyl compounds                 |            |                   |                            |                                               |      |                                          |
| (E)-2-Heptenal18829-55-3>95.0%AladdinC,H12O13626530(E)-2-Otenal2548-87-0>95.0%MacklinC,H14O14321900(E,E)-2,4-Heptadienal4313-03-5>90.0%MacklinC,H40149810220(E,Z)-2,6-Nonadienal557-48-2>95.0%AladdinC,H4015454160Benzeneaccaldehyde122-78-1>95.0%MacklinC,H4011212020High alcoholJest colspan="4">Jest colsp                                                                                                                                                                                                                                                                                                                                                                                                       | (E)-2-Hexenal                      | 6728-26-3  | >98.0%            | Aladdin                    | $C_6H_{10}O$                                  | 1329 | 7120                                     |
| $(E)$ -2-Octenal2548-87-0>95.0%Macklin $C_8H_1O$ 14321900 $(E,E)$ -2,4-Heptadienal4313-03-5>90.0%Macklin $C_7H_0O$ 149810220 $(E,C)$ -2,6-Nonadienal557-48-2>95.0%Aladdin $C_9H_1O$ 15454160Benzeneacetaldehyde122-78-1>95.0%Macklin $C_8H_0O$ 15745720 <b>High alcohols</b> 527-88-2>95.5%Aladdin $C_8H_0O$ 111220620Isoamylol123-51-3>99.5%Aladdin $C_8H_1O$ 125963401-Pentanol71-41-0>99.5%Macklin $C_8H_1O$ 132787002-Nethanol543-49-7>98.0%Aladdin $C_8H_1O$ 132787003-Octenol3391-86-4>98.0%Aladdin $C_8H_1O$ 146054902-Nonanol628-99-9>98.0%Aladdin $C_8H_1O$ 151332402-Nonanol612-8>99.5%Macklin $C_8H_1O$ 151330602-Nonanol111-87-5>99.5%Macklin $C_8H_1O$ 151330402-Nonanol104-50-7>98.0%Macklin $C_8H_1O$ 151330402-Nonanol104-50-7>98.0%Sigma-Aldrich $C_8H_1O_2$ 181441408-Octalactone698-76-0>98.0%Sigma-Aldrich $C_8H_1O_2$ 1863480-y-Nonalactone104-61-0>98.0%Sigma-Aldrich $C_8H_1O_2$ 1864340-y-Decalactone599-04-2>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (E)-2-Heptenal                     | 18829-55-5 | >95.0%            | Aladdin                    | $C_7H_{12}O$                                  | 1362 | 6530                                     |
| $(E,E)$ -2,4-Heptadienal4313-03-5>90.0%Macklin $C_r H_{10}$ 149810220 $(E,Z)$ -2,6-Nonadienal557-48-2≥95.0%Aladdin $C_r H_{10}$ 15454160Beneneacetaldehyde122-78-1>95.0%Macklin $C_r H_{10}$ 15745720High alcohols78-83-1≥99.5%Aladdin $C_4 H_{10}$ 111220620Isoamylol123-51-3≥99.5%Aladdin $C_2 H_{10}$ 1277788201-Pentanol71-41-0≥99.5%Macklin $C_3 H_{10}$ 132787002-Heptanol543-49-7>98.0%Aladdin $C_8 H_{10}$ 145632203-Octenol3391-86-4>98.0%Aladdin $C_8 H_{10}$ 145632201-Heptanol111-70-6>95.0%Macklin $C_8 H_{10}$ 151132402-Nonanol628-99.9Aladdin $C_8 H_{10}$ 151132401-Octanol111-87-5≥99.5%Aladdin $C_8 H_{10}$ 1512506902-Phenylethanol60-12-8≥99.5%Aladdin $C_8 H_{10}$ 181441402-Phenylethanol104-50-7>98.0%Sigma-Aldrich $C_8 H_{10}$ 181236692-Phenylethanol104-61-0>98.0%Sigma-Aldrich $C_8 H_{10}$ 18441408-Octalactone698-76-0>98.0%Sigma-Aldrich $C_8 H_{10}$ 184037009-Nonalactone104-61-0>98.0%Sigma-Aldrich $C_8 H_{10}$ 1860360 <t< td=""><td>(E)-2-Octenal</td><td>2548-87-0</td><td>&gt;95.0%</td><td>Macklin</td><td><math>C_8H_{14}O</math></td><td>1432</td><td>1900</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (E)-2-Octenal                      | 2548-87-0  | >95.0%            | Macklin                    | $C_8H_{14}O$                                  | 1432 | 1900                                     |
| $(E,Z)$ -2,6-Nonadienal $557-48-2$ $\geq 95.0\%$ Aladdin $C_9H_{14}O$ $1545$ $4160$ Benzeneacetaldehyde $122-78-1$ $>95.0\%$ Macklin $C_8H_8O$ $1574$ $5720$ Highachols $295.5\%$ Aladdin $C_8H_1O$ $1112$ $20620$ Isoamylol $123-51-3$ $\geq 99.5\%$ Aladdin $C_9H_{12}O$ $1217$ $78820$ 1-Pentanol $71-41-0$ $\geq 99.5\%$ Macklin $C_9H_{12}O$ $1259$ $6340$ 2-Heptanol $543-49-7$ $>88.0\%$ Aladdin $C_9H_{10}O$ $1327$ $8700$ 3-Octenol $3391-86-4$ $>98.0\%$ Aladdin $C_9H_{10}O$ $1456$ $3220$ 1-Heptanol $111-70-6$ $>95.0\%$ Macklin $C_9H_{10}O$ $1511$ $3240$ 2-Nonanol $628-99-9$ $\geq 98.0\%$ Aladdin $C_9H_{10}O$ $1512$ $9060$ 2-Nonanol $118-75$ $\geq 99.5\%$ Macklin $C_8H_{10}O$ $1817$ $50690$ 2-Nensylethanol $60-12-8$ $\geq 99.5\%$ Macklin $C_8H_{10}O$ $1817$ $50690$ 2-Nensylethanol $104-50-7$ $>98.0\%$ Sigma-Aldrich $C_8H_{10}O$ $1817$ $50690$ 2-Nensylethanol $104-50-7$ $>98.0\%$ Sigma-Aldrich $C_1H_{20}O_2$ $1814$ $4140$ $A_O Catalactone698-76-0>98.0\%Sigma-AldrichC_8H_{10}O_21840\gamma-Nonalactone104-61-0>98.0\%Sigma-AldrichC_8H_{10}O_21840\gamma-Dacalactone599-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (E,E)-2,4-Heptadienal              | 4313-03-5  | >90.0%            | Macklin                    | $C_7H_{10}O$                                  | 1498 | 10220                                    |
| Benzeneacetaldehyde122-78-1>95.0%Macklin $C_a H_0 O$ 15745720High alcoholsJisobutanol78-83-1 $\geq 99.5\%$ Aladdin $C_a H_1 O$ 111220620Isomylol123-51-3 $\geq 99.5\%$ Aladdin $C_a H_1 O$ 1127788201-Pentanol71-41-0 $\geq 99.5\%$ Macklin $C_3 H_1 O$ 1277788202-Heptanol543-49-7 $\geq 99.5\%$ Macklin $C_a H_1 O$ 132787003-Octenol3391-86-4 $\geq 98.0\%$ Aladdin $C_a H_1 O$ 152832201-Heptanol111-70-6 $\geq 95.0\%$ Macklin $C_a H_1 O$ 154032402-Nonanol628-90 $\geq 98.0\%$ Aladdin $C_a H_1 O$ 153290002-Nonanol111-87-5 $\geq 99.5\%$ Macklin $C_a H_1 O$ 153290002-Nonanol112-87-6 $\geq 99.5\%$ Macklin $C_a H_1 O$ 1817506902-Nehythanol102-89-6 $\geq 99.5\%$ Macklin $C_a H_1 O$ 181441402-Nehythanol104-50-7 $\geq 98.0\%$ Sigma-Aldrich $C_1 H_{20}$ 18441402-Nonalactone698-76-0 $\geq 98.0\%$ Sigma-Aldrich $C_a H_1 O_2$ 18203600 $\gamma$ -Otalactone104-61-0 $\geq 98.0\%$ Sigma-Aldrich $C_a H_1 O_2$ 18203600 $\gamma$ -Decalactone209-04-2 $\geq 99.0\%$ Sigma-Aldrich $C_a H_a O_3$ 193519860 $\gamma$ -Decalactone206-43-59 $\geq 99.0\%$ Sigma-Aldrich<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (E,Z)-2,6-Nonadienal               | 557-48-2   | ≥95.0%            | Aladdin                    | $C_9H_{14}O$                                  | 1545 | 4160                                     |
| High alcoholsIsobutanol $78.83.1$ $\geq 99.5\%$ Aladin $C_4H_{10}O$ $112$ $20620$ Isoamylol $123.51.3$ $\geq 99.5\%$ Aladin $C_5H_{1.0}O$ $1217$ $78820$ 1.Pentanol $71.41.0$ $\geq 99.5\%$ Macklin $C_5H_{1.0}O$ $1327$ $8700$ 2.Heptanol $543.49.7$ $\geq 98.0\%$ Aladin $C_8H_{10}O$ $1456$ $3220$ 3.Octenol $3391.86.4$ $\geq 98.0\%$ Aladin $C_8H_{10}O$ $1400$ $5490$ 1.Heptanol $111.70.6$ $\geq 95.0\%$ Macklin $C_9H_{20}O$ $1511$ $3240$ 2.Nonanol $628.99.9$ $\geq 98.0\%$ Aladin $C_8H_{10}O$ $1512$ $3000$ 2.Nonanol $111.87.5$ $\geq 99.5\%$ Macklin $C_9H_{10}O$ $1512$ $3000$ 2.Phenylethanol $012.8$ $\geq 99.5\%$ Aladin $C_8H_{10}O$ $1812$ $9000$ 2.Phenylethanol $122.99.6$ $\geq 99.5\%$ Macklin $C_9H_{10}O$ $1812$ $3400$ 2.Phenoxylethanol $104.50.7$ $\geq 98.0\%$ Sigma-Aldrich $C_8H_{10}O$ $1814$ $4140$ $\delta$ -Octalactone $104.50.7$ $\geq 98.0\%$ Sigma-Aldrich $C_1H_{20}O$ $1814$ $4140$ $\delta$ -Octalactone $104.50.7$ $\geq 98.0\%$ Sigma-Aldrich $C_1H_{10}O$ $1852$ $3260$ $\gamma$ -Nonalactone $104.51.7$ $\geq 98.0\%$ Sigma-Aldrich $C_1H_{10}O$ $1852$ $3260$ $\gamma$ -Nonalactone $104.51.7$ $\geq 98.0\%$ Sigma-Aldrich $C_1H_{0}O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Benzeneacetaldehyde                | 122-78-1   | >95.0%            | Macklin                    | C <sub>8</sub> H <sub>8</sub> O               | 1574 | 5720                                     |
| Isobutanol $78-83-1$ $\geq 99.5\%$ Aladdin $C_4H_{10}O$ 11220620Isoamylol123-51-3 $\geq 99.5\%$ Aladdin $C_5H_{12}O$ 1217788201-Pentanol71-41-0 $\geq 99.5\%$ Macklin $C_5H_{12}O$ 125963402-Heptanol543-49-7 $>98.0\%$ Aladdin $C_7H_{16}O$ 132787003-Octenol3391-86-4 $>98.0\%$ Aladdin $C_8H_{10}O$ 146054201-Heptanol111-70-6 $>95.0\%$ Macklin $C_8H_{10}O$ 151132402-Nonanol628-99-9 $\geq 98.0\%$ Aladdin $C_8H_{10}O$ 151290602-Nonanol122-99-6 $\geq 99.5\%$ Macklin $C_8H_{10}O$ 1817506902-Phenylethanol60-12-8 $\geq 99.5\%$ Macklin $C_8H_{10}O$ 181441402-Phenylethanol104-50-7 $>98.0\%$ Sigma-Aldrich $C_8H_{10}O_2$ 184234802-Nonalactone104-61-0 $>98.0\%$ Sigma-Aldrich $C_8H_{10}O_2$ 18423480 $\gamma$ -Notalactone104-61-0 $>98.0\%$ Sigma-Aldrich $C_8H_{10}O_2$ 1980320 $\gamma$ -Decalactone104-61-0 $>98.0\%$ Sigma-Aldrich $C_8H_{10}O_2$ 1980320 $\gamma$ -Indecalactone104-61-0 $>98.0\%$ Sigma-Aldrich $C_8H_{10}O_2$ 1980320 $\gamma$ -Decalactone104-61-0 $>98.0\%$ Sigma-Aldrich $C_8H_{0}O_3$ 198320 $\gamma$ -Decalactone104-61-6 $>98.0\%$ Sigma-Aldrich </td <td>High alcohols</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | High alcohols                      |            |                   |                            |                                               |      |                                          |
| Isoamylol123-51-3 $\geq 99.5\%$ Aladdin $C_5H_{12}O$ 1217788201-Pentanol71-41-0 $\geq 99.5\%$ Macklin $C_5H_{12}O$ 125963402-Heptanol543-49-7>>8.0%Aladdin $C_7H_{16}O$ 132787003-Octenol3391-86-4>>8.0%Aladdin $C_8H_{10}O$ 145632201-Heptanol111-70-6>>50.0%Macklin $C_{11}H_{20}O$ 151132402-Nonanol628-99-9 $\geq 98.0\%$ Aladdin $C_9H_{20}O$ 151132401-Octanol111-87-5 $\geq 99.5\%$ Macklin $C_8H_{10}O$ 1817506902-Phenylethanol60-12-8 $\geq 99.5\%$ Macklin $C_8H_{10}O$ 1817506902-Phenylethanol102-99-6 $\geq 99.5\%$ Macklin $C_8H_{10}O$ 181441408-Octalactone104-50-7>98.0%Sigma-Aldrich $C_{11}H_{20}O_2$ 181441408-Octalactone104-61-0>98.0%Sigma-Aldrich $C_8H_{10}O_2$ 182032609-Nonalactone104-61-0>98.0%Sigma-Aldrich $C_8H_{10}O_2$ 192532609-Decalactone599-04-2>99.0%Sigma-Aldrich $C_8H_{10}O_2$ 193198609-Decalactone28664-35-9>97.0%Sigma-Aldrich $C_{10}H_{10}O_2$ 10437009-Decalactone28664-35-9>97.0%Sigma-Aldrich $C_8H_8O_3$ 210435209-Decalactone106-76>98.0%Sigma-Aldrich $C_8H_8O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Isobutanol                         | 78-83-1    | ≥99.5%            | Aladdin                    | $C_4H_{10}O$                                  | 1112 | 20620                                    |
| 1-Pentanol         71-41-0 $\geq 95.\%$ Macklin $C_{g}H_{12}O$ 1259         6340           2-Heptanol         543-49-7         >98.0%         Aladdin $C_{r}H_{16}O$ 1327         8700           3-Octenol         3391-86-4         >98.0%         Aladdin $C_{g}H_{16}O$ 1456         3220           1-Heptanol         111-70-6         >95.0%         Macklin $C_{g}H_{10}O$ 1511         3240           2-Nonanol         628-99-9         ≥98.0%         Aladdin $C_{g}H_{10}O$ 1512         3240           1-Octanol         111-87-5         ≥99.5%         Macklin $C_{g}H_{10}O$ 1817         50690           2-Phenylethanol         60-12-8         ≥99.5%         Macklin $C_{g}H_{10}O$ 1817         50690           2-Phenoxyethanol         122-99-6         ≥99.5%         Macklin $C_{g}H_{10}O$ 1817         50690           2-Phenoxyethanol         104-50-7         >98.0%         Sigma-Aldrich $C_{11}H_{20}O_2$ 1814         4140           6-Octalactone         698-76-0         >98.0%         Sigma-Aldrich $C_{g}H_{16}O_2$ 1925         3260           9-No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Isoamylol                          | 123-51-3   | ≥99.5%            | Aladdin                    | C <sub>5</sub> H <sub>12</sub> O              | 1217 | 78820                                    |
| 2-Heptanol543-49-7>98.0%Aladdin $C_7H_{16}O$ 132787003-Octenol3391-86-4>98.0%Aladdin $C_8H_{16}O$ 145632201-Heptanol111-70-6>95.0%Macklin $C_7H_{16}O$ 146054902-Nonanol628-99-9≥98.0%Aladdin $C_9H_{20}O$ 151132401-Octanol111-87-5≥99.5%Macklin $C_8H_{16}O$ 153290602-Phenylethanol60-12-8≥99.5%Macklin $C_8H_{10}O$ 1817506902-Phenoxyethanol122-99-6≥99.5%Macklin $C_8H_{10}O_2$ 18144140 $\gamma$ -Octalactone104-50-7>98.0%Sigma-Aldrich $C_{11}H_{20}O_2$ 18144140 $\delta$ -Octalactone698-76-0>98.0%Sigma-Aldrich $C_8H_{10}O_2$ 18123260 $\gamma$ -Nonalactone104-61-0>98.0%Sigma-Aldrich $C_8H_{14}O_2$ 18623480 $\gamma$ -Decalactone599-04-2>99.0%Sigma-Aldrich $C_8H_{14}O_2$ 19253260Pantolactone599-04-2>99.0%Sigma-Aldrich $C_{10}H_{10}O_2$ 193519860 $\gamma$ -Decalactone706-14-9>98.0%Sigma-Aldrich $C_{10}H_{10}O_2$ 20413700Sotolon2864-35-9>97.0%Sigma-Aldrich $C_{10}H_{10}O_2$ 21613520 $\gamma$ -Undecalactone104-67-6>98.0%Sigma-Aldrich $C_{11}H_{20}O_2$ 16143520Actid107-92-6≥95.%Sigma-Aldrich <td>1-Pentanol</td> <td>71-41-0</td> <td>≥99.5%</td> <td>Macklin</td> <td>C<sub>5</sub>H<sub>12</sub>O</td> <td>1259</td> <td>6340</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1-Pentanol                         | 71-41-0    | ≥99.5%            | Macklin                    | C <sub>5</sub> H <sub>12</sub> O              | 1259 | 6340                                     |
| 3-Octenol       3391-86-4       >98.0%       Aladdin $C_8H_{16}O$ 1456       3220         1-Heptanol       111-70-6       >95.0%       Macklin $C_7H_{16}O$ 1460       5490         2-Nonanol       628-99-9 $\geq$ 98.0%       Aladdin $C_9H_{20}O$ 1511       3240         1-Octanol       111-87-5 $\geq$ 99.5%       Macklin $C_8H_{18}O$ 1532       9060         2-Phenylethanol       60-12-8 $\geq$ 99.5%       Aladdin $C_9H_{10}O_2$ 2043       9900         2-Phenyyethanol       122-99-6 $\geq$ 99.5%       Macklin $C_8H_{10}O_2$ 2043       9900         Lactone       104-50-7 $\geq$ 99.5%       Macklin $C_1H_{20}O_2$ 1814       4140 $\diamond$ -Octalactone       104-61-0 $\geq$ 98.0%       Sigma-Aldrich $C_8H_{14}O_2$ 1862       3480 $\gamma$ -Nonalactone       104-61-0 $>$ 98.0%       Sigma-Aldrich $C_8H_{14}O_2$ 1925       3260         Pantolactone       599-04-2 $>$ 99.0%       Sigma-Aldrich $C_8H_{16}O_3$ 1935       19860 $\gamma$ -Decalactone       706-14-9 $>$ 98.0%       Sigma-Aldrich $C_1H_{19}O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2-Heptanol                         | 543-49-7   | >98.0%            | Aladdin                    | C <sub>7</sub> H <sub>16</sub> O              | 1327 | 8700                                     |
| 1-Heptanol111-70-6>95.0%Macklin $C_7H_{16}O$ 146054902-Nonanol628-99-9 $\geq 98.0\%$ Aladdin $C_9H_{12}O$ 151132401-Octanol111-87-5 $\geq 99.5\%$ Macklin $C_8H_{18}O$ 153290602-Phenylethanol60-12-8 $\geq 99.5\%$ Aladdin $C_8H_{10}O$ 1817506902-Phenoxyethanol122-99-6 $\geq 99.5\%$ Macklin $C_8H_{10}O_2$ 20439900 <b>Lactone</b> $\gamma$ -Octalactone104-50-7 $\geq 98.0\%$ Sigma-Aldrich $C_{11}H_{20}O_2$ 18144140 $\delta$ -Octalactone698-76-0 $\geq 98.0\%$ Sigma-Aldrich $C_8H_{14}O_2$ 18623480 $\gamma$ -Nonalactone104-61-0 $\geq 98.0\%$ Sigma-Aldrich $C_8H_{14}O_2$ 19253260Pantolactone599-04-2 $\geq 99.0\%$ Sigma-Aldrich $C_1H_{10}O_3$ 193519860 $\gamma$ -Decalactone706-14-9 $\geq 98.0\%$ Sigma-Aldrich $C_1H_{10}O_2$ 1043700Sotolon28664-35-9 $\geq 97.0\%$ Sigma-Aldrich $C_1H_{00}O_3$ 193519860 $\gamma$ -Undecalactone104-67-6 $\geq 98.0\%$ Sigma-Aldrich $C_1H_{20}O_2$ 1613520Acid $\Sigma$ -Undecalactone104-67-6 $\geq 99.5\%$ Sigma-Aldrich $C_1H_{20}O_2$ 1613520Acid $\Sigma$ -Undecalactone107-92-6 $\geq 99.5\%$ Sigma-Aldrich $C_1H_{20}O_2$ 1613520Acid $\Sigma$ -Undecalacton107-92-6 $\geq 99.5\%$ Mack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3-Octenol                          | 3391-86-4  | >98.0%            | Aladdin                    | $C_8H_{16}O$                                  | 1456 | 3220                                     |
| 2-Nonanol $628-99-9$ $\geq 98.0\%$ Aladdin $C_9H_{20}O$ $1511$ $3240$ 1-Octanol111-87-5 $\geq 99.5\%$ Macklin $C_8H_{16}O$ $1532$ $9060$ 2-Phenylethanol $60-12-8$ $\geq 99.5\%$ Aladdin $C_8H_{10}O$ $1817$ $50690$ 2-Phenoxyethanol $122-99-6$ $\geq 99.5\%$ Macklin $C_8H_{10}O_2$ $2043$ $9900$ <b>Lactone</b> $\gamma$ -Octalactone $104-50-7$ $>98.0\%$ Sigma-Aldrich $C_{11}H_{20}O_2$ $1814$ $4140$ $\delta$ -Octalactone $698-76-0$ $>98.0\%$ Sigma-Aldrich $C_8H_{14}O_2$ $1862$ $3480$ $\gamma$ -Nonalactone $104-61-0$ $>98.0\%$ Sigma-Aldrich $C_8H_{14}O_2$ $1925$ $3260$ Pantolactone $599-04-2$ $>99.0\%$ Sigma-Aldrich $C_8H_{10}O_3$ $1935$ $19860$ $\gamma$ -Docalactone $706-14-9$ $>98.0\%$ Sigma-Aldrich $C_{10}H_{18}O_2$ $2041$ $3700$ Sotolon $28664-35-9$ $>97.0\%$ Sigma-Aldrich $C_{10}H_{18}O_2$ $2041$ $3700$ $\gamma$ -Undecalactone $104-67-6$ $>98.0\%$ Sigma-Aldrich $C_{10}H_{10}O_3$ $1935$ $19860$ $\gamma$ -Undecalactone $104-67-6$ $>98.0\%$ Sigma-Aldrich $C_{10}H_{10}O_2$ $2161$ $3520$ $\gamma$ -Undecalactone $107-92-6$ $\geq 99.5\%$ Sigma-Aldrich $C_{1}H_{20}O_2$ $161$ $3520$ Hatanoic acid $107-92-6$ $\geq 99.5\%$ Sigma-Aldrich $C_8H_{10}O_2$ $1574$ $30960$ <td>1-Heptanol</td> <td>111-70-6</td> <td>&gt;95.0%</td> <td>Macklin</td> <td>C<sub>7</sub>H<sub>16</sub>O</td> <td>1460</td> <td>5490</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1-Heptanol                         | 111-70-6   | >95.0%            | Macklin                    | C <sub>7</sub> H <sub>16</sub> O              | 1460 | 5490                                     |
| 1-Octanol111-87-5 $\geq 99.5\%$ Macklin $C_8H_{18}O$ 153290602-Phenylethanol60-12-8 $\geq 99.5\%$ Aladdin $C_8H_{10}O$ 1817506902-Phenoxyethanol122-99-6 $\geq 99.5\%$ Macklin $C_8H_{10}O_2$ 20439900Lactone $\gamma$ -Octalactone104-50-7 $>98.0\%$ Sigma-Aldrich $C_{11}H_{20}O_2$ 18144140 $\delta$ -Octalactone698-76-0 $>98.0\%$ Sigma-Aldrich $C_8H_{14}O_2$ 18623480 $\gamma$ -Nonalactone104-61-0 $>98.0\%$ Sigma-Aldrich $C_8H_{14}O_2$ 19253260Pantolactone599-04-2 $>99.0\%$ Sigma-Aldrich $C_8H_{10}O_3$ 193519860 $\gamma$ -Decalactone706-14-9 $>98.0\%$ Sigma-Aldrich $C_{6}H_{10}O_3$ 193519860 $\gamma$ -Duckcalactone706-14-9 $>98.0\%$ Sigma-Aldrich $C_{10}H_{18}O_2$ 20413700Sotolon28664-35-9 $>97.0\%$ Sigma-Aldrich $C_{10}H_{8}O_3$ 21084980 $\gamma$ -Undecalactone104-67-6 $>98.0\%$ Sigma-Aldrich $C_1H_{20}O_2$ 1613520Acid $107-92-6$ $\geq 99.5\%$ Sigma-Aldrich $C_{4}H_{8}O_2$ 157430960Hexanoic acid107-92-6 $\geq 99.5\%$ Macklin $C_6H_{12}O_2$ 176225780Ethylhexanoic acid142-62-1 $\geq 99.5\%$ Aladdin $C_8H_{16}O_2$ 197356880Octanoic acid124-07-2 $\geq 99.5\%$ Aladdin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-Nonanol                          | 628-99-9   | ≥98.0%            | Aladdin                    | C <sub>9</sub> H <sub>20</sub> O              | 1511 | 3240                                     |
| 2-Phenylethanol $60-12-8$ $\geq 99.5\%$ Aladdin $C_8H_{10}O$ $1817$ $50690$ 2-Phenoxyethanol $122-99-6$ $\geq 99.5\%$ Macklin $C_8H_{10}O_2$ $2043$ $9900$ Lactone $\gamma$ -Octalactone $104-50-7$ $>98.0\%$ Sigma-Aldrich $C_{11}H_{20}O_2$ $1814$ $4140$ $\delta$ -Octalactone $698-76-0$ $>98.0\%$ Sigma-Aldrich $C_8H_{14}O_2$ $1862$ $3480$ $\gamma$ -Nonalactone $104-61-0$ $>98.0\%$ Sigma-Aldrich $C_8H_{14}O_2$ $1862$ $3480$ Pantolactone $599-04-2$ $>99.0\%$ Sigma-Aldrich $C_6H_{10}O_3$ $1935$ $19860$ $\gamma$ -Nonalactone $599-04-2$ $>99.0\%$ Sigma-Aldrich $C_6H_{10}O_3$ $1935$ $19860$ $\gamma$ -Decalactone $706-14-9$ $>98.0\%$ Sigma-Aldrich $C_10H_{18}O_2$ $2041$ $3700$ Sotolon $28664-35-9$ $>97.0\%$ Sigma-Aldrich $C_6H_8O_3$ $2108$ $4980$ $\gamma$ -Undecalactone $104-67-6$ $>98.0\%$ Sigma-Aldrich $C_1H_{20}O_2$ $2161$ $3520$ Acid $107-92-6$ $\geq 99.5\%$ Sigma-Aldrich $C_4H_8O_2$ $1574$ $30960$ Hexanoic acid $107-92-6$ $\geq 99.5\%$ Macklin $C_6H_{12}O_2$ $1762$ $25780$ Ethylhexanoic acid $142-62-1$ $\geq 99.5\%$ Macklin $C_8H_{16}O_2$ $1973$ $56880$ Octanoic acid $124-07-2$ $\geq 99.5\%$ Aladdin $C_8H_{16}O_2$ $1973$ $56880$ Decanoic acid <td>1-Octanol</td> <td>111-87-5</td> <td>≥99.5%</td> <td>Macklin</td> <td>C<sub>8</sub>H<sub>18</sub>O</td> <td>1532</td> <td>9060</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1-Octanol                          | 111-87-5   | ≥99.5%            | Macklin                    | C <sub>8</sub> H <sub>18</sub> O              | 1532 | 9060                                     |
| 2-Phenoxyethanol122-99-6≥99.5%Macklin $C_8 H_{10} O_2$ 20439900Lactone $\gamma$ -Octalactone104-50-7>98.0%Sigma-Aldrich $C_{11} H_{20} O_2$ 18144140δ-Octalactone698-76-0>98.0%Sigma-Aldrich $C_8 H_{14} O_2$ 18623480 $\gamma$ -Nonalactone104-61-0>98.0%Sigma-Aldrich $C_8 H_{14} O_2$ 19253260Pantolactone599-04-2>99.0%Sigma-Aldrich $C_6 H_{10} O_3$ 193519860 $\gamma$ -Decalactone706-14-9>98.0%Sigma-Aldrich $C_{10} H_{10} O_2$ 20413700Sotolon28664-35-9>97.0%Sigma-Aldrich $C_6 H_8 O_3$ 21084980 $\gamma$ -Undecalactone104-67-6>98.0%Sigma-Aldrich $C_1 H_{20} O_2$ 21613520AcidButanoic acid107-92-6≥99.5%Sigma-Aldrich $C_4 H_8 O_2$ 157430960Hexanoic acid142-62-1≥99.5%Macklin $C_6 H_{12} O_2$ 176225780Ethylhexanoic acid149-57-5≥99.9%Aladdin $C_8 H_{16} O_2$ 197356880Octanoic acid124-07-2≥99.5%Aladdin $C_8 H_{16} O_2$ 197356880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-Phenylethanol                    | 60-12-8    | ≥99.5%            | Aladdin                    | C <sub>8</sub> H <sub>10</sub> O              | 1817 | 50690                                    |
| Lactone $\gamma$ -Octalactone104-50-7>98.0%Sigma-Aldrich $C_{11}H_{20}O_2$ 18144140δ-Octalactone698-76-0>98.0%Sigma-Aldrich $C_8H_{14}O_2$ 18623480 $\gamma$ -Nonalactone104-61-0>98.0%Sigma-Aldrich $C_8H_{14}O_2$ 19253260Pantolactone599-04-2>99.0%Sigma-Aldrich $C_6H_{10}O_3$ 193519860 $\gamma$ -Decalactone706-14-9>98.0%Sigma-Aldrich $C_{0}H_{10}O_3$ 20413700Sotolon28664-35-9>97.0%Sigma-Aldrich $C_{10}H_{18}O_2$ 20413520 $\gamma$ -Undecalactone104-67-6>98.0%Sigma-Aldrich $C_1H_{20}O_2$ 21613520AcidButanoic acid107-92-6≥99.5%Sigma-Aldrich $C_4H_8O_2$ 157430960Hexanoic acid142-62-1≥99.5%Aladdin $C_8H_{10}O_2$ 160010090Octanoic acid124-07-2≥99.5%Aladdin $C_8H_{10}O_2$ 197356880Decanoic acid334-48-5>99.0%Aladdin $C_{n}H_{m}O_2$ 219020170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2-Phenoxyethanol                   | 122-99-6   | ≥99.5%            | Macklin                    | $C_8H_{10}O_2$                                | 2043 | 9900                                     |
| $\gamma$ -Octalactone104-50-7>98.0%Sigma-Aldrich $C_{11}H_{20}O_2$ 18144140 $\delta$ -Octalactone698-76-0>98.0%Sigma-Aldrich $C_8H_{14}O_2$ 18623480 $\gamma$ -Nonalactone104-61-0>98.0%Sigma-Aldrich $C_8H_{14}O_2$ 19253260Pantolactone599-04-2>99.0%Sigma-Aldrich $C_6H_{10}O_3$ 193519860 $\gamma$ -Decalactone706-14-9>98.0%Sigma-Aldrich $C_10H_{18}O_2$ 20413700Sotolon28664-35-9>97.0%Sigma-Aldrich $C_10H_{18}O_2$ 21613520 $\gamma$ -Undecalactone104-67-6>98.0%Sigma-Aldrich $C_1H_{20}O_2$ 21613520AcidButanoic acid107-92-6≥99.5%Sigma-Aldrich $C_4H_8O_2$ 157430960Hexanoic acid142-62-1≥99.5%Aladdin $C_8H_{10}O_2$ 166010090Octanoic acid124-07-2≥99.5%Aladdin $C_8H_{10}O_2$ 197356880Decanoic acid334-48-5>99.0%Aladdin $C_{n}H_{m}O_2$ 219020170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lactone                            |            | 22.22/            |                            | 0 11 0                                        |      |                                          |
| 6-Octalactone698-76-0>98.0%Sigma-Aldrich $C_8H_{14}O_2$ 18623480 $\gamma$ -Nonalactone104-61-0>98.0%Sigma-Aldrich $C_8H_{14}O_2$ 19253260Pantolactone599-04-2>99.0%Sigma-Aldrich $C_6H_{10}O_3$ 193519860 $\gamma$ -Decalactone706-14-9>98.0%Sigma-Aldrich $C_{10}H_{18}O_2$ 20413700Sotolon28664-35-9>97.0%Sigma-Aldrich $C_6H_8O_3$ 21084980 $\gamma$ -Undecalactone104-67-6>98.0%Sigma-Aldrich $C_1H_{20}O_2$ 21613520AcidButanoic acid107-92-6≥99.5%Sigma-Aldrich $C_6H_8O_3$ 157430960Hexanoic acid142-62-1≥99.5%Macklin $C_6H_{12}O_2$ 176225780Ethylhexanoic acid124-07-2≥99.5%Aladdin $C_8H_{16}O_2$ 197356880Decanoic acid334-48-5>99.0%Aladdin $C_{10}H_{20}O_2$ 210020170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | γ-Octalactone                      | 104-50-7   | >98.0%            | Sigma-Aldrich              | $C_{11}H_{20}O_2$                             | 1814 | 4140                                     |
| $\gamma$ -Nonlactone $104-61-0$ >98.0%Sigma-Aldrich $C_8H_{14}O_2$ $1925$ $3260$ Pantolactone $599-04-2$ >99.0%Sigma-Aldrich $C_8H_{10}O_3$ $1935$ $19860$ $\gamma$ -Decalactone $706-14-9$ >98.0%Sigma-Aldrich $C_{10}H_{18}O_2$ $2041$ $3700$ Sotolon $28664-35-9$ >97.0%Sigma-Aldrich $C_6H_8O_3$ $2108$ $4980$ $\gamma$ -Undecalactone $104-67-6$ >98.0%Sigma-Aldrich $C_1H_{20}O_2$ $2161$ $3520$ AcidHexanoic acid $107-92-6$ $\geq 99.5\%$ Sigma-Aldrich $C_4H_8O_2$ $1574$ $30960$ Hexanoic acid $107-92-6$ $\geq 99.5\%$ Sigma-Aldrich $C_6H_{12}O_2$ $1762$ $25780$ Ethylhexanoic acid $149-57-5$ $\geq 99.9\%$ Aladdin $C_8H_{16}O_2$ $1860$ $10090$ Octanoic acid $124-07-2$ $\geq 99.5\%$ Aladdin $C_8H_{10}O_2$ $1973$ $56880$ Decanoic acid $334-48-5$ $>90.0\%$ Aladdin $C_{10}H_{20}O_2$ $2100$ $20170$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8-Octalactone                      | 698-76-0   | >98.0%            | Sigma-Aldrich              | C <sub>8</sub> H <sub>14</sub> O <sub>2</sub> | 1862 | 3480                                     |
| Pantolactone599-04-2>99.0%Sigma-Aldrich $C_{e}H_{10}O_{3}$ 193519860 $\gamma$ -Decalactone706-14-9>98.0%Sigma-Aldrich $C_{10}H_{18}O_{2}$ 20413700Sotolon28664-35-9>97.0%Sigma-Aldrich $C_{6}H_{8}O_{3}$ 21084980 $\gamma$ -Undecalactone104-67-6>98.0%Sigma-Aldrich $C_{11}H_{20}O_{2}$ 21613520AcidButanoic acid107-92-6≥99.5%Sigma-Aldrich $C_{4}H_{8}O_{2}$ 157430960Hexanoic acid142-62-1≥99.5%Macklin $C_{6}H_{12}O_{2}$ 176225780Ethylhexanoic acid149-57-5≥99.9%Aladdin $C_{8}H_{16}O_{2}$ 186010090Octanoic acid124-07-2≥99.5%Aladdin $C_{8}H_{16}O_{2}$ 197356880Decanoic acid334-48-5>99.0%Aladdin $C_{10}H_{20}O_{2}$ 210020170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | γ-Nonalactone                      | 104-61-0   | >98.0%            | Sigma-Aldrich              | C <sub>8</sub> H <sub>14</sub> O <sub>2</sub> | 1925 | 3260                                     |
| $\gamma$ -Decalactone $706-14-9$ >98.0%Sigma-Aldrich $C_{10}H_{18}O_2$ $2041$ $3700$ Sotolon $28664-35-9$ >97.0%Sigma-Aldrich $C_8H_8O_3$ $2108$ $4980$ $\gamma$ -Undecalactone $104-67-6$ >98.0%Sigma-Aldrich $C_{11}H_{20}O_2$ $2161$ $3520$ AcidButanoic acid $107-92-6$ $\geq 99.5\%$ Sigma-Aldrich $C_4H_8O_2$ $1574$ $30960$ Hexanoic acid $142-62-1$ $\geq 99.5\%$ Macklin $C_6H_{12}O_2$ $1762$ $25780$ Ethylhexanoic acid $149-57-5$ $\geq 99.9\%$ Aladdin $C_8H_{16}O_2$ $1860$ $10090$ Octanoic acid $124-07-2$ $\geq 99.5\%$ Aladdin $C_8H_{16}O_2$ $1973$ $56880$ Decanoic acid $334-48-5$ $>90.0\%$ Aladdin $C_{10}H_{20}O_2$ $2190$ $20170$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pantolactone                       | 599-04-2   | >99.0%            | Sigma-Aldrich              | $C_6H_{10}O_3$                                | 1935 | 19860                                    |
| Solion $2864-35-9$ >97.0%Sigma-Aldrich $C_6H_8O_3$ $2108$ $4980$ $\gamma$ -Undecalactone104-67-6>98.0%Sigma-Aldrich $C_{11}H_{20}O_2$ 21613520AcidButanoic acid107-92-6 $\geq 99.5\%$ Sigma-Aldrich $C_4H_8O_2$ 157430960Hexanoic acid142-62-1 $\geq 99.5\%$ Macklin $C_6H_{12}O_2$ 176225780Ethylhexanoic acid149-57-5 $\geq 99.9\%$ Aladdin $C_8H_{16}O_2$ 186010090Octanoic acid124-07-2 $\geq 99.5\%$ Aladdin $C_8H_{16}O_2$ 197356880Decanoic acid334-48-5>99.0%Aladdin $C_{10}H_{20}O_2$ 210020170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | γ-Decalactone                      | 706-14-9   | >98.0%            | Sigma-Aldrich              | $C_{10}H_{18}O_2$                             | 2041 | 3700                                     |
| $\gamma$ -Undecalactone104-67-6>98.0%Sigma-Aldrich $C_{11}H_{20}O_2$ 21613520AcidButanoic acid107-92-6 $\geq$ 99.5%Sigma-Aldrich $C_4H_8O_2$ 157430960Hexanoic acid142-62-1 $\geq$ 99.5%Macklin $C_6H_{12}O_2$ 176225780Ethylhexanoic acid149-57-5 $\geq$ 99.9%Aladdin $C_8H_{16}O_2$ 186010090Octanoic acid124-07-2 $\geq$ 99.5%Aladdin $C_8H_{16}O_2$ 197356880Decanoic acid334-48-5>99.0%Aladdin $C_{10}H_{20}O_2$ 219020170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sotolon                            | 28664-35-9 | >97.0%            | Sigma-Aldrich              | C <sub>6</sub> H <sub>8</sub> O <sub>3</sub>  | 2108 | 4980                                     |
| ArticleButanoic acid107-92-6 $\geq 99.5\%$ Sigma-Aldrich $C_4H_8O_2$ 157430960Hexanoic acid142-62-1 $\geq 99.5\%$ Macklin $C_6H_{12}O_2$ 176225780Ethylhexanoic acid149-57-5 $\geq 99.9\%$ Aladdin $C_8H_{16}O_2$ 186010090Octanoic acid124-07-2 $\geq 99.5\%$ Aladdin $C_8H_{16}O_2$ 197356880Decanoic acid334-48-5 $>99.0\%$ Aladdin $C_{10}H_{20}O_2$ 219020170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Acid                               | 104-07-0   | ≫98.0%            | Sigilia-Aldrich            | $C_{11}\Pi_{20}O_2$                           | 2101 | 3320                                     |
| Butanoic actu         107-92-0 $\leq 99.5\%$ Sigma-Aldrich $C_4 H_8 O_2$ 1574         30960           Hexanoic acid         142-62-1 $\geq 99.5\%$ Macklin $C_6 H_{12} O_2$ 1762         25780           Ethylhexanoic acid         149-57-5 $\geq 99.9\%$ Aladdin $C_8 H_{16} O_2$ 1860         10090           Octanoic acid         124-07-2 $\geq 99.5\%$ Aladdin $C_8 H_{16} O_2$ 1973         56880           Decanoic acid         334-48-5 $>99.0\%$ Aladdin $C_{10} H_{20} O_2$ 2190         20170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Rutanoic acid                      | 107.02.6   | >00 E0/           | Sigma Aldrich              | CHO                                           | 1574 | 20060                                    |
| Itexation actu         I42-02-1 $\leq 99.5\%$ Macklin $C_6H_{12}O_2$ $1762$ $25/80$ Ethylhexanoic acid         149-57-5 $\geq 99.9\%$ Aladdin $C_8H_{16}O_2$ 1860         10090           Octanoic acid         124-07-2 $\geq 99.5\%$ Aladdin $C_8H_{16}O_2$ 1973         56880           Decanoic acid         334-48-5 $>99.0\%$ Aladdin $C_{10}H_{20}O_2$ 2190         20170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Herenoic acid                      | 107-92-0   | 299.3%            | Sigilia-Aldrich<br>Modelin |                                               | 17/4 | 25780                                    |
| Litty in Cxanoc acid         149-57-5 $\geq 99.5\%$ Ataddin $C_8H_{16}O_2$ 1800         10090           Octanoic acid         124-07-2 $\geq 99.5\%$ Aladdin $C_8H_{16}O_2$ 1973         56880           Decanoic acid         334-48-5 $> 99.0\%$ Aladdin $C_{1n}H_{2n}O_2$ 2190         20170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ethylbevanoic acid                 | 142-02-1   | ≥99.3%<br>>00.00/ | Aladdin                    | CHO                                           | 1/02 | 10090                                    |
| Decanoic acid         334-48-5         >99.0%         Aladdin $C_{1n}H_{2n}O_2$ 19/3         50680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Octanoic acid                      | 124-07 2   | >90 50%           | Aladdin                    | CH 0                                          | 1073 | 56880                                    |
| Decanoic acia 354-40-5   235.070   Alduulli   C <sub>10</sub> 11 <sub>20</sub> O <sub>2</sub>   2170   20170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Decanoic acid                      | 334-48-5   | <u>~ 77.370</u>   | Aladdin                    | С Н О                                         | 2190 | 20170                                    |
| Benzoic acid 65-85-0 >99.9% Aladdin CHO 2378 11630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Benzoic acid                       | 65-85-0    | >99.9%            | Aladdin                    | C-H-O                                         | 2378 | 11630                                    |
| Continued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Continued                          |            |                   |                            | 5/1602                                        | 2070 |                                          |

| Compounds                     | CAS No.    | Purity       | Manufacturer     | Formula                                      | RI   | $Content^{h}/\mu g.L^{-1}$ |
|-------------------------------|------------|--------------|------------------|----------------------------------------------|------|----------------------------|
| Pyrazine                      |            |              |                  |                                              |      |                            |
| 3-Isopropyl-2-methoxypyrazine | 25773-40-4 | >97.0%       | Sigma-Aldrich    | $C_8H_{12}ON_2$                              | 1435 | 1280                       |
| 2-sec-Butyl-3-Methoxypyrazine | 24168-70-5 | >99.0%       | Sigma-Aldrich    | $C_9H_{14}ON_2$                              | 1453 | 980                        |
| 5-Ethyl-2,3-dimethylpyrazine  | 15707-34-3 | >98.0%       | Sigma-Aldrich    | $C_8H_{12}N_2$                               | 1459 | 2230                       |
| 2-Isobutyl-3-methoxypyrazine  | 24683-00-9 | >99.0%       | Sigma-Aldrich    | $\mathrm{C_9H_{14}ON_2}$                     | 1513 | 1490                       |
| Acetylpyrazine                | 22047-25-2 | >97.0%       | Sigma-Aldrich    | $C_6H_6N_2O$                                 | 1565 | 2010                       |
| Furan                         |            |              |                  |                                              |      |                            |
| Furfural                      | 98-01-1    | >99.0%       | Sigma-Aldrich    | $C_5H_4O_2$                                  | 1472 | 5250                       |
| Acetylfuran                   | 1192-62-7  | >99.0%       | Sigma-Aldrich    | $C_6H_6O_2$                                  | 1505 | 9840                       |
| 5-Methylfurfural              | 620-02-0   | >99.0%       | Sigma-Aldrich    | $C_6H_6O_2$                                  | 1540 | 1740                       |
| Ethyl 2-furoate               | 614-99-3   | >99.0%       | Sigma-Aldrich    | $C_7H_8O_3$                                  | 1565 | 4250                       |
| Furfuryl alcohol              | 98-00-0    | >98.0%       | Sigma-Aldrich    | $C_5H_6O_2$                                  | 1585 | 10820                      |
| 5-Hydroxymethylfurfural       | 67-47-0    | >99.0%       | Sigma-Aldrich    | C <sub>6</sub> H <sub>6</sub> O <sub>3</sub> | 2415 | 20050                      |
| Terpenes                      |            |              |                  |                                              |      |                            |
| D-Limonene                    | 5989-27-5  | ≥99.0%       | TCI              | C10H16                                       | 1203 | 1860                       |
| Terpinolene                   | 586-62-9   | >90.0%       | TCI              | C10H16                                       | 1284 | 2330                       |
| β-Linalool                    | 78-70-6    | >98.0%       | Macklin          | C10H18O                                      | 1527 | 2410                       |
| Citronellyl acetate           | 150-84-5   | ≥95.0%       | Aladdin          | $C_{12}H_{22}O_2$                            | 1583 | 3180                       |
| β-Ionone                      | 14901-07-6 | >97.0%       | Aladdin          | C13H20                                       | 1833 | 1560                       |
| Benzene                       |            |              |                  |                                              |      |                            |
| o-Xylene                      | 95-47-6    | ≥99.0%       | Macklin          | $C_8H_{10}$                                  | 1192 | 1520                       |
| Styrene                       | 100-42-5   | ≥99.5%       | Macklin          | C <sub>8</sub> H <sub>8</sub>                | 1264 | 2190                       |
| <i>p</i> -Cymene              | 99-87-6    | ≥99.5%       | Macklin          | C10H14                                       | 1273 | 2900                       |
| Naphthalene                   | 91-20-3    | $\geq$ 99.5% | Macklin          | C10H8                                        | 1635 | 2070                       |
| Volatile phenol               |            |              |                  |                                              |      |                            |
| 4-Methylguaiacol              | 93-51-6    | >99.0%       | Sigma-Aldrich    | $\mathrm{C_8H_{10}O_2}$                      | 1860 | 2820                       |
| o-Cresol                      | 95-48-7    | >99.0%       | Sigma-Aldrich    | C <sub>7</sub> H <sub>7</sub> O              | 1913 | 4980                       |
| 4-Propylguaiacol              | 2785-87-7  | >99.0%       | Sigma-Aldrich    | $C_{10}H_{14}O_2$                            | 2011 | 5370                       |
| 4-Vinylphenol                 | 2628-17-3  | >95.0%       | Sigma-Aldrich    | C <sub>8</sub> H <sub>8</sub> O              | 2306 | 2540                       |
| Sulfide                       |            |              |                  |                                              |      |                            |
| 3-(Methylthio)propanol        | 505-10-2   | ≥99.0%       | Macklin          | C <sub>4</sub> H <sub>10</sub> OS            | 1618 | 6600                       |
| Internal standard             |            |              |                  |                                              |      |                            |
| 4-Methyl-2-pentanol           | 108-11-2   | ≥98.0%       | CNW <sup>f</sup> | C <sub>6</sub> H <sub>14</sub> O             | 1065 | 1000                       |

**Table 1.** The information of standards used in this study. <sup>a</sup>Shanghai Macklin Biochemical Co., Ltd (Shanghai, China). <sup>b</sup>Aladdin Bio-Chem Technology (Shanghai, China). <sup>c</sup>Adamas Reagent, Co., Ltd. (Shanghai, China). <sup>d</sup>TCI Development Co., Ltd. (Shanghai, China). <sup>e</sup>Sigma-Aldrich (St. Louis, MO, USA). <sup>f</sup>CNW Technologies GmbH (Duesseldorf, Germany). <sup>g</sup>Bide Pharmatech Ltd. (Shanghai, China). <sup>h</sup>The contents of spiked standard mixtures used in direct liquid introduction method.

depth and breadth of GC-MS technology<sup>35,36</sup>. At present, GC-Orbitrap-MS began to be used to detect pesticide residues<sup>37</sup>, nitrosamines in children's products<sup>38</sup>, persistent organic pollutants in the environment<sup>39</sup>, soluble and extractable substances in package materials<sup>40</sup>, stimulants and banned substances in urine<sup>41</sup> and metabonomics<sup>42</sup>. GC-Orbitrap-MS can provide accurate qualitative quantification of benzene compounds in chili peppers<sup>43</sup>. In summary, the GC-Orbitrap-MS could be a potential technique for the determination of aroma volatile compounds in fruit wines due to its high resolution and high sensitivity.

At present, the NIST library is widely used for the identification of aroma volatile compounds analyzed by gas chromatography-mass spectrometry<sup>7,8,44,45</sup>. However, the mass spectrums in the NIST library were mostly obtained by low-resolution mass spectrometry. There were differences in ion fragments and ion abundance between high-resolution mass spectrums obtained by GC-Orbitrap-MS and low-resolution mass spectrometry (HRMS) spectrums of aroma compounds analyzed by GC-Orbitrap-MS need to be established for accurate identification. In addition, the basic information of aroma compounds, such as CAS number, chemical structure diagram, aroma description and aroma threshold (ortho-nasally), need to be acquired by a large collection of literature. Thus, there is an urgent need to establish a library of HRMS spectrum and basic information to facilitate analyzing and consulting by scholars all over the world.

| ImageImageImageImageImageImageImageImageImageImageEuroEuroEuroIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenIntenInten<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        | Precursor ions |                                                |            | Quantifier io | ns                                           |            | Qualifier ions |                                              |            |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------|------------------------------------------------|------------|---------------|----------------------------------------------|------------|----------------|----------------------------------------------|------------|--|--|
| Non-NormalNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameName <td>Compounds</td> <td>Exact mass</td> <td>Molecular</td> <td>Error mass</td> <td>Exact mass</td> <td>Molecular</td> <td>Error mass</td> <td>Exact mass</td> <td>Molecular</td> <td>Error mass</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Compounds                              | Exact mass     | Molecular                                      | Error mass | Exact mass    | Molecular                                    | Error mass | Exact mass     | Molecular                                    | Error mass |  |  |
| matrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatrixmatr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ester                                  | (111/2)        | Iormuta                                        | (ppm)      | (111/2)       | Toriniula                                    | (PPm)      | (111/2)        | Iormula                                      | (PPIII)    |  |  |
| matrix<br>indipindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ethyl butanoate                        |                |                                                |            | 43 05422      | C <sub>2</sub> H <sub>2</sub>                | -0.99526   | 88 05202       | C.H.O.                                       | 0 7668     |  |  |
| market and anomaly and a strengt of the strengt o | Ethyl 2-methylbutanoate                |                |                                                |            | 74 03639      | C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> | 0.2198     | 102.0677       | C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> | 0.41588    |  |  |
| any sectorany sectorany sectorany sectorany sectorany sectorany sectorbeingy lacenationany sectorany sector <td< td=""><td>Ethyl isovalerate</td><td></td><td></td><td></td><td>57.06997</td><td>C.H.</td><td>0.2190</td><td>61 0285</td><td>C.H.O.</td><td>0.11900</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ethyl isovalerate                      |                |                                                |            | 57.06997      | C.H.                                         | 0.2190     | 61 0285        | C.H.O.                                       | 0.11900    |  |  |
| andandandandandandandandandandandandBahy hermanateIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII </td <td>Isoamyl acetate</td> <td></td> <td></td> <td></td> <td>43 01782</td> <td>C.H.O</td> <td>-1.06298</td> <td>55 05433</td> <td>C.H.</td> <td>0.6148</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Isoamyl acetate                        |                |                                                |            | 43 01782      | C.H.O                                        | -1.06298   | 55 05433       | C.H.                                         | 0.6148     |  |  |
| many power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Methyl caproate                        |                |                                                |            | 43 01782      | C.H.O                                        | -0.70828   | 74 03639       | C.H.O.                                       | 0.52895    |  |  |
| mathy heptanomeindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindindi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ethyl hexanoate                        |                |                                                |            | 43 05422      | C <sub>2</sub> H <sub>2</sub>                | -0.99526   | 73 02851       | C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> | 0.70783    |  |  |
| InductionImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ethyl heptanoate                       |                |                                                |            | 73 02854      | CaH-Oa                                       | 0 49889    | 88 05192       | C.H.O.                                       | 0.42009    |  |  |
| math         math <th< td=""><td>Ethyl lactate</td><td></td><td></td><td></td><td>45 03354</td><td>C<sub>2</sub>H<sub>2</sub>O</td><td>1 30819</td><td>56.0621</td><td>C.H.</td><td>0.9174</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ethyl lactate                          |                |                                                |            | 45 03354      | C <sub>2</sub> H <sub>2</sub> O              | 1 30819    | 56.0621        | C.H.                                         | 0.9174     |  |  |
| modely         modely<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Heptyl acetate                         |                |                                                |            | 43 01778      | C <sub>2</sub> H <sub>2</sub> O              | -0.17621   | 70.07773       | C <sub>2</sub> H <sub>10</sub>               | 0.8118     |  |  |
| Barly appriate         Image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Methyl octanoate                       |                |                                                |            | 43 01782      | C <sub>2</sub> H <sub>2</sub> O              | -0.70828   | 74 03639       | C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> | 0.73505    |  |  |
| Bayly - Mydroxphurytate         Image         Bayly - Mydroxphurytate         Image         Bayly - Mydroxphurytate         Image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ethyl caprylate                        |                |                                                |            | 73.02845      | C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> | -0.44136   | 101.05977      | CrH <sub>2</sub> O <sub>2</sub>              | -0.43741   |  |  |
| International basis         International basis <thinternatecona basis<="" th="">         Internatecona basis</thinternatecona>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ethyl 3-hydroxybutyrate                |                |                                                |            | 43 01778      | C <sub>2</sub> H <sub>2</sub> O              | -0.6196    | 71.01285       | C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> | 1 29569    |  |  |
| Birly 1-Markan         Birly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ethyl nonanoate                        |                |                                                |            | 73.02845      | C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> | -0.54583   | 101.05977      | C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> | -0.51291   |  |  |
| Intry capacity         Intry capacity <thintry capacity<="" th="">         Intry c</thintry>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ethyl 2-hydroxy-4-methylpentanoate     |                |                                                |            | 69.06999      | C <sub>2</sub> H <sub>0</sub>                | 0.12138    | 45.03355       | C_H_O                                        | 1.22348    |  |  |
| http://product                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ethyl caprate                          |                |                                                |            | 73.02853      | C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> | 0.39441    | 61.0285        | C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> | 0.28445    |  |  |
| L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L <thl< th="">         L         <thl< th=""> <thl< th=""></thl<></thl<></thl<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ethyl succinate                        |                |                                                |            | 101.02348     | C <sub>4</sub> H <sub>2</sub> O <sub>2</sub> | 0.02484    | 73.02853       | C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> | 0.60336    |  |  |
| Detay         Detay <t< td=""><td>Methyl salicylate</td><td>152.04683</td><td>C<sub>0</sub>H<sub>0</sub>O<sub>2</sub></td><td>0.22088</td><td>120.02077</td><td>C<sub>4</sub>H<sub>2</sub>O<sub>2</sub></td><td>0.28082</td><td>92.02578</td><td>C.H.O</td><td>0.15454</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Methyl salicylate                      | 152.04683      | C <sub>0</sub> H <sub>0</sub> O <sub>2</sub>   | 0.22088    | 120.02077     | C <sub>4</sub> H <sub>2</sub> O <sub>2</sub> | 0.28082    | 92.02578       | C.H.O                                        | 0.15454    |  |  |
| IndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndex <th< td=""><td>Ethyl benzeneacetate</td><td>164.08322</td><td>C<sub>10</sub>H<sub>12</sub>O<sub>2</sub></td><td>0.24546</td><td>91.05439</td><td>C<sub>2</sub>H<sub>2</sub></td><td>-0.13544</td><td>136.05219</td><td>C<sub>0</sub>H<sub>0</sub>O<sub>2</sub></td><td>0.66442</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ethyl benzeneacetate                   | 164.08322      | C <sub>10</sub> H <sub>12</sub> O <sub>2</sub> | 0.24546    | 91.05439      | C <sub>2</sub> H <sub>2</sub>                | -0.13544   | 136.05219      | C <sub>0</sub> H <sub>0</sub> O <sub>2</sub> | 0.66442    |  |  |
| Instruction         Instruction <thinstruction< th=""> <thinstruction< th=""></thinstruction<></thinstruction<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ethyl salicylate                       | 166.06245      | C <sub>0</sub> H <sub>10</sub> O <sub>2</sub>  | 0.05133    | 120.02077     | C-H.O                                        | 0.40795    | 92.02578       | C.H.O                                        | 0.15454    |  |  |
| IndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexEthyl cinnante176.0831 $C_{11L_DQ}$ 0.96579131.04938 $C_{41,Q}$ 0.9030773.02853 $C_{41,Q}$ 0.60336Monoethyl succinate11111110.03348 $C_{41,Q}$ 0.1003673.02853 $C_{41,Q}$ 0.60336CH-Pertual111110.1779569.03339 $C_{41,Q}$ 0.46658(b)-2-Chenal1183.04919 $C_{41,Q}$ 0.1779541.03839 $C_{41,Q}$ -4.80253(b)-2-Chenal1111114.0389 $C_{41,Q}$ 11-4.80253(b)-2-Chenal1111111111111-4.8025311111111111111111111111111111111111111111111111111111111111111111111111111111111 <td>Ethyl hydrocinnamate</td> <td>178.09898</td> <td>CuHuO</td> <td>0.85652</td> <td>104.06216</td> <td>C<sub>0</sub>H<sub>0</sub></td> <td>0.34761</td> <td>105.06997</td> <td>C<sub>0</sub>H<sub>0</sub></td> <td>0.15241</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ethyl hydrocinnamate                   | 178.09898      | CuHuO                                          | 0.85652    | 104.06216     | C <sub>0</sub> H <sub>0</sub>                | 0.34761    | 105.06997      | C <sub>0</sub> H <sub>0</sub>                | 0.15241    |  |  |
| honoethyl succinatehonoethyl su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ethyl cinnamate                        | 176.08331      | C <sub>11</sub> H <sub>12</sub> O <sub>2</sub> | 0.96579    | 131.04938     | C <sub>0</sub> H <sub>2</sub> O              | 0.98604    | 103.05436      | C <sub>0</sub> H <sub>7</sub>                | 0.62066    |  |  |
| Carbony compoundsCarbony compoundsCarbony compounds(E)-2-HexenalII83.04919 $C_3H_2O$ 0.1779569.03339 $C_6H_9O$ 0.46658(E)-2-HeptenalI83.04919 $C_3H_2O$ 0.5454241.03839 $C_4H_5$ $-3.22212$ (E)-2-OctenalII83.04919 $C_3H_2O$ 0.1779541.03839 $C_3H_5$ $-3.22212$ (E)-2-OctenalII81.03377 $C_3H_3O$ 0.26157109.0647 $C_1H_9O$ 0.11559(E,2)-2,4-HeptadienalII11.112991.05439 $C_3H_5$ $-4.33758$ 70.04136 $C_1H_9O$ 0.41862Benzenecactaldehyde120.05711 $C_8H_9O$ 1.1412991.05439 $C_3H_5$ $-4.52349$ 45.03366 $C_7H_9O$ 2.32468IsobutanolIII1.0384 $C_3H_5$ $-4.52349$ 45.03366 $C_2H_9O$ 2.32468IsobutanolIIIIIIIIIIII-PetnanolIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Monoethyl succinate                    |                | 01112 0 2                                      |            | 101.02348     | C <sub>4</sub> H <sub>2</sub> O <sub>2</sub> | 0.10036    | 73.02853       | C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> | 0.60336    |  |  |
| Barbon Market        | Carbonyl compounds                     |                |                                                |            |               | -433                                         |            |                | 03502                                        |            |  |  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (E)-2-Hexenal                          |                |                                                |            | 83.04919      | CrH-O                                        | 0.17795    | 69.03339       | C.H.O                                        | 0.46658    |  |  |
| (b) 1 or primin         (c) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (E)-2-Heptenal                         |                |                                                |            | 83 04919      | C-H-O                                        | 0 54542    | 41 03839       | C <sub>o</sub> H <sub>c</sub>                | -3 22212   |  |  |
| (c) Forthal(c) Forth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (E)-2-Octenal                          |                |                                                |            | 83 04919      | C-H-O                                        | 0.17795    | 41 03839       | C <sub>2</sub> H <sub>2</sub>                | -4 80235   |  |  |
| (c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(c))(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (E, F)-2.4-Heptadienal                 |                |                                                |            | 81 03347      | C-H-O                                        | -0.26157   | 109.0647       | C_H_O                                        | 0 11559    |  |  |
| (A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ( <i>E</i> , <i>Z</i> )-2.6-Nonadienal |                |                                                |            | 41.03839      | C <sub>2</sub> H <sub>2</sub>                | -4.33758   | 70.04136       | C.H.O                                        | -0.48152   |  |  |
| High alcohols         High alcohols         High alcohols         January and allow allows         January allows         Galaxy allows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Benzeneacetaldehyde                    | 120.05711      | C <sub>0</sub> H <sub>0</sub> O                | 1.14129    | 91.05439      | C <sub>2</sub> H <sub>2</sub>                | 0.61866    | 92.06208       | C <sub>7</sub> H <sub>0</sub>                | 0.31004    |  |  |
| δ         41.0384         C <sub>3</sub> H <sub>5</sub> -4.52349         45.0336         C <sub>2</sub> H <sub>3</sub> O         2.32468           Isoamylol         I         6         57.0699         C <sub>4</sub> H <sub>9</sub> 0.41428         70.07784         C <sub>3</sub> H <sub>10</sub> 0.37632           1-Pentanol         I         6         57.0699         C <sub>4</sub> H <sub>9</sub> 0.54796         70.07784         C <sub>3</sub> H <sub>10</sub> 0.59406           2-Heptanol         I         6         57.06991         C <sub>4</sub> H <sub>9</sub> 0.88465         83.08566         C <sub>6</sub> H <sub>11</sub> 0.5339           3-Octenol         I         I         6         57.03555         C <sub>3</sub> H <sub>3</sub> O         0.49786         85.06478         C <sub>5</sub> H <sub>9</sub> O         0.5096           1-Heptanol         I         I         6         57.03355         C <sub>3</sub> H <sub>3</sub> O         0.49786         85.06478         C <sub>5</sub> H <sub>9</sub> O         0.5096           1-Heptanol         I         I         6         57.03355         C <sub>3</sub> H <sub>3</sub> O         1.06288         70.07384         C <sub>5</sub> H <sub>9</sub> O         0.50896           1-Heptanol         I         I         105.03364         C <sub>7</sub> H <sub>3</sub> O         1.04819         I.04910         I.20.0542         C <sub>7</sub> H <sub>6</sub> O         0.50896           2-Nonanol         I         I         I <td>High alcohols</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                      | High alcohols                          |                |                                                |            |               |                                              |            |                |                                              |            |  |  |
| IsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylolIsoamylol <td>Isobutanol</td> <td></td> <td></td> <td></td> <td>41.0384</td> <td>C<sub>2</sub>H<sub>5</sub></td> <td>-4.52349</td> <td>45.0336</td> <td>C<sub>2</sub>H<sub>5</sub>O</td> <td>2.32468</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Isobutanol                             |                |                                                |            | 41.0384       | C <sub>2</sub> H <sub>5</sub>                | -4.52349   | 45.0336        | C <sub>2</sub> H <sub>5</sub> O              | 2.32468    |  |  |
| 1-PentanolImage: Constraint of the second seco          | Isoamvlol                              |                |                                                |            | 57.0699       | C <sub>4</sub> H <sub>0</sub>                | 0.41428    | 70.07784       | C <sub>r</sub> H <sub>10</sub>               | 0.37632    |  |  |
| 2-HeptanolImage: Constraint of the section of the secti          | 1-Pentanol                             |                |                                                |            | 57.06991      | C <sub>4</sub> H <sub>o</sub>                | 0.54796    | 70.07784       | C <sub>5</sub> H <sub>10</sub>               | 0.59406    |  |  |
| AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA <th< td=""><td>2-Heptanol</td><td></td><td></td><td></td><td>45.03354</td><td>C<sub>2</sub>H₅O</td><td>0.88465</td><td>83.08566</td><td>C<sub>6</sub>H<sub>11</sub></td><td>0.5339</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2-Heptanol                             |                |                                                |            | 45.03354      | C <sub>2</sub> H₅O                           | 0.88465    | 83.08566       | C <sub>6</sub> H <sub>11</sub>               | 0.5339     |  |  |
| 1-HeptanolImage: Market M          | 3-Octenol                              |                |                                                |            | 57.03355      | C <sub>3</sub> H <sub>5</sub> O              | 0.49786    | 85.06478       | C₅H₀O                                        | 0.50696    |  |  |
| 2-NonanolImage: constraint of the second secon          | 1-Heptanol                             |                |                                                |            | 43.05422      | C <sub>2</sub> H <sub>3</sub> O              | -1.06298   | 70.07338       | C <sub>5</sub> H <sub>10</sub>               | 0.48519    |  |  |
| 1-OctanolImage: constraint of the second secon          | 2-Nonanol                              |                |                                                |            | 105.03364     | C <sub>7</sub> H <sub>5</sub> O              | 0.74249    | 122.03642      | C <sub>7</sub> H <sub>6</sub> O <sub>2</sub> | 0.75852    |  |  |
| 2-Phenylethanol122.07275 $C_8H_{10}O$ 1.0631191.05439 $C_7H_7$ 0.9538292.06208 $C_7H_8$ $-0.51868$ 2-PhenoxyethanolIII08.05687 $C_7H_8O$ $-0.89706$ 94.04132 $C_6H_6O$ 0.04701Lactone $\gamma$ -UndecalactoneIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1-Octanol                              |                |                                                |            | 69.06999      | C <sub>5</sub> H <sub>9</sub>                | 0.23184    | 55.05433       | C <sub>4</sub> H <sub>7</sub>                | 0.3996     |  |  |
| 2-Phenoxyethanol         108.05687         C <sub>7</sub> H <sub>8</sub> O         -0.89706         94.04132         C <sub>6</sub> H <sub>6</sub> O         0.04701           Lactone         94.04132         C <sub>6</sub> H <sub>6</sub> O         0.04701           γ-Undecalactone         85.02853         C <sub>4</sub> H <sub>5</sub> O <sub>2</sub> 0.69766         95.0493         C <sub>6</sub> H <sub>7</sub> O         0.95817           δ-Octalactone         99.04407         C <sub>5</sub> H <sub>7</sub> O <sub>2</sub> -0.11627         71.04915         C <sub>4</sub> H <sub>7</sub> O         0.74492           γ-Octalactone         85.02851         C <sub>4</sub> H <sub>5</sub> O <sub>2</sub> -0.10989         57.03359         C <sub>3</sub> H <sub>5</sub> O         0.49786                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2-Phenylethanol                        | 122.07275      | C <sub>8</sub> H <sub>10</sub> O               | 1.06311    | 91.05439      | C <sub>7</sub> H <sub>7</sub>                | 0.95382    | 92.06208       | C <sub>7</sub> H <sub>8</sub>                | -0.51868   |  |  |
| Lactone         Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2-Phenoxyethanol                       |                |                                                |            | 108.05687     | C <sub>7</sub> H <sub>8</sub> O              | -0.89706   | 94.04132       | C <sub>6</sub> H <sub>6</sub> O              | 0.04701    |  |  |
| γ-Undecalactone         85.02853         C <sub>4</sub> H <sub>5</sub> O <sub>2</sub> 0.69766         95.0493         C <sub>6</sub> H <sub>7</sub> O         0.95817           δ-Octalactone         99.04407         C <sub>5</sub> H <sub>7</sub> O <sub>2</sub> -0.11627         71.04915         C <sub>4</sub> H <sub>7</sub> O         0.74492           γ-Octalactone         85.02851         C <sub>4</sub> H <sub>5</sub> O <sub>2</sub> -0.10899         57.03359         C <sub>3</sub> H <sub>5</sub> O         0.49786                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lactone                                |                |                                                |            |               | , .                                          |            | 1              |                                              |            |  |  |
| $\delta$ -Octalactone         99.04407 $C_5H_7O_2$ $-0.11627$ $71.04915$ $C_4H_7O$ $0.74492$ $\gamma$ -Octalactone         85.02851 $C_4H_5O_2$ $-0.10989$ $57.03359$ $C_3H_5O$ $0.49786$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | γ-Undecalactone                        |                |                                                |            | 85.02853      | C <sub>4</sub> H <sub>5</sub> O <sub>2</sub> | 0.69766    | 95.0493        | C <sub>6</sub> H <sub>7</sub> O              | 0.95817    |  |  |
| γ-Octalactone 85.02851 C <sub>4</sub> H <sub>5</sub> O <sub>2</sub> -0.10989 57.03359 C <sub>3</sub> H <sub>5</sub> O 0.49786                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | δ-Octalactone                          |                |                                                |            | 99.04407      | C <sub>5</sub> H <sub>7</sub> O <sub>2</sub> | -0.11627   | 71.04915       | C <sub>4</sub> H <sub>7</sub> O              | 0.74492    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | γ-Octalactone                          |                |                                                |            | 85.02851      | C <sub>4</sub> H <sub>5</sub> O <sub>2</sub> | -0.10989   | 57.03359       | C <sub>3</sub> H <sub>5</sub> O              | 0.49786    |  |  |
| Pantolactone $71.04915$ $C_4H_7O$ $0.10063$ $43.05414$ $C_3H_7$ $-2.23569$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pantolactone                           |                |                                                |            | 71.04915      | C <sub>4</sub> H <sub>7</sub> O              | 0.10063    | 43.05414       | C <sub>3</sub> H <sub>7</sub>                | -2.23569   |  |  |
| γ-Decalactone 85.02853 C <sub>4</sub> H <sub>5</sub> O <sub>2</sub> 0.1593 95.0493 C <sub>6</sub> H <sub>7</sub> O 0.47656                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | γ-Decalactone                          |                |                                                |            | 85.02853      | C <sub>4</sub> H <sub>5</sub> O <sub>2</sub> | 0.1593     | 95.0493        | C <sub>6</sub> H <sub>7</sub> O              | 0.47656    |  |  |
| Sotolon         128.04693         C <sub>6</sub> H <sub>8</sub> O <sub>3</sub> 0.18604         83.04919         C <sub>5</sub> H <sub>7</sub> O         0.08357         55.05427         C <sub>4</sub> H <sub>7</sub> 0.81287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sotolon                                | 128.04693      | C <sub>6</sub> H <sub>8</sub> O <sub>3</sub>   | 0.18604    | 83.04919      | C <sub>5</sub> H <sub>7</sub> O              | 0.08357    | 55.05427       | C <sub>4</sub> H <sub>7</sub>                | 0.81287    |  |  |
| γ-Nonalactone 85.02851 C <sub>4</sub> H <sub>5</sub> O <sub>2</sub> -0.02016 57.03359 C <sub>3</sub> H <sub>5</sub> O 0.36409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | γ-Nonalactone                          |                |                                                |            | 85.02851      | C <sub>4</sub> H <sub>5</sub> O <sub>2</sub> | -0.02016   | 57.03359       | C <sub>3</sub> H <sub>5</sub> O              | 0.36409    |  |  |
| Acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Acid                                   | 1              | 1                                              | 1          | 1             |                                              | 1          | 1              |                                              | 1          |  |  |
| Butanoic acid 60.02063 C <sub>2</sub> H <sub>4</sub> O <sub>2</sub> 0.56154 73.02845 C <sub>3</sub> H <sub>5</sub> O <sub>2</sub> 0.39441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Butanoic acid                          |                |                                                |            | 60.02063      | C <sub>2</sub> H <sub>4</sub> O <sub>2</sub> | 0.56154    | 73.02845       | C <sub>3</sub> H <sub>5</sub> O <sub>2</sub> | 0.39441    |  |  |
| Hexanoic acid         73.02853         C <sub>3</sub> H <sub>5</sub> O <sub>2</sub> 0.18547         60.02069         C <sub>3</sub> H <sub>4</sub> O <sub>2</sub> 0.39361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Hexanoic acid                          |                |                                                |            | 73.02853      | C <sub>3</sub> H <sub>5</sub> O <sub>2</sub> | 0.18547    | 60.02069       | C <sub>2</sub> H <sub>4</sub> O <sub>2</sub> | 0.39361    |  |  |
| Ethylhexanoic acid         73.02853         C <sub>3</sub> H <sub>5</sub> O <sub>2</sub> 0.18547         87.04422         C <sub>4</sub> H <sub>7</sub> O <sub>2</sub> 0.48125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ethylhexanoic acid                     |                |                                                |            | 73.02853      | C <sub>3</sub> H <sub>5</sub> O <sub>2</sub> | 0.18547    | 87.04422       | C <sub>4</sub> H <sub>7</sub> O <sub>2</sub> | 0.48125    |  |  |
| Octanoic acid         73.02853         C <sub>3</sub> H <sub>5</sub> O <sub>2</sub> 0.18547         101.05988         C <sub>5</sub> H <sub>6</sub> O <sub>2</sub> 0.6195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Octanoic acid                          |                |                                                |            | 73.02853      | C <sub>3</sub> H <sub>5</sub> O <sub>2</sub> | 0.18547    | 101.05988      | C <sub>5</sub> H <sub>9</sub> O <sub>2</sub> | 0.6195     |  |  |
| Decanoic acid 73.02844 C <sub>3</sub> H <sub>5</sub> O <sub>2</sub> 0.49889 101.05976 C <sub>5</sub> H <sub>9</sub> O <sub>2</sub> 0.54401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Decanoic acid                          |                |                                                |            | 73.02844      | C <sub>3</sub> H <sub>5</sub> O <sub>2</sub> | 0.49889    | 101.05976      | C <sub>5</sub> H <sub>9</sub> O <sub>2</sub> | 0.54401    |  |  |
| Continued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Continued                              | 1              | 1                                              | 1          | 1             |                                              | 1          | 1              | 1                                            |            |  |  |

|                               | Precursor ion       | 15                                             |                                   | Quantifier io       | ns                                             |                     | Qualifier ions      |                                               |                     |  |  |  |
|-------------------------------|---------------------|------------------------------------------------|-----------------------------------|---------------------|------------------------------------------------|---------------------|---------------------|-----------------------------------------------|---------------------|--|--|--|
| Compounds                     | Exact mass<br>(m/z) | Molecular<br>formula                           | Error mass<br>(ppm <sup>a</sup> ) | Exact mass<br>(m/z) | Molecular<br>formula                           | Error mass<br>(ppm) | Exact mass<br>(m/z) | Molecular<br>formula                          | Error mass<br>(ppm) |  |  |  |
| Benzoic acid                  | 122.03632           | C <sub>7</sub> H <sub>6</sub> O <sub>2</sub>   | 0.75852                           | 105.03364           | C <sub>7</sub> H <sub>5</sub> O                | 0.66985             | 122.03642           | C <sub>7</sub> H <sub>6</sub> O <sub>2</sub>  | 0.75852             |  |  |  |
| Pyrazine                      |                     |                                                |                                   |                     |                                                |                     |                     |                                               |                     |  |  |  |
| 3-Isopropyl-2-methoxypyrazine | 152.09455           | C <sub>8</sub> H <sub>12</sub> ON <sub>2</sub> | 0.50811                           | 137.071             | C <sub>7</sub> H <sub>9</sub> ON <sub>2</sub>  | 0.50114             | 124.06324           | C <sub>6</sub> H <sub>8</sub> ON <sub>2</sub> | 0.86187             |  |  |  |
| 2-sec-Butyl-3-Methoxypyrazine | 166.10973           | C <sub>9</sub> H <sub>14</sub> ON <sub>2</sub> | -1.99624                          | 138.07886           | C <sub>7</sub> H <sub>10</sub> ON <sub>2</sub> | 0.56568             | 124.06321           | C <sub>6</sub> H <sub>8</sub> ON <sub>2</sub> | 0.75882             |  |  |  |
| 5-Ethyl-2,3-dimethylpyrazine  | 136.0996            | C <sub>8</sub> H <sub>12</sub> N <sub>2</sub>  | 0.64728                           | 135.0918            | $C_8H_{11}N_2$                                 | 0.714               | 121.07612           | $C_7H_9N_2$                                   | -0.02603            |  |  |  |
| 2-Isobutyl-3-methoxypyrazine  | 166.11008           | C <sub>9</sub> H <sub>14</sub> ON <sub>2</sub> | 0.08705                           | 124.0632            | C <sub>6</sub> H <sub>8</sub> ON <sub>2</sub>  | 0.58057             | 95.06044            | C <sub>5</sub> H <sub>7</sub> N <sub>2</sub>  | -0.08289            |  |  |  |
| Acetylpyrazine                | 122.04759           | C <sub>6</sub> H <sub>6</sub> ON <sub>2</sub>  | 0.53454                           | 94.0526             | $C_5H_6N_2$                                    | 0.35341             | 80.03695            | $C_4H_4N_2$                                   | 0.43185             |  |  |  |
| Furan                         |                     |                                                |                                   |                     |                                                |                     |                     |                                               |                     |  |  |  |
| Furfural                      | 96.02053            | $C_5H_4O_2$                                    | -0.84083                          | 95.01279            | $C_5H_3O_2$                                    | 0.16541             | 39.02277            | C <sub>3</sub> H <sub>3</sub>                 | -3.43066            |  |  |  |
| Acetylfuran                   | 110.03637           | C <sub>6</sub> H <sub>6</sub> O <sub>2</sub>   | 0.42523                           | 95.01281            | $C_5H_3O_2$                                    | 0.64721             | 43.01782            | C <sub>2</sub> H <sub>3</sub> O               | -0.41717            |  |  |  |
| 5-Methylfurfural              | 110.03625           | C <sub>6</sub> H <sub>6</sub> O <sub>2</sub>   | -0.47613                          | 109.02855           | $C_6H_5O_2$                                    | 0.68404             | 53.03864            | C <sub>4</sub> H <sub>5</sub>                 | 1.24689             |  |  |  |
| Ethyl 2-furoate               | 140.04697           | C <sub>7</sub> H <sub>8</sub> O <sub>3</sub>   | 0.56667                           | 95.01279            | $C_5H_3O_2$                                    | -0.07548            | 112.01554           | $C_5H_4O_3$                                   | -0.07007            |  |  |  |
| Furfuryl alcohol              | 98.03629            | C <sub>5</sub> H <sub>6</sub> O <sub>2</sub>   | 0.01035                           | 97.02851            | $C_5H_5O_2$                                    | 0.29686             | 81.0336             | C <sub>5</sub> H <sub>5</sub> O               | 0.11503             |  |  |  |
| 5-Hydroxymethylfurfural       | 126.03131           | C <sub>6</sub> H <sub>6</sub> O <sub>3</sub>   | 0.34424                           | 97.02849            | C <sub>5</sub> H <sub>5</sub> O <sub>2</sub>   | 0.29686             | 69.03357            | C <sub>4</sub> H <sub>5</sub> O               | 0.5771              |  |  |  |
| Terpenes                      |                     |                                                |                                   |                     |                                                |                     |                     |                                               |                     |  |  |  |
| D-Limonene                    | 136.1252            | C <sub>10</sub> H <sub>16</sub>                | 1.65914                           | 93.07005            | C <sub>7</sub> H <sub>9</sub>                  | 1.89353             | 121.10146           | C <sub>9</sub> H <sub>13</sub>                | 1.60836             |  |  |  |
| Terpinolene                   | 136.12471           | C <sub>10</sub> H <sub>16</sub>                | 0.4261                            | 121.10132           | C <sub>9</sub> H <sub>13</sub>                 | 0.22236             | 93.06999            | C <sub>7</sub> H <sub>9</sub>                 | 0.25403             |  |  |  |
| β-Linalool                    |                     |                                                |                                   | 93.07005            | C <sub>7</sub> H <sub>9</sub>                  | 0.41798             | 69.03339            | C <sub>5</sub> H <sub>9</sub>                 | 0.3423              |  |  |  |
| Citronellyl acetate           |                     |                                                |                                   | 81.06996            | C <sub>6</sub> H <sub>9</sub>                  | 0.00931             | 95.08559            | C <sub>7</sub> H <sub>11</sub>                | -0.17538            |  |  |  |
| β-Ionone                      |                     |                                                |                                   | 177.12753           | $C_{12}H_{17}O$                                | 0.28057             | 178.13091           | C <sub>12</sub> H <sub>17</sub> O             | -2.13518            |  |  |  |
| Benzene                       |                     |                                                |                                   |                     |                                                |                     |                     |                                               |                     |  |  |  |
| o-Xylene                      | 106.07779           | C8H10                                          | -0.11101                          | 91.05439            | C <sub>7</sub> H <sub>7</sub>                  | 0.03214             | 103.05429           | C <sub>8</sub> H <sub>7</sub>                 | 0.62066             |  |  |  |
| Styrene                       | 104.0621            | C <sub>8</sub> H <sub>8</sub>                  | -0.09229                          | 104.0621            | C <sub>8</sub> H <sub>8</sub>                  | -0.09229            | 78.04652            | C <sub>6</sub> H <sub>6</sub>                 | 0.78457             |  |  |  |
| <i>p</i> -Cymene              | 134.10954           | C <sub>10</sub> H <sub>14</sub>                | 0.39181                           | 119.0857            | C <sub>9</sub> H <sub>11</sub>                 | 0.05216             | 115.0543            | C <sub>9</sub> H <sub>7</sub>                 | 0.68855             |  |  |  |
| Naphthalene                   | 128.06218           | C10H8                                          | 0.04416                           | 128.06218           | $C_{10}H_{8}$                                  | 0.04416             | 129.06557           | C10H8                                         | -3.16989            |  |  |  |
| Volatile phenol               |                     |                                                |                                   |                     |                                                |                     |                     |                                               |                     |  |  |  |
| 4-Methylguaiacol              | 138.06754           | $C_8 H_{10} O_2$                               | 0.04814                           | 138.06754           | $C_8 H_{10} O_2$                               | 0.04814             | 123.04407           | $C_7H_7O_2$                                   | -0.00386            |  |  |  |
| o-Cresol                      | 107.04918           | C <sub>7</sub> H <sub>7</sub> O                | 0.20933                           | 107.04918           | C <sub>7</sub> H <sub>7</sub> O                | 0.20933             | 79.05427            | C <sub>6</sub> H <sub>7</sub>                 | 0.42305             |  |  |  |
| 4-Propylguaiacol              | 166.09877           | $C_{10}H_{14}O_2$                              | -0.18399                          | 137.05968           | $C_8H_9O_2$                                    | 0.01147             | 122.03631           | $C_7H_6O_2$                                   | 0.19587             |  |  |  |
| 4-Vinylphenol                 | 120.057             | C <sub>8</sub> H <sub>8</sub> O                | 0.14583                           | 120.057             | C <sub>8</sub> H <sub>8</sub> O                | 0.14583             | 91.05425            | C <sub>7</sub> H <sub>7</sub>                 | 0.19972             |  |  |  |
| Sulfide                       |                     |                                                |                                   |                     |                                                |                     |                     |                                               |                     |  |  |  |
| 3-(Methylthio)propanol        | 106.04483           | C <sub>7</sub> H <sub>6</sub> O                | 3.52157                           | 106.04483           | C <sub>7</sub> H <sub>6</sub> O                | 3.52157             | 88.03425            | $C_7H_4$                                      | 3.50426             |  |  |  |
| Internal standard             |                     |                                                |                                   |                     |                                                |                     |                     |                                               |                     |  |  |  |
| 4-Methyl-2-pentanol           |                     |                                                |                                   | 45.03355            | C <sub>2</sub> H <sub>5</sub> O                | 0.79994             |                     |                                               |                     |  |  |  |

 Table 2.
 The qualitative and quantitative information of target volatile compounds. <sup>a</sup>ppm means parts per million mass error.

------

#### Methods

**Overview of the experimental design**. *Materials and methods*. Chemical and reagents The information of standards was shown in Table 1. The individual stock solution of each standard is dissolved in ethanol and stored at -20 °C.

Wine Samples collectionThree kinds of commercial fruit wines (blueberry wine, B, goji berry wine, G and hawthorn wine, H) purchased from retail stores in China were used for the establishment of HRMS library. All blueberry samples were with an alcohol content of 12% v/v (percent by volume). Three blueberry wines were received from Beiyushidai, including blueberry dry wine produced in 2019 (B1) and 2017 (B2) and blueberry semi-dry wine produced in 2019 (B3). A blueberry dry wine (B4) was produced by Shenghua in 2019. Another blueberry dry wine (B5) produced in 2019 was provided by Yicunshanye. Goji berry semi-dry wine (G1) was produced by Ningxiahong in 2019, with an alcohol content of 7% v/v. Four batches of goji berry dry wine (G2-G5) produced by Senmiao in 2017 were with an alcohol content of 11% v/v. G6 was made by our laboratory in 2016 with an alcohol content of 11% v/v. All hawthorn wine samples were semi-dry wines from Shengbali. H1 and H2 produced in 2019 were with an alcohol content of 12% v/v. The other H3-H5 were produced in 2020 with an alcohol content of 13% v/v from Shengbali.

Preparation of the spiked mixtureThe direct liquid introduction method was used to determine the mass spectral information of the target compound. The standard mixtures (Mixture 1 with 24 esters, Mixture 2 with 6 carbonyl compounds and 8 lactones and 6 acids, Mixture 3 with10 high alcohols and 6 furans and 5 pyrazines, Mixture 4 with 5 terpenes and 4 benzenes and 4 volatile phenols and 1 sulfide) were prepared to extract. The mother solution of each compound was dissolved in ethanol at higher concentration. Each standard mixtures were mixed by the mother solution of compounds according to the concentrations (Table 1). The standard

| Compounds                          | B1           | B2           | B3           | B4           | B5           | G1           | G2           | G3           | G4           | G5           | G6           | H1           | H2           | H3           | H4           | H5           |
|------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Ester                              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |
| Ethyl butanoate                    | $\checkmark$ |              |              | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |              |              | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |
| Ethyl 2-methylbutanoate            | $\checkmark$ |              |              | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |              | $\checkmark$ |              |
| Ethyl isovalerate                  | $\checkmark$ |              |              | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |              | $\checkmark$ |              |
| Isoamyl acetate                    |              |              |              | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |              |              |              |              |              |              |              |              |              |
| Methyl caproate                    |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |
| Ethyl hexanoate                    |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |
| Ethyl heptanoate                   |              |              |              | $\checkmark$ | $\checkmark$ |              |              |              |              |              |              |              |              |              |              |              |
| Ethyl lactate                      |              | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |              | $\checkmark$ |              | $\checkmark$ |              |              |              |              |              | $\checkmark$ |
| Heptyl acetate                     | $\checkmark$ |              | nd           | $\checkmark$ | nd           | nd           | nd           | nd           |
| Methyl octanoate                   | $\checkmark$ |              | $\checkmark$ |
| Ethyl caprylate                    | $\checkmark$ |
| Ethyl 3-hydroxybutyrate            | $\checkmark$ |
| Ethyl nonanoate                    | $\checkmark$ |              | $\checkmark$ |
| Ethyl 2-hydroxy-4-methylpentanoate | $\checkmark$ | $\bigvee$    | $\checkmark$ |
| Ethyl caprate                      | $\checkmark$ |
| Ethyl succinate                    | $\checkmark$ |              | $\checkmark$ |
| Methyl salicylate                  | $\checkmark$ |              | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | nd           | $\checkmark$ |
| Ethyl benzeneacetate               | $\checkmark$ |
| Ethyl salicylate                   | $\checkmark$ |
| Ethyl hydrocinnamate               | $\checkmark$ |
| Ethyl cinnamate                    | $\checkmark$ |
| Monoethyl succinate                | $\checkmark$ |
| Carbonyl compounds                 |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |
| (E)-2-Hexenal                      | $\checkmark$ |              |              | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |              |              |              | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| (E)-2-Heptenal                     | $\checkmark$ |
| (E)-2-Octenal                      | $\checkmark$ |
| (E,E)-2,4-Heptadienal              | $\checkmark$ |              | $\checkmark$ |
| (E,Z)-2,6-Nonadienal               | $\checkmark$ |
| Benzeneacetaldehyde                | $\checkmark$ |
| High Alcohols                      |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |
| Isobutanol                         | $\checkmark$ |              | $\checkmark$ |
| Isoamylol                          | $\checkmark$ |
| 1-Pentanol                         | $\checkmark$ |              | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |              | $\checkmark$ |
| 2-Heptanol                         | $\checkmark$ |
| 3-Octenol                          | $\checkmark$ |
| 1-Heptanol                         | $\checkmark$ |
| 2-Nonanol                          |              | $\checkmark$ |
| 1-Octanol                          |              | $\checkmark$ |
| 2-Phenylethanol                    |              | $\checkmark$ |
| 2-Phenoxyethanol                   | $\checkmark$ |              | $\checkmark$ |
| Lactone                            |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |
| γ-Undecalactone                    | $\checkmark$ |              | $\checkmark$ |
| δ-Octalactone                      | $\checkmark$ |              | $\checkmark$ |
| γ-Octalactone                      | $\checkmark$ |
| Pantolactone                       | $\checkmark$ |
| γ-Decalactone                      | $\checkmark$ |
| Sotolon                            | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | nd           | nd           | $\checkmark$ | nd           | nd           | $\checkmark$ | nd           | nd           | nd           | nd           | nd           | nd           |
| γ-Nonalactone                      | $\checkmark$ |
| Acid                               |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |
| Butanoic acid                      | $\checkmark$ |              | $\checkmark$ |
| Hexanoic acid                      | nd           | $\checkmark$ | nd           | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |              |              |              |              |              |              |              |              | $\checkmark$ |
| Ethylhexanoic acid                 | nd           | $\checkmark$ | nd           | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |              | $\checkmark$ |
| Octanoic acid                      | $\checkmark$ | $\checkmark$ |              | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |              | $\checkmark$ |
| Decanoic acid                      | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |              | $\checkmark$ |
| Benzoic acid                       | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |              | $\checkmark$ |
| Pyrazine                           |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |
| Continued                          |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |

| Compounds                     | B1           | B2           | B3           | B4           | B5           | G1           | G2           | G3           | G4           | G5           | G6           | H1           | H2           | H3           | H4           | H5           |
|-------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| 3-Isopropyl-2-methoxypyrazine | $\checkmark$ | nd           | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | nd           | $\checkmark$ |
| 2-sec-Butyl-3-Methoxypyrazine | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | nd           | $\checkmark$ | $\checkmark$ | nd           | $\checkmark$ | nd           | nd           | $\checkmark$ | $\checkmark$ | nd           | $\checkmark$ | $\checkmark$ |
| 5-Ethyl-2,3-dimethylpyrazine  | $\checkmark$ |
| 2-Isobutyl-3-methoxypyrazine  | $\checkmark$ |
| Acetylpyrazine                | nd           | nd           | $\checkmark$ | $\checkmark$ | nd           | nd           | $\checkmark$ | $\checkmark$ | $\checkmark$ | nd           | nd           | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Furan                         |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |
| Furfural                      | $\checkmark$ |
| Acetylfuran                   | $\checkmark$ |
| 5-Methylfurfural              | $\checkmark$ |
| Ethyl 2-furoate               | $\checkmark$ |
| Furfuryl alcohol              | $\checkmark$ |
| 5-Hydroxymethylfurfural       | $\checkmark$ |
| Terpenes                      |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |
| D-Limonene                    | $\checkmark$ |
| Terpinolene                   | $\checkmark$ | nd           |
| β-Linalool                    | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | nd           | nd           | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | nd           | nd           | nd           | nd           | $\checkmark$ | nd           |
| Citronellyl acetate           | $\checkmark$ |
| β-Ionone                      | $\checkmark$ | $\checkmark$ | $\checkmark$ | nd           | $\checkmark$ | nd           | $\checkmark$ | nd           | $\checkmark$ |
| Benzene                       |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |
| <i>o</i> -Xylene              | nd           | $\checkmark$ | nd           | nd           | nd           | nd           | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Styrene                       | $\checkmark$ | nd           | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| <i>p</i> -Cymene              | $\checkmark$ |
| Naphthalene                   | $\checkmark$ |
| Volatile phenol               |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |
| 4-Methylguaiacol              | $\checkmark$ |
| o-Cresol                      | $\checkmark$ |
| 4-Propylguaiacol              | $\checkmark$ |
| 4-Vinylphenol                 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | nd           | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | nd           | nd           | nd           | nd           | nd           |
| Sulfide                       |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |
| 3-(Methylthio)propanol        | $\checkmark$ | $\checkmark$ | $\checkmark$ | nd           | $\checkmark$ |

 Table 3.
 The qualitative determination of target volatile compounds in goji berry wines, blueberry wines and hawthorn wines. 'B' represent blueberry wine, 'G' represent goji berry wine, 'H' represent hawthorn wine.

mixtures were diluted with dichloromethane to volume in a 10-mL volumetric flask.  $1 \mu L$  of each mixture was injected. The split mode was applied with a split ratio of 10:1. The liquid injection was performed using the TriPlus RSH autosampler (Thermo Fisher Scientific, Bremen, Germany).

Extraction of volatile compounds in wine samples Headspace solid-phase microextraction (HS-SPME) was used to extract the volatile compounds from fruit wines. 5 mL of wine samples mixed with 1.00 g NaCl and 10  $\mu$ L of internal standard (1.077 g/L 4-methyl-2-pentanol) were prepared in a 20 mL glass vial. The sample vials were stirred and heated at 60 °C for 30 min. Then the preconditioned fiber (50/30  $\mu$ m Divinylbenzene/Carboxen/Polydimethylsiloxane (DVB/CAR/PDMS)) was used to absorb the volatile compounds in the headspace of the sample via for 30 min at 60 °C. After absorption, the fiber was inserted into the GC injection port for desorbing at 250 °C for 10 min. Two technical replicates were performed for each sample. Automatic headspace solid-phase microextraction was performed on the TriPlus RSH autosampler.

GC-Orbitrap-MS analysisA Thermo Scientific Trace 1300 gas chromatography equipped with a Thermo Scientific Q-Exactive Orbitrap mass spectrometer (GC-Orbitrap MS, Thermo Scientific, Bremen, Germany) was used for detection. The spiked mixture was performed under the following GC-Orbitrap-MS conditions. A TG-WAXMS  $30 \text{ m} \times 0.25 \text{ mm} \times 0.25 \text{ µm}$  (Thermo Scientific, Bremen, Germany) was used to separate analytes. Helium was used as the carrier gas (1.2 mL/min). The oven temperature program was set as follows: 40 °C held for 5 min, then heated to 180 °C at 3 °C/min, finally increased from 180 °C to 240 °C at 30 °C/min and hold 15 min. The wine samples were performed under the following GC-Orbitrap-MS conditions. A DB-WAX  $30 \text{ m} \times 0.25 \text{ µm}$  (J&W Scientific, Folsom, CA, USA) was used to separate the volatile compounds under a 1.2 mL/min flow rate of helium (carrier gas). The oven temperature program was set as follows:  $40^{\circ}$ C held for 5 min, then heated to 180°C at 3 °C/min, finally increased from 180 °C to 250 °C at 30 °C/min and hold 10 min.

The Orbitrap-MS operated in full-scan MS acquisition mode (m/z 33-350). The ion source was maintained at 280 °C with an MSD transfer line temperature of 230 °C. Positive ion-electron ionization (EI) was used at 70 electron volts (eV) in Orbitrap-MS.

Identification of the compoundsRetention indices (RI) were calculated from the retention times of C6-C24 n-alkanes under the same chromatographic and mass spectrometric conditions. The high-solution mass spectrums of volatile compounds were collected in different standard mixtures. Then, the qualitative determination



Fig. 1 Flowchart of the experimental design.

### **Administrator**







Fig. 2 The web page of the database website (http://foodflavorlab.cn/) including the home page, upload page, search page and result page.

of target compounds in fruit wines was performed by the match of the retention time and ion fragments in samples and standards. The experimental design and analysis pipeline are shown in Fig. 1.

#### **Data Records**

A total of 36 original data files were stored in MetaboLights<sup>47</sup>, including 4 standard mixtures and 32 wine samples (two technical replicates).

#### **Technical Validation**

Two technical replicates were performed on each wine sample. The qualitative determination of target volatile compounds in fruit wines was shown in Table 3.



Fig. 3 The page view (PV) of database website (http://foodflavorlab.cn/).

### Usage Notes

The HRMS library of volatile compounds was shown on the database website (http://foodflavorlab.cn/), including HRMS spectrum, exact ion fragment, relative abundance, RI, CAS number, chemical structure diagram, aroma description and aroma threshold (ortho-nasally). Table 1 showed CAS No., formula and RI of each target volatile compound. The information of standards and contents of spiked mixtures were shown in Table 1. Table 2 showed elemental composition judgments, exact ion fragments and error mass of each target volatile compound. Table 3 showed the qualitative determination of target volatile compounds in blueberry wine, goji berry wine and hawthorn wine. Figure 2 showed the web page of the database website (http://foodflavorlab.cn/) including the home page, upload page, search page and result page. Figure 3 showed the page view (PV) of the database website (http://foodflavorlab.cn/) from Nov. 2020 to May. 2022.

#### **Code availability**

The Processing setup, Quan browser and Qual browser (Thermo Fisher Scientific, Les Ulis, France) in Xcalibur version 4.1 and Thermo Scientific TraceFinder (version 4.1) were used for collecting the HRMS library of volatile compounds. The structures of the volatile compounds were drawn using ChemDraw Professional 17.0 (Cambridgesoft, USA). High-resolution mass spectrums are plotted using Python (version 3.7).

Received: 25 March 2022; Accepted: 25 July 2022; Published online: 13 August 2022

#### References

- 1. Ferreira, V. in Managing Wine Quality (ed A. G., Reynolds) 3-28 (Woodhead Publishing, 2010).
- Ouyang, X.-Y. et al. Comparison of volatile composition and color attributes of mulberry wine fermented by different commercial yeasts. Journal of Food Processing and Preservation 42, e13432, https://doi.org/10.1111/jfpp.13432 (2017).
- 3. Wei, M. *et al.* Comparison of physicochemical indexes, amino acids, phenolic compounds and volatile compounds in bog bilberry juice fermented by *Lactobacillus plantarum* under different pH conditions. *Journal of Food Science and Technology* **55**, 2240–2250, https://doi.org/10.1007/s13197-018-3141-y (2018).
- Yuan, G.-S. et al. Effect of Raw Material, Pressing and Glycosidase on the Volatile Compound Composition of Wine Made From Goji Berries. Molecules 21, 1324, https://doi.org/10.3390/molecules21101324 (2016).
- Alegre, Y., Sáenz-Navajas, M.-P., Hernández-Orte, P. & Ferreira, V. Sensory, olfactometric and chemical characterization of the aroma potential of Garnacha and Tempranillo winemaking grapes. *Food Chemistry* 331, 127207, https://doi.org/10.1016/j. foodchem.2020.127207 (2020).
- Lan, Y. *et al.* Characterization of key odor-active compounds in sweet Petit Manseng (*Vitis vinifera* L.) wine by gas chromatography-olfactometry, aroma reconstitution, and omission tests. *Journal of Food Science* n/a, https://doi.org/10.1111/1750-3841.15670 (2021).
- Cai, W. et al. Effects of pretreatment methods and leaching methods on jujube wine quality detected by electronic senses and HS-SPME-GC-MS. Food Chemistry 330, 127330, https://doi.org/10.1016/j.foodchem.2020.127330 (2020).
- Niu, Y. *et al.* Evaluation of the perceptual interaction among ester aroma compounds in cherry wines by GC–MS, GC–O, odor threshold and sensory analysis: An insight at the molecular level. *Food Chemistry* 275, 143–153, https://doi.org/10.1016/j. foodchem.2018.09.102 (2019).
- Tian, T., Sun, J., Wu, D., Xiao, J. & Lu, J. Objective measures of greengage wine quality: From taste-active compound and aromaactive compound to sensory profiles. *Food Chemistry* 340, 128179, https://doi.org/10.1016/j.foodchem.2020.128179 (2021).
- Yu, H., Xie, T., Xie, J., Ai, L. & Tian, H. Characterization of key aroma compounds in Chinese rice wine using gas chromatography-mass spectrometry and gas chromatography-olfactometry. *Food Chemistry* 293, 8–14, https://doi.org/10.1016/j.foodchem.2019.03.071 (2019).
- Chen, Y. et al. Effect of Lactobacillus acidophilus, Oenococcus oeni, and Lactobacillus brevis on Composition of Bog Bilberry Juice. Foods 8, https://doi.org/10.3390/foods8100430 (2019).
- Yin, L. *et al.* A multi-step screening approach of suitable non-*Saccharomyces* yeast for the fermentation of hawthorn wine. *LWT* 127, 109432, https://doi.org/10.1016/j.lwt.2020.109432 (2020).
- Ontañón, I., Vela, E., Hernández-Orte, P. & Ferreira, V. Gas chromatographic-sulfur chemiluminescent detector procedures for the simultaneous determination of free forms of volatile sulfur compounds including sulfur dioxide and for the determination of their metal-complexed forms. *Journal of Chromatography A* 1596, 152–160, https://doi.org/10.1016/j.chroma.2019.02.052 (2019).
- Aith Barbará, J. et al. Volatile profile and aroma potential of tropical Syrah wines elaborated in different maturation and maceration times using comprehensive two-dimensional gas chromatography and olfactometry. Food Chemistry 308, 125552, https://doi. org/10.1016/j.foodchem.2019.125552 (2020).
- Mitropoulou, A., Hatzidimitriou, E. & Paraskevopoulou, A. Aroma release of a model wine solution as influenced by the presence of non-volatile components. Effect of commercial tannin extracts, polysaccharides and artificial saliva. *Food Research International* 44, 1561–1570, https://doi.org/10.1016/j.foodres.2011.04.023 (2011).

- Falcão, L. D., de Revel, G., Rosier, J. P. & Bordignon-Luiz, M. T. Aroma impact components of Brazilian Cabernet Sauvignon wines using detection frequency analysis (GC-olfactometry). Food Chemistry 107, 497-505, https://doi.org/10.1016/j. foodchem.2007.07.069 (2008).
- Mestres, M., Busto, O. & Guasch, J. Headspace solid-phase microextraction analysis of volatile sulphides and disulphides in wine aroma. *Journal of Chromatography A* 808, 211–218, https://doi.org/10.1016/S0021-9673(98)00100-9 (1998).
- Schoenauer, S. & Schieberle, P. Screening for novel mercaptans in 26 fruits and 20 wines using a thiol-selective isolation procedure in combination with three detection methods. *Journal of Agricultural and Food Chemistry* 67, 4553–4559, https://doi.org/10.1021/ acs.jafc.9b01242 (2019).
- Siebert, T. E., Solomon, M. R., Pollnitz, A. P. & Jeffery, D. W. Selective determination of volatile sulfur compounds in wine by gas chromatography with sulfur chemiluminescence detection. *Journal of Agricultural and Food Chemistry* 58, 9454–9462, https://doi. org/10.1021/jf102008r (2010).
- Chen, S., Sha, S., Qian, M. & Xu, Y. Characterization of volatile sulfur compounds in moutai liquors by headspace solid-phase microextraction Gas Chromatography-Pulsed Flame Photometric detection and odor activity value. *Journal of Food Science* 82, 2816–2822, https://doi.org/10.1111/1750-3841.13969 (2017).
- Chenot, C., Briffoz, L., Lomartire, A. & Collin, S. Occurrence of ehrlich-derived and varietal polyfunctional thiols in Belgian white wines made from Chardonnay and Solaris grapes. *Journal of Agricultural and Food Chemistry* 68, 10310–10317, https://doi. org/10.1021/acs.jafc.9b05478 (2020).
- Lyu, J., Ma, Y., Xu, Y., Nie, Y. & Tang, K. Characterization of the key aroma compounds in Marselan wine by gas chromatographyolfactometry, quantitative measurements, aroma recombination, and omission tests. *Molecules* 24, https://doi.org/10.3390/ molecules24162978 (2019).
- Romano, A. et al. Wine analysis by FastGC proton-transfer reaction-time-of-flight-mass spectrometry. International Journal of Mass Spectrometry 369, 81–86, https://doi.org/10.1016/j.ijms.2014.06.006 (2014).
- Qian, X. et al. Comprehensive investigation of lactones and furanones in icewines and dry wines using gas chromatography-triple quadrupole mass spectrometry. Food Research International 137, 109650, https://doi.org/10.1016/j.foodres.2020.109650 (2020).
- Liu, F., Li, S., Gao, J., Cheng, K. & Yuan, F. Changes of terpenoids and other volatiles during alcoholic fermentation of blueberry wines made from two southern highbush cultivars. LWT 109, 233–240, https://doi.org/10.1016/j.lwt.2019.03.100 (2019).
- Slaghenaufi, D., Tonidandel, L., Moser, S., Román Villegas, T. & Larcher, R. Rapid Analysis of 27 volatile sulfur compounds in wine by headspace solid-phase microextraction gas chromatography tandem mass spectrometry. *Food Analytical Methods* 10, 3706–3715, https://doi.org/10.1007/s12161-017-0930-2 (2017).
- Bordiga, M., Piana, G., Coïsson, J. D., Travaglia, F. & Arlorio, M. Headspace solid-phase micro extraction coupled to comprehensive two-dimensional with time-of-flight mass spectrometry applied to the evaluation of Nebbiolo-based wine volatile aroma during ageing. International Journal of Food Science & Technology 49, 787–796, https://doi.org/10.1111/jifs.12366 (2014).
- Peterson, A. C. et al. Development of a GC/Quadrupole-Orbitrap mass spectrometer, Part I: design and characterization. Analytical Chemistry 86, 10036–10043, https://doi.org/10.1021/ac5014767 (2014).
- Peterson, A. C., Balloon, A. J., Westphall, M. S. & Coon, J. J. Development of a GC/Quadrupole-Orbitrap mass spectrometer, Part II: New approaches for discovery metabolomics. *Analytical Chemistry* 86, 10044–10051, https://doi.org/10.1021/ac5014755 (2014).
- Eliuk, S. & Makarov, A. Evolution of Orbitrap mass spectrometry instrumentation. Annual Review of Analytical Chemistry 8, 61–80, https://doi.org/10.1146/annurev-anchem-071114-040325 (2015).
- Chen, Y. et al. LC-Orbitrap MS analysis of the glycation modification effects of ovalbumin during freeze-drying with three reducing sugar additives. Food Chemistry 268, 171–178, https://doi.org/10.1016/j.foodchem.2018.06.092 (2018).
- Gómez-Ramos, M. M., Ferrer, C., Malato, O., Agüera, A. & Fernández-Alba, A. R. Liquid chromatography-high-resolution mass spectrometry for pesticide residue analysis in fruit and vegetables: Screening and quantitative studies. *Journal of Chromatography A* 1287, 24–37, https://doi.org/10.1016/j.chroma.2013.02.065 (2013).
- Pimpão, R. C. et al. Urinary metabolite profiling identifies novel colonic metabolites and conjugates of phenolics in healthy volunteers. *Molecular Nutrition & Food Research* 58, 1414–1425, https://doi.org/10.1002/mnfr.201300822 (2014).
- Savic, S. et al. Enzymatic oxidation of rutin by horseradish peroxidase: Kinetic mechanism and identification of a dimeric product by LC-Orbitrap mass spectrometry. Food Chemistry 141, 4194–4199, https://doi.org/10.1016/j.foodchem.2013.07.010 (2013).
- Peterson, A. C., McAlister, G. C., Quarmby, S. T., Griep-Raming, J. & Coon, J. J. Development and Characterization of a GC-Enabled QLT-Orbitrap for High-Resolution and High-Mass Accuracy GC/MS. *Analytical Chemistry* 82, 8618–8628, https://doi.org/10.1021/ ac101757m (2010).
- Mol, H. G. J., Tienstra, M. & Zomer, P. Evaluation of gas chromatography-electron ionization-full scan high resolution Orbitrap mass spectrometry for pesticide residue analysis. *Analytica Chimica Acta* 935, 161–172, https://doi.org/10.1016/j.aca.2016.06.017 (2016).
- Lozano, A., Uclés, S., Uclés, A., Ferrer, C. & Fernández-Alba, A. R. Pesticide residue analysis in fruit- and vegetable-based baby foods using GC-Orbitrap MS. *Journal of AOAC INTERNATIONAL* 101, 374–382, https://doi.org/10.5740/jaoacint.17-0413 (2018).
- Li, R. et al. High resolution GC–Orbitrap MS for nitrosamines analysis: Method performance, exploration of solid phase extraction regularity, and screening of children's products. *Microchemical Journal* 162, 105878, https://doi.org/10.1016/j.microc.2020.105878 (2021).
- Gómez-Ramos, M. M., Ucles, S., Ferrer, C., Fernández-Alba, A. R. & Hernando, M. D. Exploration of environmental contaminants in honeybees using GC-TOF-MS and GC-Orbitrap-MS. *Science of The Total Environment* 647, 232–244, https://doi.org/10.1016/j. scitotenv.2018.08.009 (2019).
- Dorival-García, N. et al. Large-Scale assessment of extractables and leachables in single-use bags for biomanufacturing. Analytical Chemistry 90, 9006–9015, https://doi.org/10.1021/acs.analchem.8b01208 (2018).
- de Albuquerque Cavalcanti, G. *et al.* Non-targeted acquisition strategy for screening doping compounds based on GC-EI-hybrid quadrupole-Orbitrap mass spectrometry: A focus on exogenous anabolic steroids. *Drug Testing and Analysis* 10, 507–517, https:// doi.org/10.1002/dta.2227 (2018).
- 42. Weidt, S. et al. A novel targeted/untargeted GC-Orbitrap metabolomics methodology applied to Candida albicans and Staphylococcus aureus biofilms. Metabolomics 12, 189, https://doi.org/10.1007/s11306-016-1134-2 (2016).
- Rivera-Pérez, A., López-Ruiz, R., Romero-González, R. & Garrido Frenich, A. A new strategy based on gas chromatography-high resolution mass spectrometry (GC-HRMS-Q-Orbitrap) for the determination of alkenylbenzenes in pepper and its varieties. *Food Chemistry* 321, 126727, https://doi.org/10.1016/j.foodchem.2020.126727 (2020).
- 44. Lan, Y.-B. *et al.* Characterization and differentiation of key odor-active compounds of 'Beibinghong' icewine and dry wine by gas chromatography-olfactometry and aroma reconstitution. *Food Chemistry* 287, 186–196, https://doi.org/10.1016/j. foodchem.2019.02.074 (2019).
- Yang, Y. et al. Chemical profiles and aroma contribution of terpene compounds in Meili (Vitis vinifera L.) grape and wine. Food Chemistry 284, 155–161, https://doi.org/10.1016/j.foodchem.2019.01.106 (2019).
- 46. Belarbi, S. et al. Comparison of new approach of GC-HRMS (Q-Orbitrap) to GC-MS/MS (triple-quadrupole) in analyzing the pesticide residues and contaminants in complex food matrices. Food Chemistry 359, 129932, https://doi.org/10.1016/j. foodchem.2021.129932 (2021).
- Liu, Y. et al. A high-resolution Orbitrap Mass spectral library for trace volatile compounds in fruit wines. MetaboLights https:// identifiers.org/metabolights:MTBLS3840 (2021).

#### Acknowledgements

The authors express gratitude to Shan Zengguang for his help to the database. This work was financially supported by the Fundamental Research Funds for the Central Universities (2021ZY65), Beijing Municipal Natural Science Foundation (6192017), Key R&D projects in China People's Police University (ZDX202101) and R&D projects in Hebei Province (19275416D).

#### **Author contributions**

Y.R.L. designed the experiments and wrote the manuscript. N.L. collected the basic information of volatile compounds. X.Y.L. build the database website. W.C.Q. and J.N.L. analyzed the data of GC-Orbitrap-MS. Q.Y.S. and Y.X.C. performed the GC-Orbitrap-MS experiment. B.L.Z., B.Q.Z. and J.X.C. review the manuscript. B.Q.Z. and J.X.C. supported the funding acquisition. B.Q.Z. designed the experiments. J.X.C. supervised the study.

#### **Competing interests**

The authors declare no competing interests.

#### **Additional information**

Correspondence and requests for materials should be addressed to Baoqing Zhu or J.C.

Reprints and permissions information is available at www.nature.com/reprints.

**Publisher's note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

**Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022