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Abstract 

Background:  Computed tomography (CT) is one of the popular tools for early detec-
tion of thyroid nodule. The pixel intensity of thyroid in CT image is very important infor-
mation to distinguish nodule from normal thyroid tissue. The pixel intensity in normal 
thyroid tissues is homogeneous and smooth. In the benign or malignant nodules, the 
pixel intensity is heterogeneous. Several studies have shown that the first order fea-
tures in ultrasound image can be used as imaging biomarkers in nodule recognition.

Methods:  In this paper, we investigate the feasibility of utilizing the first order texture 
features to identify nodule from normal thyroid tissue in CT image. A total of 284 
thyroid CT images from 113 patients were collected in this study. We used 150 healthy 
controlled thyroid CT images from 55 patients and 134 nodule images (50 malignant 
and 84 benign nodules) from 58 patients who have undergone thyroid surgery. The 
final diagnosis was confirmed by histopathological examinations. In the presented 
method, first, regions of interest (ROIs) from axial non-enhancement CT images were 
delineated manually by a radiologist. Second, average, median, and wiener filter were 
applied to reduce photon noise before feature extraction. The first-order texture 
features, including entropy, uniformity, average intensity, standard deviation, kurtosis 
and skewness were calculated from each ROI. Third, support vector machine analysis 
was applied for classification. Several statistical values were calculated to evaluate the 
performance of the presented method, which includes accuracy, sensitivity, specific-
ity, positive predictive value (PPV), negative predictive value (NPV), and area of under 
receiver operating characteristic curve (AUC).

Results:  The entropy, uniformity, mean intensity, standard deviation, skewness 
(P < 0.05), except kurtosis (P = 0.104) of thyroid tissue with nodules have a significant 
difference from those of normal thyroid tissue. The optimal classification was obtained 
from the presented method. The accuracy, sensitivity, specificity, positive predictive 
value (PPV) and negative predictive value (NPV) are 0.880, 0.821, 0.933, 0.917, 0.854, 
and 0.953 respectively.

Conclusion:  First order texture features can be used as imaging biomarkers, and the 
presented system can be used to assist radiologists to recognize the nodules in CT 
image.
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Background
According to the National Cancer Institute’s Surveillance, Epidemiology, and End Results 
(SEER) program, the number of new cases of thyroid cancer has been increased from 
4.85 to 15.07 per 100,000 men and women since 1975. The incidence rate is about 98.2 
per 100,000 among people aged 35–54 [1]. A larger number of mid-age patients cost the 
whole nation a lot for diagnosis, surgery, and adjuvant therapy. Thyroid nodules are very 
common: the prevalence of palpable nodules is about 4 ~ 8%. The prevalence of thyroid 
nodules identified by means of pathologic examination at autopsy approaches 50% [2, 3]. 
Although thyroid cancer accounts for only a small proportion of thyroid nodules, about 
5% [4], an accurate and efficient diagnostic tool is critical for patients to detect thyroid 
nodules.

The important and first step of the successful treatment is that nodules could be diag-
nosed at an early stage. With the development of imaging technology and image pro-
cessing, thyroid nodule diagnosis becomes an increasingly frequent event. Currently, the 
widely used imaging methods for thyroid nodules include ultrasound, magnetic reso-
nance imaging (MRI), computed tomography (CT), and positron emission tomography 
(PET) [5–7]. Ultrasound is a key diagnostic tool in the initial evaluation of thyroid nod-
ules because it is low cost and convenient. The computer aided detection systems based 
on US images have been developed to help doctors identify nodule from normal thyroid 
tissues [8]. MRI has an adjuvant role in the evaluation of thyroid disease, and the util-
ity of PET is in the evaluation of thyroid cancers with dedifferentiated tumours [8]. CT 
provides valuable information for further operative intervention, especially for retros-
ternal goiters, the malignant case with suspicion of extracapsular extension [9, 10], and 
multiple punctate calcifications [11]. The usage of CT scans helps in the detection of 
incidental thyroid cancers [12]. In clinical practice, radiologists visually inspect a large 
amount of CT images, which is a tedious and error-prone task. The reporting practices 
for incidental thyroid nodules (ITNs) are highly variable. Based on radiologist’s experi-
ence, practice type, and training [13]. Some subtle CT features, like calcification, could 
be missed in visual inspection. To overcome the limitations, computer aided detection 
(CAD) systems can be developed to improve the accuracy of radiologists in the interpre-
tation of CT images.

Nowadays, there have been studies to assess the feasibility of CT images in thyroid 
nodule evaluation. Li assessed the thyroid nodules in dual-energy computed tomogra-
phy imaging, and found a significant difference between benign and malignant groups 
in iodine concentration, Hounsfield unit (HU) curve slope, and effective atomic number 
[14]. Using a larger dataset, CT scans in 734 patients, Yoon found that rim calcifications, 
high anteroposterior-transverse diameter ratio and mean attenuation value suggest 
malignancy of the incidental thyroid nodules [15]. Several groups have attempted to pre-
dict malignancy from multiple punctate calcifications and solitary coarse calcification 
[11, 16]. Previous studies showed that the imaging characteristics of thyroid nodules in 
CT have promising potential for differentiation of benign and malignant thyroid nod-
ules. However, there are no studies about CAD system to assess the imaging characteris-
tics of thyroid in CT for nodule detection.

In this paper, we presented a CAD system to detect thyroid nodules in CT images. Six 
image features, including entropy, uniformity, mean intensity, standard deviation, and 
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kurtosis, were extracted from thyroid regions. Three de-noising filters, including average, 
median, and wiener filter, were used and their effect on the performance of CAD system 
was evaluated. We further consider feature selection method to find the optimized fea-
ture subset and improve the classification accuracy. Here we report a light-weighted CAD 
system for thyroid nodules detection in CT images. This system has potential to lighten 
the radiologists’ burden and improve the diagnostic accuracy of thyroid nodules.

We arrange the present paper in the following orders. First, the inclusion criteria and 
vital parameters of our data were described. Second, the thyroid regions were delineated 
in CT images by an experienced radiologist. Third, texture features were extracted from 
the delineated regions, and support vector machine was applied to train and predict the 
nodules and normal tissues. Finally, we evaluate the performance of different feature 
subsets to improve the accuracy of the presented method.

Methods
Study population

From January 2013 to January 2014, thyroid images were found in 434 cases through 
non-enhanced CT examination of neck or chest in the picture archiving and commu-
nication system (PACS) of Ruian People Hospital, Zhejiang, China. Nodule cases with-
out surgical treatment and pathological result (n =  301) and cases with inappropriate 
CT protocol, poor image quality (n = 20) were excluded. Finally, 58 nodule cases with 
surgical treatments and pathological results and 55 health controlled cases (mean age 
52.0 ± 13.5 years; range 25–80 years) met the inclusion criteria. Two or three images 
were selected from each case (Table 1).

CT examinations

The scanning was conducted with 16-channel Helical CT scanner (Sensation, Siemens 
Medical Solution, Erlangen, Germany). The patients lay in supine position and were 
scanned from pharynx oralis to the upper edge of the clavicle, and some were scanned 
to tracheal bifurcation. The scanning parameters were: 120 kVp, with CARE DOSE 4D 
technology, 0.6 mm × 16 of collimation, 1 of pitch, 0.5 s of frame rotation, 2 ~ 3 mm of 
slice thickness and same cross-sectional distance, B31 standard of reconstruction kernel.

Regions of interest

To make sure the image quality, CT images were checked in PACS station (Maroland 
iEIS, m-Viewer version 5.3, China) by an experienced radiologist. One to three regions 
of interest (ROIs) in transverse non-enhancement CT images were selected from each 
case. The contours of thyroid tissues on each image were delineated manually by the 

Table 1  Patient and image information in this study

PTC papillary thyroid cancer, FTC follicular thyroid cancer

Benign Malignant Normal Total

Goiters Thyroiditis Thyroid Adenoma PTC FTC

Patients 30 3 4 20 1 55 113

Images 63 9 12 47 3 150 284
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experienced radiologist with MRIcro software (MRIcro by Chris Rorden, version 1.39 
build 5). Finally, ROIs (nodule, n = 134; normal, n = 150) were extracted. The main steps 
of segmentation include: (1) The contour of single thyroid (Fig. 1a). (2) The A was con-
verted into binary image (Fig. 1b). (3) The region was filled with number one and saved 
as a mask (DICOM format) (Fig. 1c). (4) The target image was obtained by multiplying 
the original image with the mask (Fig. 1d). Our calculation platform was Matlab R2012b 
(8.0.0.783), windows XP.

Feature extraction and normalization

The normal thyroid tissue is homogeneous in image intensity. However, for thyroid nod-
ules, spatial heterogeneity is a well-recognized feature that reflects the area of necrosis, 
haemorrhage, and calcifications [17]. The quantification of heterogeneity can be used as 
an imaging biomarker to differentiate between tumour types, grade tumours, and pre-
dict outcome [18]. In our study, we used first order texture features as the quantification 
of heterogeneity, including entropy (irregularity), uniformity (distribution of gray level), 
mean intensity (intensity level), kurtosis (magnitude of intensity distribution), skewness 
(skewness of intensity distribution), and standard deviation. The texture feature equa-
tions are listed in Table 2. The photon noises can cause heterogeneity in CT imaging, 

Fig. 1  The procedure of ROI extraction in thyroid CT image. a The contour of a thyroid with malignant nod-
ule. b Binary contour. c Mask of thyroid tissue. d Target ROI of thyroid tissue
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which may mask the underlying biological heterogeneity. To reduce these noises, three 
filters, including average, median and wiener filters, were used as the image pre-process-
ing. The window size of the filter is 3 * 3 pixels. The first order texture features were cal-
culated both with and without filters. In general, high entropy, standard deviation, and 
kurtosis, and low uniformity and skewness indicate heterogeneous tissues, which could 
be nodules.

All the features were normalized to [0, 1] according to Eq. (1):

where Xi is the ith original feature, Yi is the ith normalized feature.

Statistics analysis

The normalized texture features are evaluated and compared between nodule and nor-
mal groups using independent-samples student’s T test. If the P value is less than 0.05, 
it indicates the difference of the feature between two groups is statistically significant. 
Receiver operating characteristic (ROC) curve was performed to illustrate the perfor-
mance of the classifier system. The area under the receiver operating characteristic curve 
(AUC) was calculated to evaluate the accuracy of the classification.

Feature selection

To remove the redundant features and improve the performance of classification, we 
used sequential forward floating selection (SFFS) to select optimized feature subset [19]. 
The criterion used to select features was the accuracy of the k-nearest neighbour clas-
sification. The method started from an empty feature set, and created candidate feature 
subsets by sequentially adding each of the features not yet selected. For each candidate 
feature subset, leave-one-out cross validation was used. The selected feature subset was 
the one that had optimal classification performance. To validate the selected feature sub-
set, we randomly divided all the samples into two groups, selection group and validation 

(1)Yi = (Xi −min(Xi))
/

(max(Xi)−min(Xi))

Table 2  Descriptions and equations of first-order texture features used in this study

Feature type Equations Description

Entropy
e = −

k
∑

l=1

[

p(l)
]

log2
[

p(l)
] Describes the randomness and 

irregularity of all pixel intensity

Uniformity
u =

k
∑

l=1

[

p(l)
]2 Describes the distribution of gray 

level degree

Mean intensity
m =

1
n

n
∑

i=1

p(i)
Describes the mean intensity value 

of all pixels

Standard deviation
sd =

(

1
(n−1)

∑

(x ,y)∈R

[

a(x , y)− a
]2

)
1
2 Describes the off variation from the 

mean pixel value

Kurtosis
k =

n(n+ 1)

(n− 1)(n− 2)(n− 3)

∑

(x ,y)∈R

[

a(x , y)− a
]4

[

sd(a)
]4

− 3
(n− 1)2

(n− 2)(n− 3)

Indicates the bulging or peakedness

Skewness
s = n

(n−1)(n−2)

∑

(x ,y)∈R [a(x ,y)−a]
3

sd(a)3

Indicates the asymmetry
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group. We used samples in the selection group to find the optimal feature subset with 
SFFS method. The selected feature subset was validated with samples in the validation 
group.

Classification

Computer-aided diagnosis/detection often implies processing large scale and high 
dimensional datasets [20, 21]. Recent studies on local binary pattern and deep learn-
ing can extract high-level contents in images and achieve efficient recognition in several 
large datasets [22, 23]. As a preliminary study, our dataset is small, so we focus on the 
feasibility of first order texture features to identify nodule from normal thyroid tissue. 
Support Vector Machine (SVM) is a classic pattern recognition method introduced by 
Vapnik since 1995, which is successfully used in solving a range of problems, especially 
in the case of small scale samples, high-dimensional data, and non-linear pattern rec-
ognition [18, 24, 25]. We used SVM in this study to classify the nodule from the normal 
tissues.

If given a training sample set 
{(

xi, yi
)}n

i = 1
, where xi denotes the training vector, xi∊Rn 

and yi denotes the corresponding class label, the value of yi is 1 or −1, and n denotes the 
total number of the training sample. SVM will find the solution of the following optimi-
zation problem:

Here C is a penalty parameter of the error term, ξi is the non-negative slack variable, w 
is the normal vector of the hyper-plane, and b is the offset of the plane. SVM will find the 
linear separating hyper-plane with the maximal marginal in higher dimensional space. 
Then, a kernel function K(xi,xj) = ϕ(xi)

T
ϕ(xj)i is used to map the training sample into a 

higher dimensional feature space. In our study, the SVM parameters were optimized by 
grid search using cross-validation, and the radial basis function (RBF) was used as the 
kernel of SVM.

To assess the performance of the presented methods, six objective indices, including 
sensitivity (SEN), specificity (SPC), accuracy (ACC), positive predictive value (PPV) and 
negative predictive value (NPV), were calculated.

These indices are defined as follows:

(2)min
w,b,ξ

1

2

〈

wT
· w

〉

+ C

n
∑

i=1

ξi

Subject to: yi(�w · xi� + b)+ ξi − 1 ≥ 0

(3)Sensitivity(SEN) = NTP

/

(NTP +NFN)

(4)Specificity(SPC) = NTN

/

(NTN +NFP)

(5)Posittive Predictive Value(PPV) = NTP

/

(NTP +NFP)

(6)Negative Predictive Value(NPV) = NTN

/

(NTN +NFN)

(7)Accuracy(ACC) = (NTN +NTP)
/

(NTN +NTP +NFN +NFP)
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where NTP and NTN are the numbers of nodule and normal cases respectively that were 
identified correctly. NFP and NFN are the numbers of nodule and normal cases respec-
tively that were identified incorrectly.

Results and discussion
T test evaluation

Six texture features without filter were calculated and listed in Table  3. Entropy, uni-
formity, mean intensity, standard deviation and skewness have significant differences 
between nodule and normal groups in independent sample T test (all P value  <0.05) 
except kurtosis (P value =0.104).

The pixel intensity in normal thyroid tissues (Fig. 2a–i) is homogeneous and smooth. 
In the benign (Fig.  3a–h) and malignant (Fig.  3i–p) nodules, the ROI intensity is het-
erogeneous. In the thyroid nodules, the tumour cell usually appears different from the 
normal thyroid cell. In general, normal thyroid tissue cell can absorb iodine. The average 
intensity (CT value) of the normal thyroid is around 90–120 HU. On the contrary, the 
tumour cell does not have the capability to absorb iodine as thyroid cell. The average 
intensity of the nodule is less than 70  HU, such as goiter, thyroiditis, and carcinoma. 
Besides, the intensity could be greatly more than 120 HU if calcification exists in thyroid 
gland. The intensity of the nodule in CT images varies due to different compositions. 
So the spatial heterogeneity in the thyroid tissue can be quantified with the first order 
statistics. And these statistics can be used as imaging biomarker to detect the thyroid 
nodules. In the following test, we also evaluated the performance of different filters, 
including average, median, and wiener filter.

Classification results

To evaluate the performance of each feature without filter, we calculated the classifica-
tion results with SVM classifier (Table 4). Entropy, uniformity, mean intensity, and skew-
ness performed better than standard deviation and kurtosis. For standard deviation 
(AUC = 0.510) and kurtosis (AUC = 0.565), they have low sensitivity and high specific-
ity (SEN < 0.100 and SPC > 0.900), which means almost all the samples were identified as 
negative ones. In this test, we can see the contribution of each single feature. However, 
it is impractical to use a single feature to characterize the thyroid image. Multiple fea-
tures could improve the performance and make more robust decision. In the following 

Table 3  The comparison of  six features between  nodule and  normal thyroid tissue 
after normalization(mean ± SD)

The mean intensities of two groups without normalization are: 89.491 ± 17.295 HU, nodule: 68.851 ± 42.019 HU, P 
value <0.05

Feature Nodule Normal P value F value

Entropy 0.828 ± 0.203 0.963 ± 0.020 <0.001 105.910

Uniformity 0.088 ± 0.175 0.007 ± 0.005 <0.001 76.834

Mean intensity 0.209 ± 0.098 0.257 ± 0.040 0.037 4.374

Standard deviation 0.677 ± 0.123 0.439 ± 0.218 0.001 11.286

Kurtosis 0.365 ± 0.102 0.317 ± 0.878 0.104 2.656

Skewness 0.547 ± 0.083 0.489 ± 0.052 0.002 10.190
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section, we will evaluate the filters, introduce feature selection, and optimize the feature 
subsets.

To reduce the photon noise, filters were used in the pre-processing step. As shown in 
Table 5, multi-feature subsets achieved better classification results than single feature. 
And the features obtained by filtered images achieved higher ACC and AUC than those 
without filters (ACC = 0.859, AUC = 0.942). For the three filters, median (ACC = 0.873 
and AUC = 0.949) and wiener (ACC = 0.877 and AUC = 0.948) filters have better per-
formance than average filter (ACC = 0.866 and AUC = 0.943) in this study. The average 
filter may remove some texture information in the thyroid images when the photon noise 
was filtered out. The classification using feature subset A6, M6 and W6 outperforms the 
others in this test. The subset of A6, M6 and W6 includes the features obtained by all 
three filters, which slightly increases the computation burden. However, it reaches high 
sensitivity and AUC. It is very important for radiologists to minimize the risk of missing 
nodules that may pose a cancer threat to the patients.

In this test, sequential forward feature selection (SFFS) was applied to remove the 
redundant features and improve the performance of classification. The results of SVM 
classification with feature selection were shown in Table 6. The confusion matrix of the 
optimal performance was given in Fig. 4. Entropy and skewness were selected in all the 

Fig. 2  Thyroid ROIs in CT images. Images (a–i) are normal thyroid tissue from nine patients



Page 9 of 14Peng et al. BioMed Eng OnLine  (2017) 16:67 

Fig. 3  CT images of thyroid nodules from different patients with marked ROIs. Thyroid nodules in images 
(a–h) are benign. Nodules in images (i–p) are malignant

Table 4  Classification results using each single feature

Feature ACC SEN SPC PPV NPV AUC

Entropy 0.792 0.612 0.953 0.921 0.733 0.857

Uniformity 0.690 0.343 1.000 1.000 0.630 0.807

Mean intensity 0.764 0.649 0.867 0.813 0.735 0.834

Standard deviation 0.539 0.030 0.993 0.800 0.534 0.510

Kurtosis 0.525 0.000 0.993 0.000 0.527 0.565

Skewness 0.782 0.649 0.900 0.853 0.742 0.828

Table 5  The classification results of feature subsets without feature selection

A6, M6, and W6 indicate six features with average, median, and wiener filters respectively

Feature subsets ACC SEN SPC PPV NPV AUC

Non-filter 0.859 0.784 0.927 0.905 0.827 0.942

W6 0.877 0.799 0.947 0.930 0.840 0.948

A6, W6 0.873 0.821 0.920 0.902 0.852 0.951

A6, M6, W6 0.873 0.821 0.920 0.902 0.852 0.950

A6, M6, W6, non-filter 0.870 0.821 0.913 0.894 0.851 0.950
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optimized feature subsets. Both features carried much information about the spatial het-
erogeneity in thyroid tissue, which could be good indicators of thyroid nodules. Using 
feature selection, the optimal accuracy (0.880), sensitivity (0.821), and AUC (0.953) were 
obtained in group A6 +  M6 +  W6. The performance was better than those without 
using feature selection. It is worth noting that the sensitivity was improved to 0.821, the 
highest value among these feature subsets. In general, it is important for CAD system to 
achieve high sensitivity. Because low sensitivity might misdiagnose patients with nod-
ules as healthy ones, which may lead to delay treatment, or even no treatments.

To evaluate the performance of classifier of SVM, back propagation artificial neural 
network (BP-ANN) and linear discriminant analysis (LDA) with leave one out strategy 
were applied. The BP-ANN model comprised one hidden layer with ten nodes. The out-
put layer included benign and malignant levels. The transfer function of the hidden layer 
nodes was tansig, and the transfer function of the output layer nodes was purelin. This 
study applied a classic linear discriminant analysis (LDA). The aim was to find the dis-
criminant function, a parameter that allows for the optimal separation or grouping of 
data based on their main characteristics. Results of three classifiers are shown in Table 7. 
SVM has the best performance among three classifiers.

Feature assessment

The thyroid gland is a component of the endocrine system. It controls the metabolic pro-
cess in an organism. The thyroid nodule is a common endocrine disease [26]. The over-
whelming majority of thyroid tumours are primary epithelial neoplasms composed of 
follicular cells [27]. Tumour nodule in the thyroid will make the structure different from 
normal tissue. Benign nodule grows slowly with capsule and has a clear border against 

Table 6  The results of SVM classification with feature selection

W6, M6, A6, and non-filter indicate the six features with wiener (group 1), median (group 2), average intensity (group3), and 
without filter (group 4) respectively. In feature selected column, for example, e1 means entropy in group 1 and k3 means the 
kurtosis in group 3

Feature subsets Selected features ACC SEN SPC PPV NPV AUC

W6 e1, u1, m1, sd1, k1, s1 0.877 0.799 0.947 0.930 0.840 0.948

M6, W6 e1, u1, sd1, k1, s1, e2, u2, m2, k2, s2 0.880 0.813 0.940 0.924 0.849 0.950

A6, M6, W6 k1, s1, m2, k2, s2, e3, u3, sd3, s3 0.880 0.821 0.933 0.917 0.854 0.953

A6, M6, W6, non-filter sd1, m2, sd2, k2, s2, e4, s4 0.877 0.813 0.933 0.916 0.849 0.950

Fig. 4  Confusion matrix of the optimal performance of SVM. Thyroid nodules (n = 110) and normal tissues 
(n = 140) were identified correctly from the samples (n = 284)
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normal tissue. Cells in malignant nodule grow aggressively without obvious borders, and 
even invade the thyroid capsule. Most of the nodules show low intensity in CT images, 
because the cell in the nodules cannot absorb the iodine. For example, thyroid cyst rep-
resents water-like intensity due to its fluid-filled region. However, some nodules show 
high intensity if there are calcifications. The nodules cause the change of intensity in 
CT images (spatial grey heterogeneity) and make the texture feature different from the 
normal thyroid tissues. So it is possible to discriminate nodules from normal tissues by 
using the pixel intensity (Figs. 2, 3).

The first order texture features could indicate pixel intensity heterogeneity in CT 
image. The entropy shows the amount of information in ROI. It describes the random-
ness and irregularity of pixel intensity. Uniformity indicates the distribution of image 
intensity levels. The presence of cyst and calcification can reduce the uniformity. For 
mean intensity, compared with normal thyroid tissue (Fig.  5a), it decreases with the 
existence of cysts (Fig. 5b) and increases with the existence of calcifications (Fig. 5c). So 
the mean intensity may remain unchanged if both calcification and cyst exist in the same 
ROI. Standard deviation describes the variation from the mean intensity. The normal 
tissue has smaller standard deviation than the nodules. The image intensity inside the 
thyroid is homogeneous since the normal thyroid cells have similar characteristics in 
function. Kurtosis and skewness indicate the bulging and the asymmetry of the intensity 
distribution in ROI, respectively.

The gray level co-occurrence matrix (GLCM) was utilized in classification of SVM. 
The ACC, SEN, SPC, PPV, NPV, and AUC of GLCM are 0.813, 0.710, 0.911, 0.879, 0.775, 
0.900 respectively. The first order features have better performance than GLCM. The fea-
tures of GLCM include angular second moment, correlation degree, entropy, contrast, 

Table 7  The results of BP-ANN, LDA, and SVM classification

Classifier ACC SEN SPC PPV NPV AUC

BP-ANN 0.852 0.784 0.913 0.890 0.825 0.918

LDA 0.856 0.791 0.913 0.891 0.830 0.928

SVM 0.880 0.821 0.933 0.917 0.854 0.953

Fig. 5  Examples of the normal tissue (a) and thyroid nodule (b, c). The entropy, standard deviation and kurto-
sis in image a (0.939, 0.021, and 0.001 respectively) are less than those in image b and c (0.977, 0.029, 0.013 
and 0.981, 0.064, 0.006). On the contrary, uniformity in a (0.011) is higher than those in b (0.002) and c (0.004)
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inverse difference moment, sum average, sum entropy, sum variance, variance, differ-
ence average, inertia, difference variance, and difference entropy.

In this preliminary study, we extracted the first order statistic features, and used sup-
port vector machine to identify the normal thyroid tissues and nodules based on the 
CT images. Our method achieved high accuracy (ACC = 0.880, AUC = 0.953). How-
ever, there are still some limitations in this research work. (1) High-dimensional image 
description could be used in the future study, such as wavelet, local binary pattern oper-
ator, and etc. (2) Cutting edge techniques in machine learning should be introduced in 
thyroid CAD system, such as deep neural network, and deep random forest [28]. Deep 
learning method benefits from massive amounts of labelled data, and give computers the 
ability to interpret the images. (3) To feed the future CAD system, we need to construct 
a much bigger dataset. Obtaining high quality annotated datasets remain a costly chal-
lenge. The automatic thyroid segmentation in CT images, as part of the pre-processing 
method, has to be studied further.

Conclusions
In this study, we presented a CAD system to detect thyroid nodules in CT images. The 
first order statistic features, including entropy, uniformity, mean intensity, standard 
deviation, kurtosis and skewness, were calculated to represent the spatial heterogene-
ity in thyroid images. SVM model was used to identify the normal thyroid tissue and 
nodule. We further evaluated three filters and different feature subsets to optimize the 
performance of the classification. The results demonstrated that our method can provide 
good detection of thyroid nodules. The accuracy, sensitivity, specificity, positive predic-
tive value, and negative predictive value achieve 0.880, 0.821, 0.933, 0.917, 0.854, and 
0.953, respectively. The results demonstrated that the first order statistics could be used 
as imaging biomarkers. The presented CAD system has potential to assist the radiolo-
gists to detect the nodules in computed tomography images and release their burden.
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