
ORIGINAL RESEARCH
published: 04 April 2017

doi: 10.3389/fnhum.2017.00157

Frontiers in Human Neuroscience | www.frontiersin.org 1 April 2017 | Volume 11 | Article 157

Edited by:

Peter Sörös,

University of Oldenburg, Germany

Reviewed by:

Noman Naseer,

Air University, Pakistan

Jürgen Hänggi,

University of Zurich, Switzerland

*Correspondence:

Boreom Lee

leebr@gist.ac.kr

Received: 19 December 2016

Accepted: 16 March 2017

Published: 04 April 2017

Citation:

Qureshi MNI, Oh J, Min B, Jo HJ and

Lee B (2017) Multi-modal,

Multi-measure, and Multi-class

Discrimination of ADHD with

Hierarchical Feature Extraction and

Extreme Learning Machine Using

Structural and Functional Brain MRI.

Front. Hum. Neurosci. 11:157.

doi: 10.3389/fnhum.2017.00157

Multi-modal, Multi-measure, and
Multi-class Discrimination of ADHD
with Hierarchical Feature Extraction
and Extreme Learning Machine Using
Structural and Functional Brain MRI
Muhammad Naveed Iqbal Qureshi 1, Jooyoung Oh 1, Beomjun Min 2, Hang Joon Jo 3 and

Boreom Lee 1*

1Department of Biomedical Science and Engineering, Institute of Integrated Technology, Gwangju Institute of Science and

Technology, Gwangju, South Korea, 2Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South

Korea, 3Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA

Structural and functional MRI unveil many hidden properties of the human brain. We

performed this multi-class classification study on selected subjects from the publically

available attention deficit hyperactivity disorder ADHD-200 dataset of patients and

healthy children. The dataset has three groups, namely, ADHD inattentive, ADHD

combined, and typically developing. We calculated the global averaged functional

connectivity maps across the whole cortex to extract anatomical atlas parcellation based

features from the resting-state fMRI (rs-fMRI) data and cortical parcellation based features

from the structural MRI (sMRI) data. In addition, the preprocessed image volumes from

both of these modalities followed an ANOVA analysis separately using all the voxels.

This study utilized the average measure from the most significant regions acquired from

ANOVA as features for classification in addition to the multi-modal and multi-measure

features of structural and functional MRI data. We extracted most discriminative features

by hierarchical sparse feature elimination and selection algorithm. These features include

cortical thickness, image intensity, volume, cortical thickness standard deviation, surface

area, and ANOVA based features respectively. An extreme learning machine performed

both the binary and multi-class classifications in comparison with support vector

machines. This article reports prediction accuracy of both unimodal and multi-modal

features from test data. We achieved 76.190% (p < 0.0001) classification accuracy in

multi-class settings as well as 92.857% (p < 0.0001) classification accuracy in binary

settings. In addition, we found ANOVA-based significant regions of the brain that also play

a vital role in the classification of ADHD. Thus, from a clinical perspective, this multi-modal

group analysis approach with multi-measure features may improve the accuracy of the

ADHD differential diagnosis.

Keywords: ADHD-200, global functional connectivity, neuroimaging, ANOVA, machine learning, revised recursive
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INTRODUCTION

The neurodevelopmental disease of attention deficit
hyperactivity disorder (ADHD) is among the major health
problems both in developing and developed countries of
the world. There are no standard biological tests available to
diagnose ADHD except behavioral symptoms investigated with
psychiatric measures (Arbabshirani et al., 2017). The high
(3.4%) prevalence of ADHD among children and adolescents
(Polanczyk et al., 2015) makes the automated diagnosis very
important. The burden of ADHD on patients, their family, and
the societies where they belong is very significant. Typically,
the disorder begins to affect the patients from an early age to
the entire life span, and without appropriate treatments, the
illness leads to poor prognosis. Thus, the early and precise
diagnosis of ADHD is very important. Children affected by this
disorder have characteristic symptoms such as attention deficit,
hyperactivity, and impulsiveness. Currently, it is believed that
this characteristic manifestation of symptoms originates from
the dysfunction of related cognitive processes (Diamond, 2005).
In addition, the underlying mechanisms of ADHD seem to
be associated with delayed cortical development (Shaw et al.,
2007). The root cause of ADHD is still unknown (Arbabshirani
et al., 2017). On the other hand, according to the Diagnostic and
Statistical Manual of Mental Disorders, Fifth edition (DSM-5),
there are three ADHD subtypes, based on the predominant
symptoms: (1) predominantly inattentive presentation, (2)
predominantly hyperactive-impulsive presentation, and (3)
combined presentation (Association AP, 2013). Over recent
years, a rapidly growing number of studies have been published
that aim at complementing and improving clinical decision
making on the basis of biomarkers derived from different
types of data, such as magnetic resonance imaging (MRI) and
genomic sequencing. Pattern recognition techniques have shown
promising results to detect biomarkers from neuroimaging data.
These techniques hold the potential to combine complementary
information across different sources in an efficient way (Wolfers
et al., 2015). In addition, many previous machine learning
based studies investigated these subtypes of ADHD (Solanto,
2000; Castellanos and Tannock, 2002; Colby et al., 2012; Dai
et al., 2012; Fair et al., 2012; Igual et al., 2012; Willcutt et al.,
2012; Lim et al., 2013; Peng et al., 2013; Johnston et al., 2014;
Deshpande et al., 2015; Hammer et al., 2015; Iannaccone et al.,
2015; Qureshi and Lee, 2016; Qureshi et al., 2016; Xiao et al.,
2016). However, the outcomes from a small number of studies
that attempted to distinguish the features of these subtypes
with neuroimaging methods were inconclusive (Pineda et al.,
2002; Miller et al., 2006). In addition, very few studies including
(Qureshi et al., 2016) were conducted on ADHD differential
diagnosis (Arbabshirani et al., 2017).

These s/fMRI studies investigated the altered brain activation
patterns in ADHD patients and healthy controls. However,
the findings across different studies were inconsistent, and the
different neural mechanisms between adults and children with
ADHD remain unclear (Lei et al., 2015). In fact, the clinical
experience of the psychiatrist, a detailed history taking of the
patient, and other information resulting from interviews remain

important. Pattern recognition techniques deployed in MRI-
based neuroimaging studies dates back approximately a decade
with the goal of classifying and thereby separating psychiatric
patients from controls. However, despite many subsequent
efforts, those promising results are not ready for clinical trials
beyond research settings yet (Wolfers et al., 2015). However, in
the past decade, not only in the psychiatry but also in other
medical fields, interest in machine learning increased rapidly.
There have been many recent studies using neuroimaging
methods in the psychiatric research field (Klöppel et al., 2012;
Castro et al., 2014; Schnack et al., 2014). Consequently, with
the familiarity and understanding of neuroimaging methods, a
pool of candidate features such as cortical thickness, volumetric
data, functional connectivity measures, white matter volume,
gray matter density, demographic information, and other fMRI
data-based features was utilized for machine learning-based
classification. Those studies serve as a bridge for the integration
of machine learning and neuroscience. The comparatively higher
resolution (usually one cubic millimeter or less) of structural
MRI data (Arbabshirani et al., 2017) makes it a better choice
for the use in classification experiments either as a standalone
or as a co-modality in multi-modal experimental settings. The
most abundantly used and popular machine learning tool among
the neuroimaging community is support vector machine (SVM)
(Tenev et al., 2014; Arbabshirani et al., 2017). In this comparative
study, we compared an extreme learning machine (ELM) based
classification framework with SVMs.

In this study, we focused on the machine learning-
based differential diagnosis of the subtypes of ADHD. We
utilized an ELM classifier to distinguish ADHD-combined-type
(ADHDC) and ADHD-inattentive-type (ADHDI) patients from
normally/typically developing children (TDC). In addition, to
achieve better classification accuracy, we proposed a modified
recursive feature elimination RFE algorithm (Qureshi and
Lee, 2016). This algorithm treats cortical and sub-cortical
measurement data as an input. The cortical measures include
mean cortical thickness, standard deviation of the cortical
thickness, surface area, curvature and volume of predefined
segments, or anatomical regions (Wee et al., 2013, 2014; Gori
et al., 2015). In addition, we also used the sub-cortical measures
of structural MRI data including image intensity, white matter
volume, and mean volume of the sub-cortical regions. These
subcortical measures were not used in our previous study
(Qureshi et al., 2016). Global functional connectivity measures
from atlas-based cortical regions served as features of the
functional MRI data. Moreover, we performed the ANOVA test
on both the structural and the functional MRI data and the
corresponding significant regional measures served as ANOVA-
based features for classification. These ANOVA-based features
were acquired in a different manner from the atlas ROI-based
features, therefore, we were interested to observe their effect on
the classification accuracy. A fully cross-validated, ROI-based
data-driven analysis was used for classification.

Several previous studies identified certain numbers of
anatomical regions to be affected in ADHD. However,
there were very few studies (Arbabshirani et al., 2017)
that investigated the broadly different anatomical regions
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that could play a vital role in the classification of ADHD
sub-groups.

MATERIALS AND METHODS

Dataset
We obtained neuroimaging data of ADHD patients from
the ADHD-200 MRI dataset (Biswal et al., 2010), which is
publicly available at the 1,000 Functional Connectomes Project
website http://fcon_1000.projects.nitrc.org/indi/adhd200. These
T1-weighted structural and resting state functional MRI scans
were acquired at six different institutes. The ages of the
participants ranged from 7 to 14 years. The sites were Brown
University (BU), New York University Child Study Center
(NYU), Beijing Normal University (BNU), Kennedy Krieger
Institute (KKI), Oregon Health, and Science University (OHSU),
and Washington University in St. Louis (WU). All participants
have been scanned under 3.0-Tesla scanners. The other technical
details about the scanner parameters from each participating
site are available at the above-mentioned URL of the ADHD-
200 global competition. In addition, all the sites contributing to
ADHD-200 had been approved by their local institutional review
board (IRB) and complied with local IRB protocols (Qureshi
et al., 2016).

Subjects
There were approximately 1,000 subjects in the ADHD-200
dataset. However, we followed a balanced design approach and
chose 53 subjects exactly as described in (Qureshi et al., 2016)
for training from each of the three groups: typically developing
children (TDC), ADHD inattentive type (ADHDI), and ADHD
combined type (ADHDC). All the training subjects were selected
from the training part of the ADHD-200 dataset that consists
of 776 subjects. Each group contained nine female and 44 male
subjects. There may have existed some intrinsic bias in the data
regarding batch effects as well as hardware bias due to multi-
site data collection. However, we retained it as default for the
criteria of subjects selection for this study similarly to (Qureshi
et al., 2016). More details regarding the demographic features of
the dataset can be acquired from the same resources listed above.
Testing data were separately gathered with matched gender, age,
and IQ information from ADHD-200 testing dataset, which
corresponded to a pool of 197 subjects. Table 1 summarizes the
demographic characteristics of our selected training and testing
subjects.

Preprocessing of Structural MRI Data
Cortical reconstruction and volumetric segmentation were
performed with the FreeSurfer v5.3.0 image analysis suite,
which is documented and freely available for download online
at http://surfer.nmr.mgh.harvard.edu/. The technical details of
these procedures have been described elsewhere (Dale and
Sereno, 1993; Dale et al., 1999; Fischl et al., 1999a,b, 2001,
2002, 2004a,b; Fischl and Dale, 2000; Ségonne et al., 2004; Han
et al., 2006; Jovicich et al., 2006; Reuter et al., 2010, 2012).
Briefly, the preprocessing procedure includes motion correction
of volumetric T1-weighted images, removal of non-brain

tissue using a hybrid watershed/surface deformation procedure
(Ségonne et al., 2004), and automated Talairach transformation.
Moreover, the procedure includes the segmentation of the
subcortical white matter and deep gray matter volumetric
structures including hippocampus, amygdala, caudate, putamen,
ventricles (Fischl et al., 2002, 2004a), intensity normalization
(Sled et al., 1998), tessellation of the gray matter-white matter
boundary, and automated topology correction (Fischl et al.,
2001; Ségonne et al., 2007). In addition, surface deformation
following intensity gradients was performed to optimally place
the gray/white and gray/cerebrospinal fluid borders at the
location where the greatest shift in intensity defines the transition
to the other tissue class (Dale and Sereno, 1993; Dale et al., 1999;
Fischl and Dale, 2000). Once the cortical models are complete, a
number of deformable procedures can be performed for further
data processing and analysis. These procedures include surface
inflation (Fischl et al., 1999a), registration to a spherical atlas
that is based on individual cortical folding patterns to match the
cortical geometry across subjects (Fischl et al., 1999b). Moreover,
parcellation of the cerebral cortex into units with respect to gyral
and sulcal structure (Fischl et al., 2004b; Desikan et al., 2006)
and creation of a variety of surface based data including maps
of curvature and sulcal depth are part of the procedure. This
method uses both intensity and continuity information from
the entire three-dimensional MR volume in segmentation and
deformation procedures to produce representations of cortical
thickness, calculated as the closest distance from the gray/white
boundary to the gray/CSF boundary at each vertex on the
tessellated surface (Fischl and Dale, 2000). The maps are created
using spatial intensity gradients across tissue classes rather than
simply relying on absolute signal intensity. The maps produced
are not restricted to the voxel resolution of the original data, and
are thus capable of detecting submillimeter differences between
groups. Procedures for the measurement of cortical thickness
have been validated against histological analysis (Rosas et al.,
2002) and manual measurements (Kuperberg et al., 2003; Salat
et al., 2004). FreeSurfer morphometric procedures have been
demonstrated to show good test-retest reliability across scanner
manufacturers and across field strengths (Han et al., 2006; Reuter
et al., 2012). A cortical surface-based Desikan-Killiany-Tourville
(DKT) atlas Klein and Tourville, 2012) was mapped to a sphere
aligning the cortical folding patterns, which provided accurate
matching of the morphologically homologous cortical locations
across subjects. For each of the DKT31 protocol-based segments,
FreeSurfer calculated the nine different measures, including
number of vertices, surface area, gray matter volume, average
cortical thickness, cortical thickness standard deviation, cortical
mean curvature, cortical Gaussian curvature, cortical folding
index, and cortical curvature indices (Colby et al., 2012). For the
subcortical regions, FreeSurfer calculated the area and volume of
the whole segment, white matter volume, intensity and overall
volume of the whole brain divisions including cerebrospinal
fluid (CSF), intracranial volume (ICV), gray matter (GM), and
white matter (WM). Two of the selected measures are the most
common features in the structural studies (Arbabshirani et al.,
2017). The surface area was calculated by computing the area
of every triangle in a standardized spherical surface tessellation.
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TABLE 1 | Demographic variables of the participant subjects for training

and testing.

Groups TDC ADHDI ADHDC

TRAINING

No. of subjects 53 53 53

Age (mean ± SD) 12.75 ± 3.86 12.42 ± 2.23 11.83 ± 3.52

Full IQ (mean ± SD) 114.86 ± 13.86 102.47 ± 13.11 110.10 ± 13.88

Handedness Right only Right only Right only

TESTING

No. of subjects 14 14 14

Age (mean ± SD) 11.35 ± 1.69 11.75 ± 1.97 10.30± 1.56

Full IQ (mean ± SD) 118.86 ± 6.34 108.29 ± 7.85 115.20 ± 13.64

Handedness Right only Right only Right only

TDC, typically developing children; ADHDI, attention-deficit/hyperactivity disorder,

inattentive type; ADHDC, attention-deficit/hyperactivity disorder, combined type; SD,

standard deviation.

The local curvature was computed using the registration surface
based on the folding patterns (Qureshi et al., 2016).

Cortical and Subcortical Features
We used nine of the above-mentioned measures including
cortical thickness, surface area, mean curvature, volume, and
cortical thickness standard deviation. Measures used as the
structural ROI features included whole segment volume, white
matter volume and intensity from subcortical regions, and overall
brain volumes. In addition, After the preprocessing, FreeSurfer’s
QA Tools were used for the detection and removal of the outliers
and negative features.

Preprocessing of Resting State Functional
MRI Data
Preprocessing of functional MRI data was based on Analysis
of Functional Neuroimages AFNI software; http://afni.nimh.nih.
gov/afni/ (Cox, 1996). Every single echo planar image (EPI)
volume was co-registered to the corresponding anatomical image
of the subject and mapped to Talairach coordinates space with
the TT_N27+tlrc template. We excluded the first six images
from each EPI volume to achieve the MR steady state. In
addition, slice-timing correction was performed. We censored
and cut out time points based on their number of outliers
and head motion magnitude. Same number of slices were cut
out for all subjects. Slice alignment was applied by using the
local Pearson’s correlation (LPC) cost function. The correction
of head motion along with averaging the EPI volumes was
performed to obtain a mean functional image. The dataset was
already reoriented to right posterior inferior (RPI) in the ADHD-
200 dataset repository. Each EPI volume underwent the linear
multiple regression to regress the motion derivatives and effects
of the white matter and cerebrospinal fluids. Spatial smoothing
was performed by using a Gaussian kernel with a blur size
of 6-mm full width at half maximum (FWHM). A polynomial
detrending was applied. AFNI program 3dmaskave was used to
calculate the beta values for the correlation analysis. A run of
10,000 Monte Carlo simulations was conducted with AlphaSim

program. The cluster size of 10 voxels was determined at a family-
wise error rate corrected with p < 0.000001 to avoid the problem
of multiple comparisons. As a result, the clusters consisting of
lower than 10 voxels were discarded from the analysis.

Global Connectivity Features
Global connectivity measure was used to calculate the average
brain-wise correlation coefficients (GCOR) of all the possible
combinations of voxel time series. The GCOR estimation of
the cortical regions is a computationally expensive process. It
involves the calculation of M (M-1)/2 correlation estimates for an
M voxels volume (Saad et al., 2013). AFNI simplifies this problem
by taking de-meaned time series of each voxel and scaling it
by its Euclidean norm. In addition, it averages the scaled time
series over the whole brain mask and finally the length (l2 -
norm) of this averaged series represents the GCOR. ADHD is
considered as an age-related neurodevelopmental disorder and
the symptoms might reflect age-related differences in the cortical
and subcortical maturation that characterize ADHD (Xiao et al.,
2016). Therefore, we first made a gray matter mask of 5-mm
thickness created by using AFNI program 3dSeg and 3dcalc to
acquire the functional connectivity maps of only the cortical
regions of the brain. The clean EPI data were resampled with
the gray matter mask to obtain the data only within the cortical
regions. We used AFNI program 3dTcorrMap to get the global
functional connectivity maps. This involved the calculation of
correlation (Pearson’s r) of the residual time series in each voxel
with every other voxel in their brain mask and recording the
mean correlation back in the voxel. These connectedness values
were further transformed with Fisher’s z-transformation to yield
normally distributed measures (Gotts et al., 2012). We used
DKD_ Desai_PM Atlas (Desikan et al., 2006) of AFNI package
to acquire the ROI measures from the 102 cortical regions across
the whole brain. Figure 1 depicts a typical global functional
connectivity map for a single ADHD patient. A summary of
all the atlas-based structural and functional ROI features is
presented in Table 2.

Statistical Analysis
After preprocessing, the structural data were converted into
surface maps for ANOVA analysis. Heat kernel smoothing was
applied on the dataset after conversion. An AFNI program
3dANOVA2 (Cox, 1996) was used for this analysis.

First, to examine the differences among the three groups,
the multiple comparisons test was performed using the AFNI
program 3drefit with the FDR correction on both the structural
and the functional data. In addition, for the structural data, the
AFNI program SurfClust was used to find regions that have
significant differences between groups with an area of more than
50 mm2. The p-value threshold was set to be 0.001 (Qureshi et al.,
2016). This was followed by a post-hoc t-test to evaluate the actual
differences among the three groups. For the functional data, we
used AFNI program 3dclust to generate the mask of significant
ROIs of ANOVA analysis. In addition, 3dROIstats was used with
this mask to acquire the average connectivity value from each
subject. Since these data were very significant, we set the p-value
at a very low level of 0.000001. Finally, we extracted 12 significant
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FIGURE 1 | A typical global functional connectivity map for a single ADHD patient. The left column shows the axial view; middle column shows the sagittal

while the rightmost column shows the coronal view. The color temperature in the connectivity maps represents the strength of the connectivity measure between

different resting-state networks in the cortical region.

TABLE 2 | Summary of the structural and functional atlas-based ROI, and ANOVA ROI features.

Structural Functional

DKT Atlas-based ROI Measures Count DKD_Desai_PM Atlas- based ROI Measures Count

Cortical thickness 64 Average global connectivity 102

Cortical thickness SD 62

Surface area 64

Volume 62

Curvature 62

White matter volume 68

Sub-cortical volume 37

Sub-cortical intensity 40

Whole brain volume 16

Total unimodal features 475 102

Multi-measure features

Modality Structural Functional

Atlas ROI-based 475 102

ANOVA ROI-based 12 9

Total unimodal Features 487 111

Total Multi-modal Features 598

ROI, Region of interest; ANOVA, analysis of variance; SD, standard deviation. The atlas-based ROI feature count for structural data was obtained by following the same procedure as

used in Qureshi et al. (2016). The functional data feature count was based on the number of ROI obtained by DKD_Desai_PM atlas (Desikan et al., 2006) from AFNI software package.

Table S1. (Supporting Information) describes the features name and count in detail.

regions from the structural data and nine significant regions from
the functional data that served as the ANOVA-based features for
classification. It is worth noting that the ANOVA analysis was
performed only on the training dataset to avoid the potential bias
(Arbabshirani et al., 2017) of the overall accuracy of the classifier.

ANOVA ROI Based Features
The mean measures of the significant regions acquired from the
ANOVA analysis was used as the features for the classification.
Table 2 describes briefly the ANOVA ROI based features count.

Pearson Correlation Coefficient of
ANOVA-Based Significant Features
The Pearson correlation coefficients were calculated between
structural and functional ANOVA-based significant ROIs and

age separately. For the structural data, we extracted the average
cortical thickness of each ROI for each individual subject using
the AFNI program 3dmaskave. The p-value of the correlation
coefficients was calculated based on our sample size (Rosenhead,
1963). For the functional data, we calculated the average beta
value of each ANOVA-based ROI of each individual subject using
AFNI program 3dmaskave.

Hierarchical Feature Selection and Ranking
In neuroimaging, pattern recognition is sometimes referred to
as multi-voxel pattern analysis (MVPA), as voxels are often
used directly as features. The features can be categorized as
voxel, region, or network-derived set of values. In a voxel-
based feature set, features are extracted on the voxel level. In a
region-based feature set, features are derived by parcellation of
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brain images from predefined regions based on anatomical or
functional brain atlas. In a network-based feature set, features
are extracted by combining voxels across networks, like the
functional connectivity based features (Wolfers et al., 2015).
We used the last two approaches (region and network driven
features) in this study in addition to an uncommon approach
of statistical measurement (ANOVA) based feature extraction.
The region-based feature selection is the most common approach
used in the fMRI studies (Arbabshirani et al., 2017).

In this study, the multi-measure features were acquired from
the significant regions obtained by ANOVA analysis and atlas-
based ROIs separately for both structural and functional MRI
datasets. Finally, we gathered a big pool of features as shown in
Table 2. Therefore, optimal feature selection was necessary to get
a high classification accuracy.

Feature Optimization
Optimal feature selection provides a subset of features that leads
toward the optimal classification accuracy (Qureshi et al., 2016).
We used a hierarchical approach to optimize the features for the
best classification accuracy. Both the filter- and wrapper-based
feature selection models were used in this study. Specifically, this
study utilizes a combination of two feature selection methods,
namely the revised recursive feature elimination (rRFE) proposed
by Qureshi and Lee (2016) and the least absolute shrinkage and
selection operator (LASSO).

LASSO
A feature selection method that utilizes the objective
optimization can be conveniently formulated as convex
optimization problems with global optimal solutions. A good
example of an objective function with an error term and
a regularization term is the least absolute shrinkage and
selection operator (LASSO) based regularized regression for
features selection. We used Matlab implementation of lasso
regularization with the regularization coefficient λ in this study.
The value of λ was optimized by grid search method. For a given
value of λ which is a non-negative parameter, lasso solves the
problem:

minγ0 , γ





1

2n

n
∑

i=1

(ui − γo − x
T

i γ )
2
+ λ

q
∑

j=1

∣

∣γj
∣

∣





Where n is the number of observations. ui is the response
at observation i. xi is input data, a vector of q values at
observation i. λ is a non-negative regularization parameter.
The parameters γo and γ are scalar and q -vector respectively.
As λ increases, the number of nonzero components of γ

decreases. The lasso problem involves the l1 norm of γ

(Tibshirani, 1996; Hastie et al., 2009; Friedman et al., 2010).
After selection based on the cross-validated LASSO, selected
features were finally fed to the rRFE algorithm for final
ranking.

Revised Recursive Feature Elimination (rRFE)
Recursive features elimination based on linear SVM (RFE-SVM)
is a well-known wrapper model for feature optimization. A

wrapper model usually consists of two steps, (1) feature subset
selection using the accuracy of the base classifier, and (2)
learning and testing with the best feature subset. The wrapper
approach utilizes the prediction performance of a base classifier.
It performs selection by using the classifier as a black box and
rank the subset of features by their predictive power (Yusta,
2009). The preselected features further fed into a wrapper model
rRFE to generate the feature-ranking list according to the order
of significance. In this study, we used an rRFE algorithm (Qureshi
and Lee, 2016), a recently proposed modified version of the
original RFE-SVM. Amore detailed justification for choosing this
method for feature selection can be found inQureshi et al. (2016).

Classification
Two classifiers were used in this study, namely, linear extreme
learning machine (ELM) and support vector machine (SVM)
with linear and radial basis function (RBF) kernels. The classifiers
were used in both binary and multi-class settings. In the case
of multi-class, we used the one versus all (OVA) approach. In
addition, we also mentioned the ELM-based classification results
without applying the feature selection to validate the significance
of the proposed feature selection framework. A brief description
of both classifiers used in this study is as following.

Extreme Learning Machine Classifier
Extreme learning machine originally proposed by Huang et al.
(2006) has been adopted in many previous neuroimaging studies
(Termenon et al., 2013; Zhang et al., 2015) in the binary and
multi-class settings (Huang et al., 2012). However, to the best
of our knowledge, the present study is the first in this domain
that utilized sigmoid activation function based ELM for the
multi-class, multi-measure, and multi-modal classification of
neuroimaging data. ELM randomly assigns the weights and bias
to the input data to compute the output weight matrix. This
random assignment of weights makes the ELM algorithm very
fast as compared to SVMs. A more detailed discussion of the
classifier can be found elsewhere (Huang et al., 2006; Qureshi
et al., 2016). The ELM classifier requires the “number of nodes”
as the only hyper-parameter that needs to be tuned for achieving
the maximum performance in terms of accuracy. In this study,
we used the Matlab implementation of the ELM. A greedy
search method was used to tune this parameter for achieving
the maximum test accuracy. In this study, the search scale for
selecting this parameter was set to N = [1, 2, ..., 200]. All
the features were normalized and scaled to the values between -1
and 1 for the better performance of ELM classifier (Qureshi et al.,
2016).

SVM Classifier
SVM, which was originally proposed by Cortes and Vapnik
(1995), considered as one of the most popular machine-learning
tools in the neuroscience domain in the last decade. It is
a supervised classification algorithm. We used this algorithm
in both binary and multi-class (more commonly known as
one-versus-all or OVA) settings. It maps features in higher
dimensional space using linear and nonlinear functions known
as kernels. In this study we used both linear and nonlinear
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FIGURE 2 | Overall classification framework of the current study. The box at the extreme left presents the feature acquisition. Right, top four boxes represent

the feature selection and training of the classifier. The box at the bottom on the extreme right shows the framework to acquire the testing accuracy from the data.

radial basis function (RBF) kernels (Qureshi et al., 2016). The
only parameter that needs to be tuned in SVM is the value
of regularization parameter “σ ” while utilizing the radial basis
function (RBF) kernel. We used a greedy search method to tune
this parameter for achieving the maximum test accuracy. In this
study, the search scale for selecting this parameter was set to
σ = [0.1, 0.2, ..., 2.0].

Performance Evaluation and Significance
Testing Methods
The classifier performance was measured in terms of
classification accuracy and Kappa score for multi-class
classification. Classification accuracy was determined as

Accuracy =
(TP + TN)

(TP + FP + TN + FN)
∗ 100,

Where TP is true positive, TN is true negative, FP is false
positive and FN is false negative. These values were obtained
by computing the confusion matrix (Qureshi et al., 2016).
Kappa score is considered as a robust statistical measure for the
assessment of multi-class classifiers. It is defined by Cohen (1960)
as

k = Pr(a)− Pr(e) / 1− Pr(e),

Where Pr (a) is the relative observer agreement between raters
and Pr(e) is hypothetical probability of chance agreement. The

value of k ranges between +1 and −1, where k = 1 represents
perfect classification, k = 0 represents chance level, and k = −1
represents completely erroneous classification (Wang et al., 2012;
Qureshi et al., 2016).

A Permutation test was used to assess the statistical
significance of the ELM classifier performance (Golland and
Fischl, 2003). Briefly, it works as follows. First, we choose the
actual test accuracy as the test statistic of the classifier, the class
labels for testing dataset permuted randomly and given to the
classifier and check for the cross validation. Generally, the lower
p-value of the permuted prediction rate against the prediction
rate with the original data labels indicates the higher significance
of the classifier performance. There is no fixed rule for setting
the number of permutations. We have permuted the data 10,000
times in the current study (Qureshi et al., 2016).

Figure 2 depicts the overview of the classification framework
of this study.

RESULTS

We used ANOVA analysis to extract the features for classification
in this study along with the ROI based features as proposed in a
recent study (Qureshi et al., 2016). These ANOVA-based features
were gathered separately from both structural and functional
MRI datasets. Classification accuracy was measured for both
unimodal and multi-modal features. The following explanation
of the ANOVA results of each modality describes those ANOVA-
based features briefly.
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FIGURE 3 | Twelve regions with significant differences as determined by structural ANOVA. The top row shows the transverse views. The bottom figures

show the lateral views. The most significant results are located in the superior frontal gyrus.

TABLE 3 | Twelve regions with significant differences, based on ANOVA (corrected at p < 0.001, cluster size 50mm2).

Cluster size (mm2) Coordinates Average Cortical Thickness

x y z ADHDI ADHDC TDC

LEFT HEMISPHERE

Superior frontal sulcus, MFG 263.40 −24.38 10.534 57.315 2.6962 2.5483 2.7053*

Precentral gyrus 226.75 −28.876 −24.375 59.984 2.6088 2.5351 2.7823*

Postcentral gyrus (middle) 120.55 −51.721 −20.515 48.220 2.0511 2.0943 2.2158*

Postcentral gyrus (dorsal) 108.48 −31.086 −33.537 61.708 1.9221 2.0749 2.2061*

MTG 97.22 −56.836 −43.266 −0.973 3.0002 3.0167 3.1930*

Orbital gyri, olfactory sulcus 92.90 −16.190 43.782 −6.448 2.3751* 2.2694 2.1542

fusiform gyrus 85.49 −34.077 −24.091 −16.101 3.0491* 2.8391 2.9911

Temporal pole 72.70 −25.916 15.919 −22.011 3.7693 3.4891 3.8485*

Intraparietal sulcus 70.85 −18.823 −55.081 35.649 2.1532 2.2230 2.3272*

SFG 61.23 −16.234 52.671 40.944 3.0485* 2.9041 2.8155

RIGHT HEMISPHERE

Precentral gyrus/Central sulcus 686.22 38.521 −14.525 50.407 2.5374 2.5437 2.6961*

SFG 69.90 14.811 26.247 58.640 3.0023* 2.8072 2.9575

TDC, typically developing children; ADHDI, attention-deficit/hyperactivity disorder, inattentive type; ADHDC, attention deficit/hyperactivity disorder, combined type; MFG, middle frontal

gyrus; MTG, middle temporal gyrus; SFG, superior frontal gyrus. *Indicates the highest cortical thickness value of the region among the three groups.

Structural ANOVA
ANOVA analysis was applied to the cortical thickness measures
acquired by FreeSurfer and further smoothed with Heat kernel by
AFNI preprocessing pipelines. We used only cortical thickness
measures for the ANOVA analysis as it is the most important
structural imaging biomarker (Shaw et al., 2007; Narr et al., 2009).
A basic description of this results was presented briefly in a
recent previous work (Qureshi et al., 2016). In the present study,
we are using the ANOVA results for extracting the features for
classification. The ANOVA tests showed (see Figure 3) 10 areas
of significant thickness change in the left hemisphere and two
areas in the right hemisphere (corrected at p < 0.001, cluster

size 50 mm2). AlphaSim was applied on the result for correction.
Table 3 summarizes our findings.

Functional ANOVA
The ANOVA tests of resting state fMRI data showed nine areas
of significant change (corrected at p < 0.000001, cluster size 11
mm2) (see Figure 4) from four significant functional networks
of the human brain including the ventral attention network,
sensorimotor network, visual network, and cerebellar network.
Table 4 summarizes the details of the significant regions.

Our classification results confirm that these regions can
be used as potential biomarkers/features for the multi-class
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FIGURE 4 | Four significant networks including nine significant

sub-network regions acquired by ANOVA analysis of the global

connectivity maps of resting state fMRI data. The figure depicts the

selected region in all three sagittal, coronal, and axial views respectively.

classification of ADHD s/fMRI dataset. The ANOVA-based
features gave high classification accuracy both as standalone
modality and in combination with ROI-based features.

Multi-class Classification
Our results suggest that the optimized features are robust and
yield higher classification accuracies both in binary and multi-
class classification settings. We achieved a maximum of 76.190%
accuracy (p < 0.0001) on the test data by using the proposed
hierarchical feature extraction framework with (ELM) in multi-
class settings. Table 5 summarizes the overall multi-class (one vs.
all settings) accuracies, kappa score, and p-values of structural,
functional, multi-modal, and multi-measure data.

Binary Classification Results
Binary classification results are presented in the current study to
demonstrate the fact that, ideally, multi-class classification results
show equaling and generally lower accuracy than results from the
binary classification of the same dataset (Qureshi et al., 2016).

The major result of the current study is the highest prediction
accuracy of the ADHD dataset using all the measures and
modalities together as features; therefore, we performed the
binary classification on the combined measures only. In binary

classification settings, we achieved a maximum of 92.857%
(p < 0.0001) prediction accuracy. It is interesting to note
that the proposed feature selection framework selected only
structural features from multi-modal input to acquire this
accuracy. Most significant feature measures were mean cortical
thickness, volume, area, and standard deviation of cortical
thickness respectively. Even though the functional features were
not selected in the final selection but they assist the selection
algorithm to extract the most discriminative structural features
(both ROI and ANOVA-based) from the pool. When we used
only the structural features for binary classification we could
not reach the same accuracy as we did while using the multi-
modal features. In addition, we were not able to achieve this
high accuracy in the previous work (Qureshi et al., 2016) because
all of the cortical feature measure types utilized in the present
study were not used in it. We also learned from the previous
study (Qureshi et al., 2016) that many of the feature measures do
not have any predictive power including folding and curvature
indices, therefore we did not include those measures in this
study. Briefly, we achieved the following binary accuracies with
each individual modality. With only structural ANOVA features
89.29%; with only functional ANOVA features 82.14%; with only
functional ROIs 85.17%, and with only structural ROIs 85.30%.

Table 6 summarizes the classification scores of all the disease
groups along-with sensitivity, specificity, F1-score, recall, and
precision measures for all the multi-modal and multi-measure
features.

It is important to note that two of the three ELM classifier-
based binary classification scores (ADHDC-TDC and ADHDI-
TDC) without feature selection overlap exactly with the accuracy
of the linear SVM with the most discriminative features. In other
words, we can say that the lowest accuracy of the ELM classifier
overlaps with the highest accuracy of the SVM classifier.

Correlation Coefficient: Structural Data
After applying the Bonferroni correction method with p <

0.000463, we found two regions that were negatively correlated
with age in TDC group (Table 7). These regions were left
middle temporal gyrus and left superior frontal gyrus. On the
other hand, some individual IQ and symptoms severity score
data were not included in the original database. Therefore,
we only use the subjects with available IQ and symptoms
severity score information to perform the calculation of
the correlation coefficients. Those subjects with missing IQ
information included nine from the TDC group and 13 from the
ADHDC group. The subjects with missing symptoms severity
score were included 29 from ADHDI group, 11 from ADHDC
group and 36 from TDC group. In contrast, there was no missing
age information.

Correlation Coefficient: Functional Data
For the functional data, the beta value for each of the ANOVA-
based significant cluster was calculated by using AFNI program
3dmaskave. The Pearson correlation coefficients were calculated
between the beta values and age, IQ, and symptoms severity
scores.

Frontiers in Human Neuroscience | www.frontiersin.org 9 April 2017 | Volume 11 | Article 157

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Qureshi et al. Multi-modal, Multi-measure, and Multi-class Classification of ADHD

TABLE 4 | Nine regions with significant differences, based on functional

ANOVA (corrected at P < 0.000001, and cluster size 11 mm2).

Atlas regions Cluster size (mm2) coordinates

x y z

Right Lingual Gyrus 186 −3.0 71.0 −4.0

Left Precentral Gyrus 30 37.0 15.0 34.0

Right Precentral Gyrus 26 63.0 5.0 12.0

Right STG (BA 38) 23 −51.0 −15.0 −26.0

Left Middle Frontal Gyrus 18 21.0 1.0 42.0

Right Declive 13 −3.0 73.0 −20.0

Left Precentral Gyrus 13 29.0 21.0 58.0

Left Middle Occipital Gyrus 11 31.0 75.0 16.0

Right Postcentral Gyrus (BA 43) 11 −65.0 14.0 15.0

STG, superior temporal gyrus; BA, Brodmann area.

After applying the Bonferroni correction method with p <

0.000617, no significant region was found.

Significant Features
Highest subgroup classification accuracies were obtained
by using the significant features as shown in Table S2
(Supplementary Material).

DISCUSSION

This study reports the multi-modal, multi-measure, and multi-
class classification results on the ADHD-200 dataset. We
calculated and used the global connectivity maps from the
functional part of the dataset as classification features. Atlas-
based anatomical measures from the structural part of the dataset
were also used as features for classification. A hierarchical feature
extraction framework is proposed in this study to extract the
features with high prediction score. An ELM classifier was used
to classify the data. The ELM classifier in combination with the
proposed feature extraction framework outperforms the ELM
without feature extraction and two SVMs with the proposed
feature extraction framework.

The proposed hierarchical feature extraction method enables
us to achieve high and significantly accurate classification
accuracies. As a result, we achieved as high as 76.190% (p <

0.0001) accuracy in multi-class settings. To the best of our
knowledge, this is the highest test accuracy reported on the
ADHD-200 dataset. Therefore, the multi-modal, multi-measure
andmulti-class classification was an effective approach to achieve
high discrimination scores.

The ELM classifier in combination with the sparse
feature autoencoder works very well for the classification
of neuroimaging data such as in a recent previous work
(Qureshi et al., 2016) based on hierarchical extreme learning
machine (H-ELM) (Tang et al., 2016) classification framework.
However, the current study proposed a more simplified sparse
feature extraction framework that enables us to acquire higher
classification accuracies.

Comparison with Previous Work
In recent years, many studies about classification-based diagnosis
of ADHD have been reported. Most of these studies were binary
and the classification scores were ranging from about 72 to
95% (Igual et al., 2012; Lim et al., 2013; Peng et al., 2013;
Johnston et al., 2014; Deshpande et al., 2015; Hammer et al., 2015;
Iannaccone et al., 2015; Wolfers et al., 2015; Qureshi and Lee,
2016; Qureshi et al., 2016; Xiao et al., 2016). Except for one study,
all used feature selection methods prior to classification (Wolfers
et al., 2015). In Xiao et al. (2016), a different ADHD dataset
was used with only 47 subjects, compared to the current study.
Although the theme of this study by Xiao et al. (2016) is similar
to our present work, the results are not comparable due to dataset
differences and their use of only cortical thickness ROIs. In
addition, our main focus was the multi-class, multi-measure, and
multi-modal classification of the ADHD-200 dataset. Previously,
a very few multi-class (Fair et al., 2012; Qureshi et al., 2016) and
multi-modal (Colby et al., 2012; Dai et al., 2012) classification
studies have been published with ADHD-200 dataset. However,
to the best of our knowledge, the present study is the first multi-
modal, multi-measure, and multi-class classification study of the
ADHD-200 dataset. In addition, the multi-class classification
accuracy of 76.190% (p< 0.0001) is the highest reported accuracy
on the ADHD-200 dataset in multi-class settings. However, all
the aforementioned studies, except a recent study (Qureshi et al.,
2016), used different subject selection compared to us. Therefore,
the present results are not comparable to the previous studies.
The multi-class classification score of the structural part 73.810%
(p < 0.0001) of the present study is much higher than the
results (60.78%) in Qureshi et al. (2016), which utilized the exact
same subject selection for classification. The present study is
also comparable to Qureshi et al. (2016) in that it also utilized
sparse hierarchical feature extraction framework with basic ELM,
while Qureshi et al. (2016) used H-ELM classification framework,
which is a similar approach in principal. However, the method
of the present study outperformed all the results in Qureshi
et al. (2016) because the proposed hierarchical feature extraction
framework can extract features with the higher predictive power
as compared to the sparse autoencoder. In addition, in the
present study we utilized many additional feature measures
that were not used in Qureshi et al. (2016). We believe that
these measures played a vital role in increasing the classification
accuracy. However, the exact causes of the boosted accuracy are
not yet determined.

Correlation Analysis of the Significant
Regions
We two significant negative Pearson correlation coefficients
between the cortical thickness of the regions and age. During
adolescence, normal children undergo the cortical thinning phase
(Sowell et al., 2004). Consistent with these findings, the two
cortical regions in our results showed a decreasing tendency
of cortical thickness with age in the TDC group. However,
this pattern seemed to be weaker in the ADHDC and ADHDI
groups: no regions in each had negative correlation coefficients.
In other words, the patients exhibited some deficits in cortical
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TABLE 5 | Multi-class classification results.

Structural data

Classifier Measure type (feature count)

CT (64) Area (62) Curvature (62) Volume (62) CTSD (62) SCV (37) WMV (68) SCI (40) OV (16) All ROI (475) ABR (12)

ELM Accuracy (%) 69.048 64.286 66.667 69.048 71.429 59.524 66.667 64.286 61.905 73.81 66.667

Kappa score 0.5357 0.4643 0.5 0.5357 0.5714 0.3929 0.5 0.4643 0.4286 0.6071 0.5

p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

ELM-NFS Accuracy (%) 57.143 47.62 52.381 50 50 42.858 52.381 47.62 45.239 50 50

Kappa score 0.3571 0.2143 0.2857 0.25 0.25 0.1429 0.2858 0.2143 0.1786 0.25 0.25

p-value <0.0004 <0.0180 <0.0016 <0.0089 <0.0065 <0.0716 <0.0035 <0.0140 <0.0346 <0.0046 <0.0062

SVM linear Accuracy (%) 54.762 47.62 61.905 50 54.762 45.239 52.381 57.143 50 50 42.858

Kappa score 0.3214 0.2143 0.4286 0.25 0.3214 0.1786 0.2858 0.3571 0.25 0.25 0.1429

SVM-RBF Accuracy (%) 52.381 47.62 33.333 47.62 50 42.857 50 47.62 42.858 52.381 40.477

Kappa score 0.2857 0.2143 0 0.2143 0.25 0.1429 0.25 0.2143 0.1429 0.2857 0.1071

Functional data

Classifier Measure type (feature count)

Average global Connectivity (102) ABR (09)

ELM Accuracy (%) 71.429 64.286

Kappa score 0.5714 0.4643

p-value <0.0001 <0.0001

ELM-NFS Accuracy (%) 59.524 64.286

Kappa score 0.3929 0.4643

p-value <0.0001 <0.0001

SVM linear Accuracy (%) 61.905 52.381

Kappa score 0.4286 0.2857

SVM-RBF Accuracy (%) 42.857 40.476

Kappa score 0.1429 0.1071

Multi-modal and Multi-measure Data

Classifier Measure type (feature count)

ABR (21) All ROI (577) All measures (598)

ELM Accuracy (%) 69.048 71.429 76.19

Kappa score 0.5357 0.5714 0.6429

p-value <0.0001 <0.0001 <0.0001

ELM-NFS Accuracy (%) 52.381 52.381 57.1429

Kappa score 0.2857 0.2857 0.3571

p-value <0.0035 <0.0021 <0.0001

SVM Linear Accuracy (%) 54.762 64.286 64.286

Kappa score 0.3214 0.4643 0.4643

SVM-RBF Accuracy (%) 52.381 54.762 57.143

Kappa score 0.2857 0.3214 0.3571

CT, cortical thickness; CTSD, cortical thickness standard deviation; SCV, sub-cortical volume; WMV, white matter volume; SCI, sub-cortical intensity; OV, overall volume; ROI, region

of interest; ABR, analysis of variance (ANOVA) based ROI; ELM, extreme learning machine; NFS, no feature selection; RBF, radial basis function. Besides the ELM-NFS all the three

(ELM, SVM linear and SVM-RBF) based classification scores were obtained with the most discriminative features selected through the hierarchical feature selection method. Table S1.

in (Supporting Information) describes the features name and count in detail. Bold values represents the highest accuracy and its corresponding evaluation measures.
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thinning in the middle temporal gyrus and superior frontal
gyrus. While considering the middle temporal gyrus; it can
be included in ventral attention networks and superior frontal
gyrus is related to the dorsal attention networks, therefore, the
structural thinning deficits might be used as important markers
to discriminate patients and controls (Aboitiz et al., 2014). Thus,
we postulate that normal cortical thinning development was
interrupted in the ADHD groups. Based on previous findings
suggesting that ADHD is related to cortical thinning, the patients
might experience abrupt thinning of some brain regions related
to attention and motor functions (Makris et al., 2007; Narr et al.,
2009).

Moreover, it is evident from our classification results that
those significant statistical differences may underlie the high
classification accuracy. The results in Vaidya (2011), McLeod
et al. (2014), Tegelbeckers et al. (2015) further endorse our results
of the correlation analysis of ANOVA-based significant regions
with age.

Clinical Relevance of Statistical Results
The significant regions from both structural and functional
ANOVA results play an important role in acquiring highly
accurate differential diagnosis when used in combination with
the ROI based significant features that did not form part of the
outcome of the ANOVA analysis. The following description of
the regions obtained from our ANOVA analysis may have clinical
significance:

Most of the neuroimaging studies addressing ADHD
emphasize that the selected regions in the present study
has a strong connection with the neurodevelopmental basis
of this disorder. Specifically, the cortical thinning problem
and the attention and motor network hypoconnectivity
have been suggested to be involved in ADHD (McCarthy
et al., 2014; McLeod et al., 2014). These regions showed
significant differences between the ADHD and control groups
(Qureshi et al., 2016). The functional ANOVA results again
endorse the significance of our noteworthy results. A few
of the significant regions from our functional ANOVA
results overlap with those of structural ANOVA results.
They include the left precentral gyrus, the right precentral
gyrus, the left middle frontal gyrus, and the right superior
temporal gyrus, which are all related to the motor or attention
networks.

Our significant feature results showed that structural
information is more crucial for the classification. It means
that combined gross classification by sMRI and supporting
information from fMRI can increase accuracy. In our structural
ANOVA results, multiple areas of the frontal cortex, including
the middle frontal gyrus (MFG), the precentral gyrus, and the
postcentral gyrus in the parietal cortex, showed significantly
higher cortical thickness in the TDC group. Our findings are
in accordance with previous results (Durston, 2003; Shaw et al.,
2007; Valera et al., 2007), and this might contribute to the high
classification accuracy of our model. On the other hand, although
not much is known about the temporal lobe (Lorberboym et al.,
2004), it is evident that the cortical thickness differs significantly
in ADHD patients as compared to the normal control group

TABLE 6 | Binary classification results.

Classifier Group

ADHDC-TDC ADHDC-ADHDI ADHDI-TDC

ELM Accuracy (%) 89.286 85.714 92.857

p-value <0.0001 <0.0001 <0.0001

Sensitivity 92.857 100.00 85.714

Specificity 85.714 71.429 100.00

F1-score 89.655 87.500 92.307

Recall 92.857 71.429 100.00

Precision 86.667 100.00 85.714

ELM-NFS Accuracy (%) 71.429 67.857 67.857

p-value <0.0351 <0.0348 <0.0343

Sensitivity 100.00 85.714 64.286

Specificity 64.286 50.000 71.429

F1-score 78.571 72.727 66.667

Recall 42.857 85.714 64.286

Precision 64.286 63.158 69.231

SVM linear Accuracy (%) 71.429 82.143 67.857

Sensitivity 64.285 92.857 42.857

Specificity 78.571 71.428 92.857

F1-score 69.231 83.839 57.143

Recall 64.286 92.857 42.857

Precision 75.000 76.471 85.714

SVM-RBF Accuracy (%) 53.571 57.143 60.714

Sensitivity 7.1429 100.00 78.571

Specificity 100.00 14.285 42.857

F1-score 0.1333 70.000 66.667

Recall 100.00 100.00 78.571

Precision 7.1429 53.846 57.894

ELM, extreme learning machine; TDC, typically developing children; ADHDI, attention-

deficit/hyperactivity disorder-inattentive type; ADHDC, attention-deficit/hyperactivity

disorder combined type; SVM, support vector machine; RBF, radial basis function; NFS,

no feature selection applied. Besides the ELM-NFS all the three (ELM, SVM linear, and

SVM-RBF) based classification scores were obtained with themost discriminative features

selected through the hierarchical feature selection method. Bold values represents the

highest accuracy and its corresponding evaluation measures.

(Fernández-Jaén et al., 2014). Cortical thickness changes over
time, therefore we focused on the dynamic changes of thickness
according to the ages. Generally, ADHD has cortical thinning
compared to controls after development. In Narr et al. (2009)
the mean age was of 11.7 years. However, ADHD has cortical
thinning problems during the development which are related
to the delayed cortical maturation. The mean age of peak brain
thickness is 10.5 years for ADHD and 7.5 years for controls. It
means after 10.5 years of age, ADHD experiences fast decreases
of cortical thickness while controls have enough time to maturate
the brain. In line with these evidences, we can say that ADHD
has delayed cortical thinning, but finally they can get thinner
cortex than controls. In addition, many brain areas can maturate
with different speeds, therefore that the results were confusing
for us. Our results from the functional ANOVA reconfirm this
finding. The middle temporal gyrus is associated with language
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TABLE 7 | Structural data Pearson correlation coefficients of the 12 regions with age under consideration.

TDC ADHDC ADHDI

p-value Rho p-value Rho p-value Rho

LEFT HEMISPHERE

Superior frontal sulcus, MFG 0.1372 −0.2069 0.7824 0.0388 0.4319 0.1103

Precentral gyrus 0.1432 −0.2038 0.4745 −0.1001 0.9545 −0.008

Postcentral gyrus (middle) 0.0566 −0.2635 0.6064 0.0724 0.7336 −0.0479

Postcentral gyrus (dorsal) 0.0871 −0.2373 0.8634 −0.0242 0.0158 −0.3298

MTG 0.0001* −0.5326 0.4412 −0.1080 0.2892 −0.1483

Orbital gyri, olfactory sulcus 0.0024 −0.4071 0.0003 −0.4711 0.0277 −0.3024

fusiform gyrus 0.0011 −0.4360 0.0031 −0.3986 0.6097 −0.0717

Temporal pole 0.2006 0.1786 0.5023 −0.0942 0.3713 −0.1253

Intraparietal sulcus 0.1146 −0.2193 0.3500 −0.1309 0.1211 −0.2156

SFG 0.0001* −0.4978 0.3447 −0.1324 0.5520 −0.0836

RIGHT HEMISPHERE

Precentral gyrus/Central sulcus 0.0386 −0.2849 0.6293 0.0678 0.0482 0.2727

SFG 0.2548 0.1592 0.3201 0.1392 0.5198 0.0904

TDC, typically developing children; ADHDI, attention-deficit/hyperactivity disorder, inattentive type; ADHDC, attention-deficit/hyperactivity disorder, combined type; MFG, middle frontal

gyrus; MTG, middle temporal gyrus; SFG, superior frontal gyrus. *Result has a significant correlation coefficient: (corrected at p < 0.000463).

abilities, visual perception, multi-modal sensory integration,
and semantic memory processing (Qureshi et al., 2016). Our
findings from the functional ANOVA result are consistent
with these results. The bilateral postcentral gyrus (Martinussen
et al., 2005), right declive (Ortiz et al., 2015), and Left middle
occipital gyrus were reported to be affected in ADHD. Visual
perception ability is also related to the visuospatial working
memory which is the common symptom of ADHD (Valera
et al., 2010; Vaidya, 2011; McLeod et al., 2014). ADHD is
related to the semantic memory and language problems (Felton
et al., 1987). Our functional ANOVA results endorse these
findings, thus making our observations highly beneficial to
clinicians.

CONCLUSIONS

This study reports the correlation between both structural and
functional measures as well as age IQ and symptom severity
score. However, IQ and symptoms severity score information,
which is also a very important parameter to determine the
correlation among different groups, was missing for a few
subjects in the original dataset. In addition, the exact cause of the
boosted accuracy was unknown. This is a major limitation of this
study.

In conclusion, we found that the proposed hierarchical feature
extraction model in combination with ELM serves very well
both the binary and the multi-class classification of ADHD.
In the future, we will perform linear mixed effect modeling
and multi-variate modeling on the selected data of the ADHD-
200 dataset in order to acquire the significant regions using
both neuroimaging (structural and functional) data and age
information.
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