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Abstract
Introduction: Dopamine (DA) is a neurotransmitter that regulates the rewarding and 
motivational processes underlying food intake and eating behaviors. This study hy-
pothesized associations of DNA methylation signatures at genes modulating DA sign-
aling with obesity features, metabolic profiles, and dietary intake.
Methods: An adult population within the Methyl Epigenome Network Association 
project was included (n = 473). DNA methylation levels in white blood cells were 
measured by microarray (450K). Differentially methylated genes were mapped within 
the dopaminergic synapse pathway using the KEGG reference database (map04728). 
Subsequently, network enrichment analyses were run in the pathDIP portal. 
Associations of methylation patterns with anthropometric markers of general (BMI) 
and abdominal obesity (waist circumference), the blood metabolic profile, and daily 
dietary intakes were screened.
Results: After applying a correction for multiple comparisons, 12 CpG sites were 
strongly associated (p < 0.0001) with BMI: cg03489495 (ITPR3), cg22851378 
(PPP2R2D), cg04021127 (PPP2R2D), cg22441882 (SLC18A1), cg03045635 (DRD5), 
cg23341970 (ITPR2), cg13051970 (DDC), cg08943004 (SLC6A3), cg20557710 
(CACNA1C), cg24085522 (GNAL), cg16846691 (ITPR2), and cg09691393 (SLC6A3). 
Moreover, average methylation levels of these genes differed according to the pres-
ence or absence of abdominal obesity. Pathway analyses revealed a statistically sig-
nificant contribution of the aforementioned genes to dopaminergic synapse 
transmission (p = 4.78E−08). Furthermore, SLC18A1 and SLC6A3 gene methylation 
signatures correlated with total energy (p < 0.001) and carbohydrate (p < 0.001) 
intakes.
Conclusions: The results of this investigation reveal that methylation status on DA 
signaling genes may underlie epigenetic mechanisms contributing to carbohydrate 
and calorie consumption and fat deposition.
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1  | INTRODUC TION

Besides homeostatic processes concerning energy and nutrient 
metabolic control, eating behavior is also regulated by hedonic (non-
homeostatic) mechanisms (Hernández Ruiz de Eguilaz et al., 2018), 
which are thought to be driven by the rewarding properties of foods 
and specific nutritional and behavioral afferent signals (Ziauddeen, 
Alonso-Alonso, Hill, Kelley, & Khan, 2015). In this context, it has 
been reported that similar to alcohol and other drugs of abuse, 
highly palatable foods (rich in sugars and fat) can trigger neuroad-
aptive responses in brain reward circuitries (Alonso-Alonso et al., 
2015). These effects can stimulate feeding behavior and related 
attitudes independent of energy status or overcome other signals 
of satiety and hunger, contributing to overeating and weight gain 
(Kenny, 2011). Because of the rising prevalence of obesity and the 
widespread availability of calorie-dense foods, understanding the 
hedonic processes underlying food consumption and behavioral 
cues beyond metabolic needs has become a priority in obesity re-
search (Stice, Figlewicz, Gosnell, Levine, & Pratt, 2013).

Reward and gratification associated with palatable food con-
sumption are partially mediated by abrupt dopamine (DA) increases 
in the nucleus accumbens and the ventral tegmental area (Singh, 
2014). Moreover, the amount of DA released after consuming a pre-
ferred meal eventually correlates with the degree of experienced 
pleasure (Small, Jones-Gotman, & Dagher, 2003). Thus, disruption 
of DA activity can lead to loss of control over intake and continued 
consumption despite negative consequences, being both behaviors 
commonly seen in addiction and obesity (Volkow, Wang, Tomasi, & 
Baler, 2013). Consistently, deficits in mesolimbic DA neurotransmis-
sion have been linked to diet-induced obesity in rats (Geiger et al., 
2009). In humans, imaging studies suggest that obese subjects may 
suffer impairments in dopaminergic pathways involved in reward 
sensitivity, incentive motivation, conditioning, and control (Volkow, 
Wang, Fowler, Tomasi, & Baler, 2012). Therefore, some novel strate-
gies in the prevention and treatment of obesity target to manage DA 
functions (Blum et al., 2018).

Emerging evidences suggest that several genetic and epigenetic 
factors modulate the relationships between DA signaling, overcon-
sumption, and obesity (Blum, Thanos, & Gold, 2014; Stice, Yokum, 
Zald, & Dagher, 2011). For instance, polymorphisms near or within 
key genes regulating dopaminergic synapse, including catechol-
o-methyltransferase (COMT), D2 receptor (DRD2), and DA active 
transporter (DAT, SLC6A3) have been associated with altered reward 
circuitry responsivity related to a spectrum of addictive behaviors 
(Stice et al., 2011). Moreover, differential DNA methylation patterns 
at DAT and tyrosine hydroxylase (TH) were linked to altered DA-
related gene expression in response to chronic intake of high-fat diet 
in mice (Vucetic, Carlin, Totoki, & Reyes, 2012). Furthermore, a set of 
transcriptional and epigenetic changes in the hypothalamus of pre-
natally stressed female rats were implicated in an increased suscep-
tibility to a high-fat-sucrose diet (Paternain et al., 2012). This study 
hypothesized associations of DNA methylation signatures at genes 
modulating DA signaling with obesity features and accompanying 

metabolic profiles as well as an epigenetic influence on macronu-
trient intake.

2  | MATERIAL S AND METHODS

2.1 | Subjects

A transversal nutriepigenomic analysis was conducted in a general 
adult population within the Methyl Epigenome Network Association 
(MENA) project (n = 473). The MENA cohort is constituted by pre-
vious clinical trials analyzing genome-environmental interactions 
concerning weight management and associated metabolic outcomes 
(Abete et al., 2015; Huerta, Navas-Carretero, Prieto-Hontoria, 
Martínez, & Moreno-Aliaga, 2015; Larsen et al., 2010; Martínez-
González et al., 2014; Petersen et al., 2006; San-Cristobal et al., 
2015; Santos et al., 2016; Zulet et al., 2011). Each study received 
ethical approval from appropriate local Human Research Ethics 
Committees. In addition, all procedures carried out throughout this 
investigation were in agreement with the ethical principles of the 
2013 Helsinki Declaration (World Medical Association, 2013). Also, 
subject’s information was coded to insure full anonymity. All par-
ticipants gave their informed consent before inclusion in the study.

2.2 | Anthropometric measurements and 
blood pressure

Anthropometric measurements including weight, height, and waist 
circumference (WC) were collected by trained health personnel 
using conventional methods (de la Iglesia et al., 2014; Mansego, 
Milagro, Zulet, & Martinez, 2015). Body mass index (BMI) was calcu-
lated dividing weight (kg) by squared height (m2). The World Health 
Organization (2017) classification of BMI in adults was used to char-
acterize normal weight (BMI 18.5–24.9 kg/m2) and overweight/
obese individuals (BMI ≥25 kg/m2). Abdominal obesity (AO) was 
defined based on established WC cutoffs for men (>102 cm) and 
women (>88 cm) as reported by the National Cholesterol Education 
Program (2002). Systolic blood pressure (SBP) and diastolic blood 
pressure (DBP) were measured from the right arm of each partici-
pant with a sphygmomanometer after a 15-min rest. The average of 
two successful readings was recorded following the World Health 
Organization criteria (2004) (Whitworth, & Chalmers, 2004).

2.3 | Biochemical tests

Venous blood samples were drawn from each participant by veni-
puncture after a 12-hr overnight fast. Glucose, total cholesterol 
(TC), high-density lipoprotein cholesterol (HDL-c), and triglycerides 
were determined in the automatic analyzer Pentra C200 (HORIBA 
Medical, Madrid, Spain) with appropriate commercial kits provided 
by this company. Low-density lipoprotein cholesterol was calcu-
lated using the Friedewald equation: LDL-c = TC − HDL-c − tri-
glycerides/5 as described elsewhere (Ramos-Lopez et al., 2018b). 
Plasma concentrations of insulin (Mercodia, Uppsala, Sweden) were 
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measured using specific enzyme-linked immunosorbent assays 
and assessed by means of an automated analyzer system (Triturus, 
Grifols, Barcelona, Spain). Insulin resistance was estimated by the 
homeostatic model assessment-insulin resistance (HOMA-IR) index 
according to the following formula: (fasting insulin (mU/L) × plasma 
glucose (mmol/L)/22.5) as previously reported (Crujeiras et al., 
2014). Triglyceride-glucose (TyG) index was calculated as: (ln [fast-
ing triglycerides (mg/dl) × fasting plasma glucose (mg/dl)/2]) as 
described elsewhere (Navarro-González, Sánchez-Íñigo, Pastrana-
Delgado, Fernández-Montero, & Martinez, 2016).

2.4 | Dietary assessment

Dietary data were additionally obtained from 247 subjects of the 
MENA cohort, which presented similar characteristics regarding 
the whole population. The habitual consumption of 137 food items 
during the previous year was evaluated with a validated, semiquan-
titative food frequency questionnaire (de la Fuente-Arrillaga, Ruiz, 
Bes-Rastrollo, Sampson, & Martinez-González, 2010). Food fre-
quencies (daily, weekly, monthly or never), portions, and serving 
sizes were computed and further converted to daily energy (kcal) 
and macronutrient intakes (g) using recognized Spanish food com-
position tables, as described elsewhere (Goni, Aray, Martínez, & 
Cuervo, 2016). Nutrients from the diet (carbohydrates, protein, and 
fat) were adjusted by total energy intake using the residual method, 
as previously reported (Carraro et al., 2016).

2.5 | DNA methylation analyses

Blood samples were centrifuged (2,000 g, at 4°C for 15 min) to iso-
late white blood cells (WBCs) from whole blood. WBCs were imme-
diately frozen at −80°C in buffy coat until use as described elsewhere 
(Arpón et al., 2016). Genomic DNA was extracted from WBC using 
the Master Pure DNA purification kit (Epicentre Biotechnologies, 
Madison, WI, USA) following instructions provided by the sup-
plier. DNA quality was assessed with the PicoGreen® dsDNA 
Quantitation Reagent (Invitrogen, Carlsbad, CA, USA). A total of 
500 ng of purified DNA was treated with sodium-bisulfite using the 
EZ-96 DNA Methylation Kit (Zymo Research Corporation, Irvine, 
CA, USA) according to the manufacturer’s protocol. Modified DNA 
samples were whole-genome amplified and hybridized to Infinium 
Human Methylation 450K BeadChips (Illumina, San Diego, CA, USA) 
as detailed elsewhere (Mansego, Garcia-Lacarte, Milagro, Marti, & 
Martinez, 2017). The scanning of the samples was carried out with 
the Illumina HiScanSQ system, and the image intensities were ex-
tracted with the GenomeStudio Methylation Software Module, v1.9 
(Illumina).

DNA methylation data preprocessing has been recently described 
(Ramos-Lopez, Riezu-Boj, Milagro, & Martinez, 2018c; Ramos-Lopez 
et al., 2018a). Briefly, CpG methylation levels were expressed as β 
values, which are calculated as the ratio between the Illumina meth-
ylated probe intensities and the overall probe intensities (sum of 
methylated and unmethylated probe intensities). β values ranging 

from 0 (unmethylated) to 1 (completely methylated) were used, as 
previously reported (Weinhold, Wahl, Pechlivanis, Hoffmann, & 
Schmid, 2016). Methylation data were peak-based corrected for 
type I and type II bias and subsequently normalized using a cate-
gorical Subset Quantile Normalization method (Touleimat & Tost, 
2012). Probes containing single nucleotide polymorphisms, those 
hybridizing to multiple genomic locations, or associated with X and 
Y chromosomes, were removed (Naeem et al., 2014; Nordlund et al., 
2013). The ComBat normalization method was applied to adjusting 
for nonbiological experimental variation (Johnson, Li, & Rabinovic, 
2007). Moreover, an additional analysis to estimate the variation 
explained due to different cell subtypes (granulocytes, monocytes, 
B cells, T cells-CD8+, T cells-CD4+, and natural killer cells) was per-
formed according to the Houseman criteria (Houseman et al., 2012).

2.6 | Pathway analyses

To test the hypothesis of this study, differentially methylated genes 
were mapped to the dopaminergic synapse pathway (map04728) 
using the online Kyoto Encyclopedia of Genes and Genomes (KEGG) 
reference database (http://www.genome.jp/kegg/pathway.html). 
The Pathway Data Integration Portal (pathDIP) platform (http://
ophid.utoronto.ca/pathdip/) was used to perform pathway enrich-
ment analyses, with a confidence level of 99%. p value correspond-
ing to KEGG source was then reported.

2.7 | Statistical analyses

The Kolmogorov–Smirnov test was used to determine data distri-
bution. All study variables were normally distributed (p > 0.05). 
Results are expressed as means ± standard deviations (SD), 
meanwhile, men and women are presented as number of cases. 
Statistical differences between AO groups were analyzed by stu-
dent t test (continuous variables) and chi-square test (dichotomous 
variables). A linear regression model concerning BMI outcomes 
was computed using the LIMMA package for R software, which 
was adjusted by covariates such as age, sex, study cohorts, and 
DNA methylation chips. The Benjamini–Hochberg correction for 
multiple comparisons was applied. Statistically significant thresh-
olds were based on False Discovery Rate (FDR) cutoffs (p < 0.05) 
and B-statistic values from LIMMA (B > 0). The LIMMA B-statistic 
is the log-odds that a determined gene is differentially methylated. 
The cutoff B value above 0 implies that a CpG is more likely to be 
differentially methylated than to not be differentially methylated, 
giving a reasonable balance of false positives and false negatives 
(Yang et al., 2011). Best BMI-associated CpGs were selected ac-
cording to stricter FDR values (p < 0.0001). Further linear regres-
sion analyses adjusted by age and sex were performed to evaluate 
associations of methylation values at DA signaling genes with an-
thropometric measurements, the metabolic profile, and dietary in-
takes. p < 0.05 was considered statistically significant. Statistical 
analyses were performed in the IBM SPSS software version 20 for 
Windows (IBM Inc., Armonk, NY, USA). GraphPad Prism® program 

http://www.genome.jp/kegg/pathway.html
http://ophid.utoronto.ca/pathdip/
http://ophid.utoronto.ca/pathdip/


4 of 12  |     RAMOS-LOPEZ et al.

version 6.0C (La Jolla, CA, USA) was used to graphically illustrate 
significant correlations.

3  | RESULTS

Demographic, anthropometric, and metabolic characteristics as 
well as dietary intake of the study population categorized by the 
presence or absence of AO are reported (Table 1). About 82% of 
the study population presented excessive body weight according 
to the BMI classification of the World Health Organization (BMI 
≥25 kg/m2). Moreover, 57% of the whole sample presented AO 
based on WC values. No differences between AO groups concern-
ing age and sex were found. Subjects with AO had statistically 

significant higher levels of blood pressure, insulin, HOMA-IR, TyG 
index, and worse lipid profile as well as greater daily dietary con-
sumption of calories, carbohydrates, protein, and fat compared to 
non-AO individuals.

Overall, 119 CpG sites at genes integrating the dopaminergic 
synapse pathway correlated with BMI (kg/m2). Of these, 44 CpGs 
showed best associations (p < 0.0001). After adjusting by age plus sex 
and the appropriate correction for multiple comparisons, 12 CpGs 
at 9 genes remained statistically significant: cg03489495 (ITPR3), 
cg22851378 (PPP2R2D), cg04021127 (PPP2R2D), cg22441882 
(SLC18A1), cg03045635 (DRD5), cg23341970 (ITPR2), cg13051970 
(DDC), cg08943004 (SLC6A3), cg20557710 (CACNA1C), cg24085522 
(GNAL), cg16846691 (ITPR2), and cg09691393 (SLC6A3). Genomic 
and statistical data of these CpG sites sorted by FDR values are 
presented (Table 2). Most of them are located in coding (n = 5) and 
promoter (n = 4) regions, meanwhile, the rest is mapped within un-
translated trailers (n = 3).

In a multiple regression model, methylation signatures of the 
aforementioned 12 CpG sites accounted for about 21% of the vari-
ability in BMI (adj. r2 = 0.207, p < 0.001). Statistically relevant asso-
ciations between methylation status and BMI are plotted (Figure 1). 
Of note, seven CpG sites positively correlated with BMI values, 
whereas in the remaining analyzed CpGs, negative correlations were 
found (n = 5). Moreover, average methylation levels of each CpG dif-
fered according to the presence or absence of AO (Figure 2), with a 
robust level of significance in most cases (p < 0.0001). No statisti-
cally significant relationships between methylation patterns at DA 
signaling genes with serum levels of glucose, insulin, lipid profile, or 
blood pressure were detected.

Pathway mapping of the BMI-associated genes within the DA 
signaling cascade is shown (Figure 3). Interestingly, pathway enrich-
ment analyses revealed a significant contribution of BMI-associated 
genes to dopaminergic synapse transmission (p = 4.78E−08), in-
volving complex interactions between presynaptic and postsynap-
tic cells (Figure 3). These genes modulated key processes involving 
physiological DA actions such as transport, uptake/reuptake, cova-
lent modifications, and appropriate downstream signal flow.

Furthermore, potential associations between DA gene methyl-
ation profiles and available daily dietary intakes were evaluated in 
247 subjects of the MENA cohort (Figure 4). Thus, methylation at 
cg22441882 (SLC18A1), cg08943004 (SLC6A3), and cg09691393 
(SLC6A3) consistently correlated with total energy consumption 
(p < 0.001) and carbohydrate intake (p < 0.001). However, no rela-
tionships between methylation patterns of these CpG sites and pro-
tein or fat intakes were found.

4  | DISCUSSION

DA is a major (nonhomeostatic) regulator of food intake behaviors 
(Alonso-Alonso et al., 2015). In agreement with our hypothesis, the 
present investigation evidenced associations of DA gene methyla-
tion patterns with BMI, AO, and carbohydrate intake, which might 

TABLE  1 Demographic, anthropometric, and metabolic 
characteristics as well as dietary intake of the study population 
categorized by the presence or absence of abdominal obesity

Variable Non-AO AO p value

n 205 268 —

Age (years) 46.0 ± 17.7 47.8 ± 11.0 0.182

Men/women 83/122 87/181 0.082

Anthropometric and clinical data

Weight (kg) 68.2 ± 10.7 91.9 ± 17.8 <0.001

BMI (kg/m2) 25.5 ± 3.2 33.5 ± 4.6 <0.001

WC (cm) 83.1 ± 11.2 105.5 ± 11.9 <0.001

SBP (mmHg) 121.5 ± 36.4 106.8 ± 42.2 <0.001

DBP (mmHg) 75.1 ± 22.1 89.3 ± 38.2 <0.001

Metabolic profile

Glucose (mg/dl) 99.4 ± 33.4 104.4 ± 26.6 0.080

Insulin (mIU/L) 6.8 ± 3.7 11.1 ± 7.8 <0.001

HOMA-IR index 1.38 ± 0.84 2.99 ± 2.59 <0.001

TC (mg/dl) 197.7 ± 40.3 210.0 ± 39.6 0.001

HDL-c (mg/dl) 57.4 ± 13.5 50.7 ± 12.8 <0.001

LDL-c (mg/dl) 118.6 ± 38.2 134.4 ± 34.2 <0.001

TG (mg/dl) 111.4 ± 62.7 125.4 ± 77.3 0.041

TyG index 4.57 ± 0.31 4.65 ± 0.33 0.015

Dietary intake

Energy  
(Kcal/day)

2,373 ± 508 2,679 ± 844 0.003

Carbohydrates 
(g/day)

239.6 ± 68.1 272.1 ± 107.3 0.013

Protein (g/day) 93.2 ± 18.6 109.5 ± 30.7 <0.001

Fat (g/day) 107.3 ± 22.6 119.5 ± 41.2 0.012

Note. Continuous variables are represented as means ± standard devia-
tions. Men and women are number of cases. AO: abdominal obesity; 
BMI: body mass index; DBP: diastolic blood pressure; HDL-c: high-
density lipoprotein cholesterol; HOMA-IR index: homeostatic model 
assessment-insulin resistance index; LDL-c: low-density lipoprotein cho-
lesterol; SBP: systolic blood pressure; TC: total cholesterol; TG: triglycer-
ides; TyG index: triglyceride-glucose index; WC: waist circumference. 
Dietary intake was available from 247 subjects.
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serve as epigenetic biomarkers of feeding behavior attitudes, exces-
sive adiposity, and fat deposition. These results are consistent with 
the fact that disruptions in dopaminergic synapse may lead to over-
consumption by altering the rewarding effects elicited by palatable 
foods (Ziauddeen et al., 2015). In this sense, it has been reported 
that high-carbohydrate diets can trigger addictive-like neurochemi-
cal and behavioral responses in vulnerable individuals, contribut-
ing to weight gain (Lennerz & Lennerz, 2018). The link between 
body weight regulation and fat storage and dopaminergic signaling 
may also rely on the endocrine effects of DA in peripheral tissues 
such as insulin secretion and specific actions on adipocytes (Rubí 

& Maechler, 2010). Furthermore, human adipose cells express DA 
receptors during adipogenesis, suggesting a controlling role of DA in 
adipose tissue processes (Borcherding et al., 2011).

DA is synthesized through DOPA decarboxylase (DDC) activity 
and subsequently packed into synaptic vesicles via the SLC18 family 
of transporter proteins including VMAT1 (SLC18A1) (Lawal & Krantz, 
2013). In this study, both DDC and SLC18A1 gene methylation lev-
els negatively correlated with BMI and were downregulated under 
AO conditions. In addition, a negative correlation between SLC18A1 
methylation and carbohydrate intake was found. Interestingly, 
decreased AADC activity has been reported in obese mice fed a 

F IGURE  1 Associations between methylation levels (beta values) at dopamine pathway genes and BMI values. (a) cg03489495, ITPR3, (b) 
cg22851378, PPP2R2D, (c) cg04021127, PPP2R2D, (d) cg22441882, SLC18A1, (e) cg03045635, DRD5, (f) cg23341970, ITPR2, (g) cg13051970, 
DDC, (h) cg08943004, SLC6A3, (i) cg20557710, CACNA1C, (j) cg24085522, GNAL, (k) cg16846691, ITPR2, (l) cg09691393, SLC6A3
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high-fat high-simple-carbohydrate diet (Moreira-Rodrigues et al., 
2012). Moreover, genome wide and candidate gene studies identi-
fied SLC18A1 as one potential pleiotropic gene overlapped between 
mood disorders and cardiometabolic diseases (Amare, Schubert, 
Klingler-Hoffmann, Cohen-Woods, & Baune, 2017). Also, a genetic 
variation in SLC18A1 made statistically significant contributions to 
BMI in Chinese subjects (Chen et al., 2013).

Once released from presynaptic axonal terminals, DA interacts 
with at least five distinct, but closely related G protein-coupled re-
ceptor subtypes (D1 to D5) in the postsynaptic cells, which regulate 
the physiological actions of DA (Beaulieu, Espinoza, & Gainetdinov, 
2015). In particular, the DA receptor D5 (DRD5) belongs to the D1-
class receptors, whose activation stimulates cAMP production by ade-
nylyl cyclase on DA-receptive cells (Beaulieu et al., 2015). Here, DRD5 

F IGURE  2 Average methylation levels (beta values) at dopamine pathway genes according to the presence or absence of abdominal 
obesity. (a) cg03489495, ITPR3, (b) cg22851378, PPP2R2D, (c) cg04021127, PPP2R2D, (d) cg22441882, SLC18A1, (e) cg03045635, DRD5, 
(f) cg23341970, ITPR2, (g) cg13051970, DDC, (h) cg08943004, SLC6A3, (i) cg20557710, CACNA1C, (j) cg24085522, GNAL, (k) cg16846691, 
ITPR2, (l) cg09691393, SLC6A3. AO: abdominal obesity. ap < 0.0001; bp < 0.001
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F IGURE  3 Mapping of BMI-associated genes within the dopaminergic synapse pathway (red boxes). The following genes were computed: 
ITPR3, PPP2R2D, SLC18A1, DRD5, ITPR2, DDC, SLC6A3, CACNA1C, GNAL. Figure taken from KEGG reference database (map04728). Pathway 
enrichment analyses, based on pathDIP (p = 4.78E−08)

F IGURE  4 Associations between methylation levels (beta values) at dopamine signaling genes and energy (a–c) and carbohydrate (d–f) 
intakes. (a, d) cg22441882, SLC18A1 (b, e) cg08943004, SLC6A3 (c, f) cg09691393, SLC6A3. AO: abdominal obesity
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methylation levels positively correlated with BMI and differed ac-
cording to AO. In a previous work, it was shown that peripheral blood 
mononuclear cells from individuals presenting AO expressed lower 
DRD5 levels compared to subjects without AO (Leite, Lima, Marino, 
Cosentino, & Ribeiro, 2016). Furthermore, DRD5 expression negatively 
correlated with weight, BMI, and WC values, suggesting that AO is as-
sociated with downregulation of dopaminergic pathways in blood cells.

The regulation of synaptic and extrasynaptic DA concentrations is 
an important process that contributes to efficient DA neurotransmis-
sion and compartmentalization (Lohr, Masoud, Salahpour, & Miller, 
2017). This function is driven by the DA transporter (DAT, SLC6A3), 
a membrane protein located perisynaptically, where it rapidly recap-
tures and transports DA from the extracellular space into the cyto-
sol of the presynaptic neuron (Sotnikova, Beaulieu, Gainetdinov, & 
Caron, 2006). In this study, two CpG sites at SLC6A3 gene correlated 
with BMI and carbohydrate intake with a positive trend. Consistently, 
it was reported that hypothalamic SLC6A3 was hypermethylated in 
the promoter region in response to high-fat-sucrose diet in prena-
tally stressed female adult rats (Paternain et al., 2012). Similarly, a 
significant increase in DNA methylation within the promoter region 
of SLC6A3 was found in the ventral tegmental area of mice fed a high-
fat diet, which associated with repressed expression (Vucetic et al., 
2012). In humans, methylation changes at the SLC6A3 gene have been 
related to prematurity, a known risk factor for obesity (Arpón et al., 
2018). Also, SLC6A3 gene polymorphisms were associated with pal-
atable food intake and WC in children in early stages of development 
(Fontana et al., 2015). Additionally, genetic variants in SLC6A3 have 
been associated with obesity risk in some populations (Bieliński et al., 
2017; González-Giraldo, Trujillo, & Forero, 2017).

Regarding DA-evoked downstream transducers, different meth-
ylation patterns at ITPR3, PPP2R2D, ITPR2, CACNA1C, and GNAL 
genes were found to be associated with BMI and AO in this research. 
According to our results, it has been proposed that a mutation in Itpr3 
gene could influences food choice by impairing the detection of nu-
trients in mice (Tordoff, Jaji, Marks, & Ellis, 2012). Likewise, a genetic 
variant in ITPR3 gene was related to the linking for particular foods 
in a Silk Road population (Pirastu et al., 2012). Meanwhile, ITPR2 and 
CACNA1C have been identified as candidate genes associated with 
addictive tendencies toward food (Pedram, Zhai, Gulliver, Zhang, & 
Sun, 2017). Of note, CACNA1C methylation levels (a concomitant 
taste signaling molecule) were previously associated with BMI in an 
adult population (Ramos-Lopez et al., 2018a, 2018b). Also, a linkage 
between ITPR2 locus and central adiposity was reported (Graff et al., 
2013; Liu et al., 2014). Until now, there is no evidence showing po-
tential relationships between PPP2R2D and GNAL genes and obesity.

The strengths of this investigation include a relatively large sam-
ple analyzed, and the analysis of DNA methylation status at all genes 
integrating the dopaminergic synapse pathway. In addition, several 
potential confounding factors were considered in the methylation-
related statistical analyses such as sex, age, study cohorts, methyla-
tion chips, cell subtypes, nonbiological experimental variation, as well 
as multiple comparison correction. On the other hand, a limitation of 
this investigation was the lack of expression assays, but RNA samples 

were not available. This drawback makes it difficult to predict the ef-
fects on gene expression of methylation signatures and phenotypic 
impact, especially CpGs located in nonpromoter regions or those with 
small changes when comparing AO groups. For example, although the 
mean methylation levels at cg03489495 (ITPR3) statistically differed 
between non-AO and AO individuals, it represented approximately 
a 2% difference in methylation status. Additionally, type I and type 
II bias cannot be completely ruled out despite of appropriate statis-
tical settings. Of note, some obtained relevant data could have also 
been lost because of using robust FDR values to select best BMI-
associated CpG sites in the regression analyses.

Another point to comment is the measurement of DNA methyla-
tion signatures in peripheral WBC as surrogate of brain cells methy-
lome profiles. Although previous studies support tissue-specific DNA 
methylation patterns (Lokk et al., 2014), there is growing evidence in 
humans suggesting that some methylation marks detected in leuko-
cytes can be reflected in other target tissues, including oral mucosa 
(San-Cristobal et al., 2016) and subcutaneous adipose tissue (Crujeiras 
et al., 2017). Also, homologies between genomic signatures (including 
DNA methylation patterns) from blood and brain were reported in a 
rodent model of concussive injury (Meng et al., 2017). Moreover, it has 
been shown that in addition to human brain, main DA signaling genes 
are also expressed in circulating human blood cells, including DDC 
(Kokkinou, Nikolouzou, Hatzimanolis, Fragoulis, & Vassilacopoulou, 
2009), SLC18A1 (Amenta et al., 2001), SLC6A3 (Mill, Asherson, Browes, 
D’Souza, & Craig, 2002), and DRD5 (Leite et al., 2016).

Indeed, epigenetic phenomena are important regulators of ge-
nome expression and function, which have an impact on diverse phys-
iological and behavioral processes related to food intake, and energy 
homeostasis (Milagro, Mansego, De Miguel, & Martínez, 2013). Not 
surprisingly, many epigenetic mechanisms can be implicated in the 
development of excessive adiposity and associated metabolic risk, 
including those affecting DA function (Martínez, Milagro, Claycombe, 
& Schalinske, 2014). In this context, epigenetic modifications at genes 
involved in DA signaling transmission may help to explain putative 
relationships between brain reward circuitries, eating behaviors, and 
body weight status. This knowledge may also be useful for individ-
ual disease risk prediction, the search for therapeutic targets, and the 
design/implementation of nutriepigenomic strategies aimed to pre-
vention, prognosis, and integral management of obesity and accompa-
nying metabolic complications (Ramos-Lopez et al., 2017).

In conclusion, the results of this investigation reveal that meth-
ylation status of DA signaling genes may be one epigenetic regulator 
contributing to carbohydrate and calorie consumption and obesity 
development.
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