
Brain and Behavior. 2018;8:e01017.	 		 	 | 	1 of 12
https://doi.org/10.1002/brb3.1017

wileyonlinelibrary.com/journal/brb3

 

Received:	18	April	2018  |  Accepted:	8	May	2018
DOI: 10.1002/brb3.1017

O R I G I N A L  R E S E A R C H

Dopamine gene methylation patterns are associated with 
obesity markers and carbohydrate intake

Omar Ramos-Lopez1 | Jose I. Riezu-Boj1,2 | Fermin I. Milagro1,3 |  
J. Alfredo Martinez1,2,3,4  | MENA Project*

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2018 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.

*See Appendix.

1Department of Nutrition, Food Science 
and Physiology, Center for Nutrition 
Research, University of Navarra, Pamplona, 
Spain
2Navarra Institute for Health Research 
(IdiSNA), Pamplona, Spain
3CIBERobn, Fisiopatología de la Obesidad 
y la Nutrición, Carlos III Health Institute, 
Madrid,	Spain
4Madrid	Institute	of	Advanced	Studies	
(IMDEA	Food),	Madrid,	Spain

Correspondence
J.	Alfredo	Martinez,	Department	of	
Nutrition, Food Science and Physiology, 
Center for Nutrition Research, University 
of Navarra, 1 Irunlarrea Street, 31008 
Pamplona, Spain.
Email:	jalfmtz@unav.es

Funding information
This investigation was supported by the 
grants from the Government of Navarra 
(PT024), CIBERobn (CB12/03/30002), 
MINECO	(AGL2013-	45554-	R),	and	
NUTRIGENIO	(AGL2013-	45554-	R).	O.R.L.	
was	supported	by	a	2-	year	postdoctoral	
grant from National Council of Science 
and	Technology,	Mexico	(CONACyT,	
Num.	CVU.	444175)	in	collaboration	with	
the	PhD	Program	in	Molecular	Biology	
in	Medicine,	University	of	Guadalajara,	
Mexico	(CONACyT,	PNPC	000091)	and	the	
University	of	Navarra,	Spain	(LE/97).

Abstract
Introduction: Dopamine (DA) is a neurotransmitter that regulates the rewarding and 
motivational processes underlying food intake and eating behaviors. This study hy-
pothesized	associations	of	DNA	methylation	signatures	at	genes	modulating	DA	sign-
aling with obesity features, metabolic profiles, and dietary intake.
Methods:	An	adult	population	within	 the	Methyl	Epigenome	Network	Association	
project was included (n = 473). DNA methylation levels in white blood cells were 
measured	by	microarray	(450K).	Differentially	methylated	genes	were	mapped	within	
the	dopaminergic	synapse	pathway	using	the	KEGG	reference	database	(map04728).	
Subsequently, network enrichment analyses were run in the pathDIP portal. 
Associations	of	methylation	patterns	with	anthropometric	markers	of	general	(BMI)	
and abdominal obesity (waist circumference), the blood metabolic profile, and daily 
dietary intakes were screened.
Results: After applying a correction for multiple comparisons, 12 CpG sites were 
strongly associated (p < 0.0001)	 with	 BMI:	 cg03489495	 (ITPR3),	 cg22851378	
(PPP2R2D), cg04021127 (PPP2R2D), cg22441882 (SLC18A1),	 cg03045635	 (DRD5), 
cg23341970	 (ITPR2),	 cg13051970	 (DDC),	 cg08943004	 (SLC6A3),	 cg20557710	
(CACNA1C),	 cg24085522	 (GNAL),	 cg16846691	 (ITPR2),	 and	 cg09691393	 (SLC6A3). 
Moreover,	average	methylation	levels	of	these	genes	differed	according	to	the	pres-
ence or absence of abdominal obesity. Pathway analyses revealed a statistically sig-
nificant contribution of the aforementioned genes to dopaminergic synapse 
transmission (p = 4.78E−08).	 Furthermore,	SLC18A1 and SLC6A3 gene methylation 
signatures correlated with total energy (p < 0.001) and carbohydrate (p < 0.001) 
intakes.
Conclusions: The results of this investigation reveal that methylation status on DA 
signaling genes may underlie epigenetic mechanisms contributing to carbohydrate 
and calorie consumption and fat deposition.
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1  | INTRODUC TION

Besides homeostatic processes concerning energy and nutrient 
metabolic control, eating behavior is also regulated by hedonic (non-
homeostatic)	mechanisms	(Hernández	Ruiz	de	Eguilaz	et	al.,	2018),	
which are thought to be driven by the rewarding properties of foods 
and specific nutritional and behavioral afferent signals (Ziauddeen, 
Alonso-	Alonso,	 Hill,	 Kelley,	 &	 Khan,	 2015).	 In	 this	 context,	 it	 has	
been reported that similar to alcohol and other drugs of abuse, 
highly palatable foods (rich in sugars and fat) can trigger neuroad-
aptive	 responses	 in	 brain	 reward	 circuitries	 (Alonso-	Alonso	 et	al.,	
2015).	 These	 effects	 can	 stimulate	 feeding	 behavior	 and	 related	
attitudes independent of energy status or overcome other signals 
of satiety and hunger, contributing to overeating and weight gain 
(Kenny,	2011).	Because	of	the	rising	prevalence	of	obesity	and	the	
widespread	 availability	 of	 calorie-	dense	 foods,	 understanding	 the	
hedonic processes underlying food consumption and behavioral 
cues beyond metabolic needs has become a priority in obesity re-
search	(Stice,	Figlewicz,	Gosnell,	Levine,	&	Pratt,	2013).

Reward and gratification associated with palatable food con-
sumption are partially mediated by abrupt dopamine (DA) increases 
in the nucleus accumbens and the ventral tegmental area (Singh, 
2014).	Moreover,	the	amount	of	DA	released	after	consuming	a	pre-
ferred meal eventually correlates with the degree of experienced 
pleasure	 (Small,	 Jones-	Gotman,	&	Dagher,	 2003).	 Thus,	 disruption	
of DA activity can lead to loss of control over intake and continued 
consumption despite negative consequences, being both behaviors 
commonly	seen	in	addiction	and	obesity	(Volkow,	Wang,	Tomasi,	&	
Baler, 2013). Consistently, deficits in mesolimbic DA neurotransmis-
sion	have	been	 linked	to	diet-	induced	obesity	 in	rats	 (Geiger	et	al.,	
2009).	In	humans,	imaging	studies	suggest	that	obese	subjects	may	
suffer impairments in dopaminergic pathways involved in reward 
sensitivity, incentive motivation, conditioning, and control (Volkow, 
Wang,	Fowler,	Tomasi,	&	Baler,	2012).	Therefore,	some	novel	strate-
gies in the prevention and treatment of obesity target to manage DA 
functions (Blum et al., 2018).

Emerging evidences suggest that several genetic and epigenetic 
factors modulate the relationships between DA signaling, overcon-
sumption,	and	obesity	 (Blum,	Thanos,	&	Gold,	2014;	Stice,	Yokum,	
Zald,	&	Dagher,	2011).	For	instance,	polymorphisms	near	or	within	
key	 genes	 regulating	 dopaminergic	 synapse,	 including	 catechol-	
o-	methyltransferase	 (COMT), D2 receptor (DRD2), and DA active 
transporter (DAT, SLC6A3) have been associated with altered reward 
circuitry responsivity related to a spectrum of addictive behaviors 
(Stice	et	al.,	2011).	Moreover,	differential	DNA	methylation	patterns	
at DAT and tyrosine hydroxylase (TH)	 were	 linked	 to	 altered	 DA-	
related	gene	expression	in	response	to	chronic	intake	of	high-	fat	diet	
in	mice	(Vucetic,	Carlin,	Totoki,	&	Reyes,	2012).	Furthermore,	a	set	of	
transcriptional and epigenetic changes in the hypothalamus of pre-
natally stressed female rats were implicated in an increased suscep-
tibility	to	a	high-	fat-	sucrose	diet	(Paternain	et	al.,	2012).	This	study	
hypothesized	associations	of	DNA	methylation	signatures	at	genes	
modulating DA signaling with obesity features and accompanying 

metabolic profiles as well as an epigenetic influence on macronu-
trient intake.

2  | MATERIAL S AND METHODS

2.1 | Subjects

A transversal nutriepigenomic analysis was conducted in a general 
adult	population	within	the	Methyl	Epigenome	Network	Association	
(MENA)	project	(n	=	473).	The	MENA	cohort	 is	constituted	by	pre-
vious	 clinical	 trials	 analyzing	 genome-	environmental	 interactions	
concerning weight management and associated metabolic outcomes 
(Abete	 et	al.,	 2015;	 Huerta,	 Navas-	Carretero,	 Prieto-	Hontoria,	
Martínez,	 &	 Moreno-	Aliaga,	 2015;	 Larsen	 et	al.,	 2010;	 Martínez-	
González	 et	al.,	 2014;	 Petersen	 et	al.,	 2006;	 San-	Cristobal	 et	al.,	
2015;	 Santos	 et	al.,	 2016;	 Zulet	 et	al.,	 2011).	 Each	 study	 received	
ethical approval from appropriate local Human Research Ethics 
Committees. In addition, all procedures carried out throughout this 
investigation were in agreement with the ethical principles of the 
2013	Helsinki	Declaration	(World	Medical	Association,	2013).	Also,	
subject’s information was coded to insure full anonymity. All par-
ticipants gave their informed consent before inclusion in the study.

2.2 | Anthropometric measurements and 
blood pressure

Anthropometric measurements including weight, height, and waist 
circumference (WC) were collected by trained health personnel 
using	 conventional	 methods	 (de	 la	 Iglesia	 et	al.,	 2014;	 Mansego,	
Milagro,	Zulet,	&	Martinez,	2015).	Body	mass	index	(BMI)	was	calcu-
lated dividing weight (kg) by squared height (m2). The World Health 
Organization	(2017)	classification	of	BMI	in	adults	was	used	to	char-
acterize	 normal	 weight	 (BMI	 18.5–24.9	kg/m2) and overweight/
obese	 individuals	 (BMI	 ≥25	kg/m2). Abdominal obesity (AO) was 
defined based on established WC cutoffs for men (>102 cm) and 
women (>88 cm) as reported by the National Cholesterol Education 
Program (2002). Systolic blood pressure (SBP) and diastolic blood 
pressure (DBP) were measured from the right arm of each partici-
pant	with	a	sphygmomanometer	after	a	15-	min	rest.	The	average	of	
two successful readings was recorded following the World Health 
Organization	criteria	(2004)	(Whitworth,	&	Chalmers,	2004).

2.3 | Biochemical tests

Venous blood samples were drawn from each participant by veni-
puncture	 after	 a	 12-	hr	 overnight	 fast.	 Glucose,	 total	 cholesterol	
(TC),	high-	density	lipoprotein	cholesterol	(HDL-	c),	and	triglycerides	
were	determined	 in	the	automatic	analyzer	Pentra	C200	(HORIBA	
Medical,	Madrid,	Spain)	with	appropriate	commercial	kits	provided	
by	 this	 company.	 Low-	density	 lipoprotein	 cholesterol	 was	 calcu-
lated	 using	 the	 Friedewald	 equation:	 LDL-	c	=	TC	−	HDL-	c	−	tri-
glycerides/5	 as	 described	 elsewhere	 (Ramos-	Lopez	 et	al.,	 2018b).	
Plasma	concentrations	of	insulin	(Mercodia,	Uppsala,	Sweden)	were	
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measured	 using	 specific	 enzyme-	linked	 immunosorbent	 assays	
and	assessed	by	means	of	an	automated	analyzer	system	(Triturus,	
Grifols, Barcelona, Spain). Insulin resistance was estimated by the 
homeostatic	model	assessment-	insulin	resistance	(HOMA-	IR)	index	
according to the following formula: (fasting insulin (mU/L) × plasma 
glucose	 (mmol/L)/22.5)	 as	 previously	 reported	 (Crujeiras	 et	al.,	
2014).	Triglyceride-	glucose	 (TyG)	 index	was	calculated	as:	 (ln	 [fast-
ing triglycerides (mg/dl) × fasting plasma glucose (mg/dl)/2]) as 
described	 elsewhere	 (Navarro-	González,	 Sánchez-	Íñigo,	 Pastrana-	
Delgado,	Fernández-	Montero,	&	Martinez,	2016).

2.4 | Dietary assessment

Dietary data were additionally obtained from 247 subjects of the 
MENA	 cohort,	 which	 presented	 similar	 characteristics	 regarding	
the whole population. The habitual consumption of 137 food items 
during the previous year was evaluated with a validated, semiquan-
titative	 food	 frequency	questionnaire	 (de	 la	Fuente-	Arrillaga,	Ruiz,	
Bes-	Rastrollo,	 Sampson,	 &	 Martinez-	González,	 2010).	 Food	 fre-
quencies (daily, weekly, monthly or never), portions, and serving 
sizes	were	 computed	 and	 further	 converted	 to	 daily	 energy	 (kcal)	
and	macronutrient	 intakes	 (g)	using	 recognized	Spanish	 food	com-
position	 tables,	 as	 described	 elsewhere	 (Goni,	 Aray,	 Martínez,	 &	
Cuervo,	2016).	Nutrients	from	the	diet	(carbohydrates,	protein,	and	
fat) were adjusted by total energy intake using the residual method, 
as	previously	reported	(Carraro	et	al.,	2016).

2.5 | DNA methylation analyses

Blood	samples	were	centrifuged	(2,000	g,	at	4°C	for	15	min)	to	iso-
late white blood cells (WBCs) from whole blood. WBCs were imme-
diately	frozen	at	−80°C	in	buffy	coat	until	use	as	described	elsewhere	
(Arpón	et	al.,	2016).	Genomic	DNA	was	extracted	from	WBC	using	
the	Master	 Pure	 DNA	 purification	 kit	 (Epicentre	 Biotechnologies,	
Madison,	 WI,	 USA)	 following	 instructions	 provided	 by	 the	 sup-
plier. DNA quality was assessed with the PicoGreen® dsDNA 
Quantitation Reagent (Invitrogen, Carlsbad, CA, USA). A total of 
500	ng	of	purified	DNA	was	treated	with	sodium-	bisulfite	using	the	
EZ-	96	 DNA	 Methylation	 Kit	 (Zymo	 Research	 Corporation,	 Irvine,	
CA,	USA)	according	to	the	manufacturer’s	protocol.	Modified	DNA	
samples	were	whole-	genome	amplified	and	hybridized	 to	 Infinium	
Human	Methylation	450K	BeadChips	(Illumina,	San	Diego,	CA,	USA)	
as	detailed	elsewhere	 (Mansego,	Garcia-	Lacarte,	Milagro,	Marti,	&	
Martinez,	2017).	The	scanning	of	the	samples	was	carried	out	with	
the Illumina HiScanSQ system, and the image intensities were ex-
tracted	with	the	GenomeStudio	Methylation	Software	Module,	v1.9	
(Illumina).

DNA methylation data preprocessing has been recently described 
(Ramos-	Lopez,	Riezu-	Boj,	Milagro,	&	Martinez,	2018c;	Ramos-	Lopez	
et al., 2018a). Briefly, CpG methylation levels were expressed as β 
values, which are calculated as the ratio between the Illumina meth-
ylated probe intensities and the overall probe intensities (sum of 
methylated and unmethylated probe intensities). β values ranging 

from 0 (unmethylated) to 1 (completely methylated) were used, as 
previously	 reported	 (Weinhold,	 Wahl,	 Pechlivanis,	 Hoffmann,	 &	
Schmid,	 2016).	 Methylation	 data	 were	 peak-	based	 corrected	 for	
type	 I	 and	 type	 II	 bias	 and	 subsequently	 normalized	using	 a	 cate-
gorical	 Subset	 Quantile	 Normalization	method	 (Touleimat	 &	 Tost,	
2012). Probes containing single nucleotide polymorphisms, those 
hybridizing	to	multiple	genomic	locations,	or	associated	with	X	and	
Y	chromosomes,	were	removed	(Naeem	et	al.,	2014;	Nordlund	et	al.,	
2013).	The	ComBat	normalization	method	was	applied	to	adjusting	
for	nonbiological	experimental	variation	 (Johnson,	Li,	&	Rabinovic,	
2007).	 Moreover,	 an	 additional	 analysis	 to	 estimate	 the	 variation	
explained due to different cell subtypes (granulocytes, monocytes, 
B	cells,	T	cells-	CD8+,	T	cells-	CD4+, and natural killer cells) was per-
formed according to the Houseman criteria (Houseman et al., 2012).

2.6 | Pathway analyses

To test the hypothesis of this study, differentially methylated genes 
were mapped to the dopaminergic synapse pathway (map04728) 
using	the	online	Kyoto	Encyclopedia	of	Genes	and	Genomes	(KEGG)	
reference database (http://www.genome.jp/kegg/pathway.html). 
The Pathway Data Integration Portal (pathDIP) platform (http://
ophid.utoronto.ca/pathdip/) was used to perform pathway enrich-
ment	analyses,	with	a	confidence	level	of	99%.	p value correspond-
ing	to	KEGG	source	was	then	reported.

2.7 | Statistical analyses

The	Kolmogorov–Smirnov	test	was	used	to	determine	data	distri-
bution. All study variables were normally distributed (p > 0.05).	
Results are expressed as means ± standard deviations (SD), 
meanwhile, men and women are presented as number of cases. 
Statistical	differences	between	AO	groups	were	analyzed	by	stu-
dent t	test	(continuous	variables)	and	chi-	square	test	(dichotomous	
variables).	 A	 linear	 regression	 model	 concerning	 BMI	 outcomes	
was	 computed	 using	 the	 LIMMA	package	 for	 R	 software,	which	
was adjusted by covariates such as age, sex, study cohorts, and 
DNA	methylation	chips.	The	Benjamini–Hochberg	 correction	 for	
multiple comparisons was applied. Statistically significant thresh-
olds were based on False Discovery Rate (FDR) cutoffs (p < 0.05)	
and	B-	statistic	values	from	LIMMA	(B	>	0).	The	LIMMA	B-	statistic	
is	the	log-	odds	that	a	determined	gene	is	differentially	methylated.	
The cutoff B value above 0 implies that a CpG is more likely to be 
differentially methylated than to not be differentially methylated, 
giving a reasonable balance of false positives and false negatives 
(Yang	et	al.,	 2011).	Best	BMI-	associated	CpGs	were	 selected	ac-
cording to stricter FDR values (p < 0.0001). Further linear regres-
sion analyses adjusted by age and sex were performed to evaluate 
associations of methylation values at DA signaling genes with an-
thropometric measurements, the metabolic profile, and dietary in-
takes. p	<	0.05	was	considered	statistically	significant.	Statistical	
analyses	were	performed	in	the	IBM	SPSS	software	version	20	for	
Windows	(IBM	Inc.,	Armonk,	NY,	USA).	GraphPad	Prism® program 

http://www.genome.jp/kegg/pathway.html
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version	6.0C	(La	Jolla,	CA,	USA)	was	used	to	graphically	illustrate	
significant correlations.

3  | RESULTS

Demographic, anthropometric, and metabolic characteristics as 
well	as	dietary	intake	of	the	study	population	categorized	by	the	
presence	or	absence	of	AO	are	reported	(Table	1).	About	82%	of	
the study population presented excessive body weight according 
to	 the	BMI	classification	of	 the	World	Health	Organization	 (BMI	
≥25	kg/m2).	 Moreover,	 57%	 of	 the	 whole	 sample	 presented	 AO	
based on WC values. No differences between AO groups concern-
ing age and sex were found. Subjects with AO had statistically 

significant	higher	levels	of	blood	pressure,	insulin,	HOMA-	IR,	TyG	
index, and worse lipid profile as well as greater daily dietary con-
sumption of calories, carbohydrates, protein, and fat compared to 
non-	AO	individuals.

Overall,	 119	 CpG	 sites	 at	 genes	 integrating	 the	 dopaminergic	
synapse	pathway	correlated	with	BMI	 (kg/m2). Of these, 44 CpGs 
showed best associations (p < 0.0001). After adjusting by age plus sex 
and the appropriate correction for multiple comparisons, 12 CpGs 
at	 9	 genes	 remained	 statistically	 significant:	 cg03489495	 (ITPR3), 
cg22851378	 (PPP2R2D), cg04021127 (PPP2R2D), cg22441882 
(SLC18A1),	 cg03045635	 (DRD5),	 cg23341970	 (ITPR2),	 cg13051970	
(DDC),	cg08943004	(SLC6A3),	cg20557710	(CACNA1C),	cg24085522	
(GNAL),	 cg16846691	 (ITPR2),	 and	 cg09691393	 (SLC6A3). Genomic 
and statistical data of these CpG sites sorted by FDR values are 
presented	(Table	2).	Most	of	them	are	located	in	coding	(n	=	5)	and	
promoter (n = 4) regions, meanwhile, the rest is mapped within un-
translated trailers (n = 3).

In a multiple regression model, methylation signatures of the 
aforementioned	12	CpG	sites	accounted	for	about	21%	of	the	vari-
ability	in	BMI	(adj.	r2 = 0.207, p < 0.001). Statistically relevant asso-
ciations	between	methylation	status	and	BMI	are	plotted	(Figure	1).	
Of	 note,	 seven	 CpG	 sites	 positively	 correlated	 with	 BMI	 values,	
whereas	in	the	remaining	analyzed	CpGs,	negative	correlations	were	
found (n	=	5).	Moreover,	average	methylation	levels	of	each	CpG	dif-
fered according to the presence or absence of AO (Figure 2), with a 
robust level of significance in most cases (p < 0.0001). No statisti-
cally significant relationships between methylation patterns at DA 
signaling genes with serum levels of glucose, insulin, lipid profile, or 
blood pressure were detected.

Pathway	mapping	 of	 the	 BMI-	associated	 genes	within	 the	DA	
signaling cascade is shown (Figure 3). Interestingly, pathway enrich-
ment	analyses	revealed	a	significant	contribution	of	BMI-	associated	
genes to dopaminergic synapse transmission (p = 4.78E−08),	 in-
volving complex interactions between presynaptic and postsynap-
tic cells (Figure 3). These genes modulated key processes involving 
physiological DA actions such as transport, uptake/reuptake, cova-
lent modifications, and appropriate downstream signal flow.

Furthermore, potential associations between DA gene methyl-
ation profiles and available daily dietary intakes were evaluated in 
247	 subjects	of	 the	MENA	cohort	 (Figure	4).	 Thus,	methylation	at	
cg22441882 (SLC18A1),	 cg08943004	 (SLC6A3),	 and	 cg09691393	
(SLC6A3) consistently correlated with total energy consumption 
(p < 0.001) and carbohydrate intake (p < 0.001). However, no rela-
tionships between methylation patterns of these CpG sites and pro-
tein or fat intakes were found.

4  | DISCUSSION

DA is a major (nonhomeostatic) regulator of food intake behaviors 
(Alonso-	Alonso	et	al.,	2015).	In	agreement	with	our	hypothesis,	the	
present investigation evidenced associations of DA gene methyla-
tion	patterns	with	BMI,	AO,	and	carbohydrate	 intake,	which	might	

TABLE  1 Demographic, anthropometric, and metabolic 
characteristics as well as dietary intake of the study population 
categorized	by	the	presence	or	absence	of	abdominal	obesity

Variable Non- AO AO p value

n 205 268 —

Age (years) 46.0	±	17.7 47.8 ± 11.0 0.182

Men/women 83/122 87/181 0.082

Anthropometric and clinical data

Weight (kg) 68.2	±	10.7 91.9	±	17.8 <0.001

BMI	(kg/m2) 25.5	±	3.2 33.5	±	4.6 <0.001

WC (cm) 83.1 ± 11.2 105.5	±	11.9 <0.001

SBP (mmHg) 121.5	±	36.4 106.8	±	42.2 <0.001

DBP (mmHg) 75.1	±	22.1 89.3	±	38.2 <0.001

Metabolic	profile

Glucose (mg/dl) 99.4	±	33.4 104.4	±	26.6 0.080

Insulin (mIU/L) 6.8	±	3.7 11.1 ± 7.8 <0.001

HOMA-	IR	index 1.38 ± 0.84 2.99	±	2.59 <0.001

TC (mg/dl) 197.7	±	40.3 210.0	±	39.6 0.001

HDL-	c	(mg/dl) 57.4	±	13.5 50.7	±	12.8 <0.001

LDL-	c	(mg/dl) 118.6	±	38.2 134.4 ± 34.2 <0.001

TG (mg/dl) 111.4	±	62.7 125.4	±	77.3 0.041

TyG index 4.57	±	0.31 4.65	±	0.33 0.015

Dietary intake

Energy  
(Kcal/day)

2,373	±	508 2,679	±	844 0.003

Carbohydrates 
(g/day)

239.6	±	68.1 272.1 ± 107.3 0.013

Protein (g/day) 93.2	±	18.6 109.5	±	30.7 <0.001

Fat (g/day) 107.3	±	22.6 119.5	±	41.2 0.012

Note. Continuous variables are represented as means ± standard devia-
tions.	Men	 and	 women	 are	 number	 of	 cases.	 AO:	 abdominal	 obesity;	
BMI:	 body	 mass	 index;	 DBP:	 diastolic	 blood	 pressure;	 HDL-	c:	 high-	
density	 lipoprotein	 cholesterol;	 HOMA-	IR	 index:	 homeostatic	 model	
assessment-	insulin	resistance	index;	LDL-	c:	low-	density	lipoprotein	cho-
lesterol; SBP: systolic blood pressure; TC: total cholesterol; TG: triglycer-
ides;	 TyG	 index:	 triglyceride-	glucose	 index;	WC:	 waist	 circumference.	
Dietary intake was available from 247 subjects.
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serve as epigenetic biomarkers of feeding behavior attitudes, exces-
sive adiposity, and fat deposition. These results are consistent with 
the fact that disruptions in dopaminergic synapse may lead to over-
consumption by altering the rewarding effects elicited by palatable 
foods	 (Ziauddeen	 et	al.,	 2015).	 In	 this	 sense,	 it	 has	 been	 reported	
that	high-	carbohydrate	diets	can	trigger	addictive-	like	neurochemi-
cal and behavioral responses in vulnerable individuals, contribut-
ing	 to	 weight	 gain	 (Lennerz	 &	 Lennerz,	 2018).	 The	 link	 between	
body weight regulation and fat storage and dopaminergic signaling 
may also rely on the endocrine effects of DA in peripheral tissues 
such as insulin secretion and specific actions on adipocytes (Rubí 

&	Maechler,	 2010).	 Furthermore,	 human	adipose	 cells	 express	DA	
receptors during adipogenesis, suggesting a controlling role of DA in 
adipose tissue processes (Borcherding et al., 2011).

DA	is	synthesized	through	DOPA	decarboxylase	(DDC)	activity	
and subsequently packed into synaptic vesicles via the SLC18 family 
of	transporter	proteins	including	VMAT1	(SLC18A1)	(Lawal	&	Krantz,	
2013). In this study, both DDC and SLC18A1 gene methylation lev-
els	negatively	correlated	with	BMI	and	were	downregulated	under	
AO conditions. In addition, a negative correlation between SLC18A1 
methylation and carbohydrate intake was found. Interestingly, 
decreased AADC activity has been reported in obese mice fed a 

F IGURE  1 Associations	between	methylation	levels	(beta	values)	at	dopamine	pathway	genes	and	BMI	values.	(a)	cg03489495,	ITPR3, (b) 
cg22851378,	PPP2R2D, (c) cg04021127, PPP2R2D, (d) cg22441882, SLC18A1,	(e)	cg03045635,	DRD5,	(f)	cg23341970,	ITPR2,	(g)	cg13051970,	
DDC,	(h)	cg08943004,	SLC6A3,	(i)	cg20557710,	CACNA1C,	(j)	cg24085522,	GNAL,	(k)	cg16846691,	ITPR2,	(l)	cg09691393,	SLC6A3
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high-	fat	 high-	simple-	carbohydrate	 diet	 (Moreira-	Rodrigues	 et	al.,	
2012).	Moreover,	genome	wide	and	candidate	gene	studies	 identi-
fied SLC18A1 as one potential pleiotropic gene overlapped between 
mood disorders and cardiometabolic diseases (Amare, Schubert, 
Klingler-	Hoffmann,	Cohen-	Woods,	&	Baune,	2017).	Also,	a	genetic	
variation in SLC18A1 made statistically significant contributions to 
BMI	in	Chinese	subjects	(Chen	et	al.,	2013).

Once released from presynaptic axonal terminals, DA interacts 
with	 at	 least	 five	 distinct,	 but	 closely	 related	G	 protein-	coupled	 re-
ceptor	subtypes	 (D1	to	D5)	 in	the	postsynaptic	cells,	which	regulate	
the	 physiological	 actions	 of	 DA	 (Beaulieu,	 Espinoza,	 &	Gainetdinov,	
2015).	 In	particular,	 the	DA	receptor	D5	 (DRD5)	belongs	 to	 the	D1-	
class	receptors,	whose	activation	stimulates	cAMP	production	by	ade-
nylyl	cyclase	on	DA-	receptive	cells	(Beaulieu	et	al.,	2015).	Here,	DRD5 

F IGURE  2 Average methylation levels (beta values) at dopamine pathway genes according to the presence or absence of abdominal 
obesity.	(a)	cg03489495,	ITPR3,	(b)	cg22851378,	PPP2R2D, (c) cg04021127, PPP2R2D, (d) cg22441882, SLC18A1,	(e)	cg03045635,	DRD5, 
(f)	cg23341970,	ITPR2,	(g)	cg13051970,	DDC,	(h)	cg08943004,	SLC6A3,	(i)	cg20557710,	CACNA1C,	(j)	cg24085522,	GNAL,	(k)	cg16846691,	
ITPR2,	(l)	cg09691393,	SLC6A3. AO: abdominal obesity. ap < 0.0001; bp < 0.001
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F IGURE  3 Mapping	of	BMI-	associated	genes	within	the	dopaminergic	synapse	pathway	(red	boxes).	The	following	genes	were	computed:	
ITPR3, PPP2R2D, SLC18A1, DRD5, ITPR2, DDC, SLC6A3, CACNA1C, GNAL.	Figure	taken	from	KEGG	reference	database	(map04728).	Pathway	
enrichment analyses, based on pathDIP (p = 4.78E−08)

F IGURE  4 Associations	between	methylation	levels	(beta	values)	at	dopamine	signaling	genes	and	energy	(a–c)	and	carbohydrate	(d–f)	
intakes. (a, d) cg22441882, SLC18A1	(b,	e)	cg08943004,	SLC6A3	(c,	f)	cg09691393,	SLC6A3. AO: abdominal obesity
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methylation	 levels	 positively	 correlated	 with	 BMI	 and	 differed	 ac-
cording to AO. In a previous work, it was shown that peripheral blood 
mononuclear cells from individuals presenting AO expressed lower 
DRD5	 levels	 compared	 to	 subjects	without	AO	 (Leite,	 Lima,	Marino,	
Cosentino,	&	Ribeiro,	2016).	Furthermore,	DRD5 expression negatively 
correlated	with	weight,	BMI,	and	WC	values,	suggesting	that	AO	is	as-
sociated with downregulation of dopaminergic pathways in blood cells.

The regulation of synaptic and extrasynaptic DA concentrations is 
an important process that contributes to efficient DA neurotransmis-
sion	 and	 compartmentalization	 (Lohr,	Masoud,	 Salahpour,	&	Miller,	
2017).	This	function	is	driven	by	the	DA	transporter	(DAT,	SLC6A3),	
a membrane protein located perisynaptically, where it rapidly recap-
tures and transports DA from the extracellular space into the cyto-
sol	 of	 the	presynaptic	 neuron	 (Sotnikova,	Beaulieu,	Gainetdinov,	&	
Caron,	2006).	In	this	study,	two	CpG	sites	at	SLC6A3 gene correlated 
with	BMI	and	carbohydrate	intake	with	a	positive	trend.	Consistently,	
it was reported that hypothalamic SLC6A3 was hypermethylated in 
the	 promoter	 region	 in	 response	 to	 high-	fat-	sucrose	 diet	 in	 prena-
tally stressed female adult rats (Paternain et al., 2012). Similarly, a 
significant increase in DNA methylation within the promoter region 
of SLC6A3	was	found	in	the	ventral	tegmental	area	of	mice	fed	a	high-	
fat diet, which associated with repressed expression (Vucetic et al., 
2012). In humans, methylation changes at the SLC6A3 gene have been 
related to prematurity, a known risk factor for obesity (Arpón et al., 
2018). Also, SLC6A3 gene polymorphisms were associated with pal-
atable food intake and WC in children in early stages of development 
(Fontana	et	al.,	2015).	Additionally,	genetic	variants	 in	SLC6A3 have 
been	associated	with	obesity	risk	in	some	populations	(Bieliński	et	al.,	
2017;	González-	Giraldo,	Trujillo,	&	Forero,	2017).

Regarding	DA-	evoked	downstream	transducers,	different	meth-
ylation patterns at ITPR3, PPP2R2D, ITPR2, CACNA1C, and GNAL 
genes	were	found	to	be	associated	with	BMI	and	AO	in	this	research.	
According to our results, it has been proposed that a mutation in Itpr3 
gene could influences food choice by impairing the detection of nu-
trients	in	mice	(Tordoff,	Jaji,	Marks,	&	Ellis,	2012).	Likewise,	a	genetic	
variant in ITPR3 gene was related to the linking for particular foods 
in	a	Silk	Road	population	(Pirastu	et	al.,	2012).	Meanwhile,	ITPR2 and 
CACNA1C have been identified as candidate genes associated with 
addictive	tendencies	toward	food	(Pedram,	Zhai,	Gulliver,	Zhang,	&	
Sun, 2017). Of note, CACNA1C methylation levels (a concomitant 
taste	signaling	molecule)	were	previously	associated	with	BMI	in	an	
adult	population	(Ramos-	Lopez	et	al.,	2018a,	2018b).	Also,	a	linkage	
between ITPR2 locus and central adiposity was reported (Graff et al., 
2013; Liu et al., 2014). Until now, there is no evidence showing po-
tential relationships between PPP2R2D and GNAL genes and obesity.

The strengths of this investigation include a relatively large sam-
ple	analyzed,	and	the	analysis	of	DNA	methylation	status	at	all	genes	
integrating the dopaminergic synapse pathway. In addition, several 
potential	 confounding	 factors	were	 considered	 in	 the	methylation-	
related statistical analyses such as sex, age, study cohorts, methyla-
tion chips, cell subtypes, nonbiological experimental variation, as well 
as multiple comparison correction. On the other hand, a limitation of 
this investigation was the lack of expression assays, but RNA samples 

were not available. This drawback makes it difficult to predict the ef-
fects on gene expression of methylation signatures and phenotypic 
impact, especially CpGs located in nonpromoter regions or those with 
small changes when comparing AO groups. For example, although the 
mean	methylation	levels	at	cg03489495	(ITPR3) statistically differed 
between	non-	AO	and	AO	 individuals,	 it	 represented	approximately	
a	2%	difference	in	methylation	status.	Additionally,	type	I	and	type	
II bias cannot be completely ruled out despite of appropriate statis-
tical settings. Of note, some obtained relevant data could have also 
been	 lost	 because	of	 using	 robust	 FDR	values	 to	 select	 best	BMI-	
associated CpG sites in the regression analyses.

Another point to comment is the measurement of DNA methyla-
tion signatures in peripheral WBC as surrogate of brain cells methy-
lome	profiles.	Although	previous	studies	support	tissue-	specific	DNA	
methylation patterns (Lokk et al., 2014), there is growing evidence in 
humans suggesting that some methylation marks detected in leuko-
cytes can be reflected in other target tissues, including oral mucosa 
(San-	Cristobal	et	al.,	2016)	and	subcutaneous	adipose	tissue	(Crujeiras	
et al., 2017). Also, homologies between genomic signatures (including 
DNA methylation patterns) from blood and brain were reported in a 
rodent	model	of	concussive	injury	(Meng	et	al.,	2017).	Moreover,	it	has	
been shown that in addition to human brain, main DA signaling genes 
are also expressed in circulating human blood cells, including DDC 
(Kokkinou,	 Nikolouzou,	 Hatzimanolis,	 Fragoulis,	 &	 Vassilacopoulou,	
2009),	SLC18A1 (Amenta et al., 2001), SLC6A3	(Mill,	Asherson,	Browes,	
D’Souza,	&	Craig,	2002),	and	DRD5	(Leite	et	al.,	2016).

Indeed, epigenetic phenomena are important regulators of ge-
nome expression and function, which have an impact on diverse phys-
iological and behavioral processes related to food intake, and energy 
homeostasis	 (Milagro,	Mansego,	De	Miguel,	&	Martínez,	2013).	Not	
surprisingly, many epigenetic mechanisms can be implicated in the 
development of excessive adiposity and associated metabolic risk, 
including	those	affecting	DA	function	(Martínez,	Milagro,	Claycombe,	
&	Schalinske,	2014).	In	this	context,	epigenetic	modifications	at	genes	
involved in DA signaling transmission may help to explain putative 
relationships between brain reward circuitries, eating behaviors, and 
body weight status. This knowledge may also be useful for individ-
ual disease risk prediction, the search for therapeutic targets, and the 
design/implementation of nutriepigenomic strategies aimed to pre-
vention, prognosis, and integral management of obesity and accompa-
nying	metabolic	complications	(Ramos-	Lopez	et	al.,	2017).

In conclusion, the results of this investigation reveal that meth-
ylation status of DA signaling genes may be one epigenetic regulator 
contributing to carbohydrate and calorie consumption and obesity 
development.
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