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Quantum Neimark-Sacker 
bifurcation
I. I. Yusipov & M. V. Ivanchenko*

Recently, it has been demonstrated that asymptotic states of open quantum system can undergo 
qualitative changes resembling pitchfork, saddle-node, and period doubling classical bifurcations. 
Here, making use of the periodically modulated open quantum dimer model, we report and investigate 
a quantum Neimark-Sacker bifurcation. Its classical counterpart is the birth of a torus (an invariant 
curve in the Poincaré section) due to instability of a limit cycle (fixed point of the Poincaré map). The 
quantum system exhibits a transition from unimodal to bagel shaped stroboscopic distributions, as for 
Husimi representation, as for observables. The spectral properties of Floquet map experience changes 
reminiscent of the classical case, a pair of complex conjugated eigenvalues approaching a unit circle. 
Quantum Monte-Carlo wave function unraveling of the Lindblad master equation yields dynamics of 
single trajectories on “quantumtorus” and allows for quantifying it by rotation number. The bifurcation 
is sensitive to the number of quantum particles that can also be regarded as a control parameter.

Bifurcation analysis, introduced by Poincaré more than a century ago1, has become a primary approach in non-
linear dynamics and applications2,3. Its extensions to the quantum realm followed much later. The first and most 
celebrated example of bridging complex dynamics in the two domains is Hamiltonian chaos, which spectral 
signatures in quantum systems are profoundly understood by now4–7. For quite a while, the studies kept focused 
on Hamiltonian systems, seeking the footprints of bifurcations in the classical phase space on the properties 
of corresponding quantum equations and their solutions. The archetypal pitchfork and Hopf bifurcations2,3 in 
the mean-field equations were related to sharp changes of the ground-state entanglement in the corresponding 
quantum models8,9. A pitchfork bifurcation was also found to underpin the transition from Rabi to Josephson 
dynamics in experiments with rubidium Bose-Einstein condensate10.

Recent experimental advances in cavity quantum electrodynamics11, quantum optical systems12, Bose-Einstein 
condensates13–15, artificial atoms16, polaritonic devices17, and superconducting circuits18,19 have spurred attention 
to open quantum systems. These systems interact with their environments (or are subjected to actions from 
outside), and therefore their dynamics is essentially dissipative20,21. Although such systems evolve to a unique 
asymptotic state under broad conditions22,23, the dynamics has proved to be no less complex then the unitary 
one, framed by a set of eigenstates, yielding the states structurally and dynamically similar to classical chaotic 
attractors24–30.

To date, several quantum counterparts of dissipative bifurcations have been described: pitchfork, saddle-node, 
and period doubling27–29,31–33. This is commonly done in the Markovian framework, and the dynamics of a model 
system is described with Lindblad equation21,23,34,35. The nonlinear mean-field equations used as a classical refer-
ence are obtained following Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY)-like approaches, by truncating 
the hierarchy of cumulants on the level of expectation values31 or keeping double correlators32,36. Routinely, quan-
tum bifurcations are visualized by calculating quasi-classical phase space distributions, Husimi or Wigner-like37, 
which structural changes with a bifurcation parameter reproduce bifurcations in the classical phase space. For 
instance, the quantum period-doubling bifurcation is seen as the transition from unimodal to bimodal Husimi 
distribution27,33. At the same time, it has been demonstrated that quantum bifurcations can be observed directly 
as the structural changes in the asymptotic density matrix28. This approach allows to overcome the technical lim-
itation of calculating Husimi distribution for the system size >N 103, when it becomes computationally unfeasi-
ble. Both approaches, however, do not resolve dynamics on the quantum attractor.

In this paper we find and study the quantum Neimark-Sacker bifurcation, which classical counterpart is the 
birth of a torus (an invariant curve in the Poincaré/stroboscopic section) due to instability of a limit cycle (fixed 
point of the Poincaré map)2. Exemplifying in the experimentally relevant open quantum periodically modulated 
dimer model, we show that the stroboscopic Husimi distribution exhibits a transition from the unimodal to 
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bagel-shaped form – a section of “quantum torus” – for the boson interaction strength close to the bifurcation 
value for the mean-field model. Importantly, the same transformation is observed in the stroboscopic distribution 
of observables, obtained by the Monte Carlo wave-function stochastic unraveling of the Lindblad equation, the 
method, especially relevant in the context of quantum optics and cavity systems38–41. Dynamics of such individual 
quantum trajectories on “quntum torus” is suitably characterized by rotation number. Similar to the classical 
case, rotation numbers close to rational correspond to almost “periodic” multi-modal stroboscopic distributions. 
Finally, we demonstrate that the bifurcation is system size dependent, which plays a role of another bifurcation 
parameter.

The paper is organized as follows. In Section 1 we describe the quantum model, its nonlinear mean-field 
approximation, and numerical methods. Section 2 contains the main results. Section 3 gives a summary and 
outlook.

Model and Methods
Within the Markovian approximation framework (which assumes weak coupling to environment), the evolution 
of an open quantum system can be described by the Lindblad master equation21,23,

ρ ρ ρ ρ= = − +


DDL i H( ) [ , ] ( ), (1)

where the first term in the r.h.s. captures the unitary evolution, and the second term describes the action of envi-
ronment. We consider a system of N indistinguishable interacting bosons, that hop between the sites of a period-
ically rocked dimer. This model is a popular theoretical testbed42–44, recently implemented in experiments45–47, 
known to exhibit regular and chaotic regimes27–29,33. Its unitary dynamics is governed by the Hamiltonian

∑ ε= − + + − + − .
=

† †H t J b b b b U
N

n n t n n( ) ( ) 2 ( 1) ( ) ( )
(2)g

g g1 2 2 1
1,2
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Here, J denotes the tunneling amplitude, U is the interaction strength, and ε t( ) presents a periodical modula-
tion of the on-site potentials. It is chosen as ε ε= + = Ωt t T A t( ) ( ) sin( ), πΩ = T2 / , so that the amplitude A is 
the dynamic energy offset between the two sites. Here bj and †bj  are the annihilation and creation operators of a 
particle at site j, while = †n b bj j j.

The system Hilbert space has dimension +N 1 and can be spanned with +N 1 Fock basis vectors, labeled by 
the number of bosons on the first site, | 〉n{ }, = …n N0, , . Thus, the size of the model is controlled by the total 
number of bosons.

The dissipative term involves a single experimentally relevant jump operator48–50:

ρ γ ρ ρ=


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= + −† †V b b b b( ) ( ), (4)1 2 1 2

which attempts to ‘synchronize’ the dynamics on the two sites by constantly recycling anti-symmetric out-phase 
modes into symmetric in-phase ones. The dissipative coupling constant γ is taken to be time-independent.

Throughout the paper we set =J 1, γ = .0 1, = .A 3 4, π=T 2 , and vary U and N.
The computational analysis makes use of two methods to evolve the system numerically. First, we implement 

propagation of Eq. (1) by the fourth-order Runge-Kutta scheme. The evolution converges to a unique asymptotic 
solution, which in case of periodic modulation is a stable periodic trajectory (or a fixed point of the correspond-
ing stroboscopic map, ρ ρ→ +P mT m T: ( ) (( 1) )F , = …m 0, 1, 2, ). For the particular system Eqs. (2) and (4), 
we set the integration time step of ⋅ − T5 10 4 , and leave at least 100 modulation periods for transients to fade out.

The density matrix ρ of the system with N bosons can be visualized on the Bloch sphere by plotting the Husimi 
distribution ϑ φp( , ), which can be obtained by projecting ρ on the set of the generalized SU(2) coherent states51,52
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The corresponding nonlinear mean-field equations for the θ ϕ( , ) phase variables are obtained by writing the 
master equation in terms of the spin operators = +† †S b b b b( )x N

1
2 1 2 2 1 ,  = − −† †S b b b b( )y

i
N2 1 2 2 1 , 

= −S n n( )z N
1

2 1 2 , and considering their evolution in the Heisenberg picture21,27,28. For a large number of (N − 1) 
bosons, the commutator = =

→∞
S S Si[ , ] 0x y z

N , vanishing as −OO N( )1 , as well as the similar ones for other cyclic 
permutations. Replacing operators with their expected values, ρ=S Str[ ]k k , and denote Sk by Sk, one can obtain
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where proportional to γ terms of lower order in N are neglected. The quantity = + +S S S Sx y z
2 2 2 2 is a constant of 

motion, so the mean-field evolution is restricted to the surface of a Bloch sphere, φ ϑ=S S S( , , ) [ cos( )sin( ),x y z
1
2

φ ϑ ϑsin( )sin( ), cos( )], yielding the equations of motion
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The corresponding particle number in the first site is then recovered as ϑ= +n (1 cos( ))N
2

.
This nonlinear dynamical system plays a reference role in the bifurcation analysis further. In numerical exper-

iments we record the consecutive stroboscopic values, ϑ φ = …mT mT m{ ( ), ( )}, 0, 1, 2, , and construct the his-
tograms normalized to the largest value 1 for each parameter set, complemented by Poincaré sections for the 
stroboscopic map.

Second, we employ the Monte-Carlo wave function (also “quantum trajectory” or “quantum jump”) 
method38,39 to unravel Lindblad master Eq. (1) into an ensemble of quantum trajectories. It recasts the evolution 
of the model system into the ensemble of systems described by wave functions, ψ t( )r , = …r M1, 2, , r, governed 
by an effective non-Hermitian Hamiltonian, H̃. This Hamiltonian incorporates the dissipative operator V, which 
is responsible for the decay of the norm,

ψ ψ= = − . ˜ ˜ †i H H H i V V,
2 (8)

When the norm drops below a threshold, that is randomly chosen each time, a quantum jump is simulated, 
such that the wave function is transformed according to ψ ψ→ V  and then normalized20.

The density matrix can then be sampled from a set of Mr realizations as ρ ψ ψ= ∑ | 〉〈 |=t M t t( ; ) ( ) ( )
M j

M
j jp r

1
1 p p

r
r , 

which, given an initial pure state ψ init, converges towards the solution of Eq. (1) at time tp for the initial density 
matrix ρ ψ ψ= | 〉〈 |init init init . We make use of the recently developed high-performance realization of the method53 
and generate =M 10r

2 different trajectories for averaging, leaving = ⋅t T2 100
3  time for relaxation towards an 

asymptotic state, and following the dynamics for up to =t T103 .
Thus we produce stroboscopic plots for the expectation values of the two observables, the number of particles 

on the left site of the dimer, n(t), and the energy, e(t),

ψ ψ= 〈 | | 〉†n t t b b t( ) ( ) ( ) , (9)1 1

ψ ψ= 〈 | | 〉.e t t H t( ) ( ) ( ) (10)

Quantum trajectories allow for an insight to dynamics in the asymptotic regime – on quantum attractor – 
beyond the stationary Husimi projection picture.

Results
We first investigate the nonlinear mean-field equations, Eq. (7), treating interaction strength U as a bifurcation 
parameter. There one observes the emergence of an invariant curve for a stroboscopic map θ φ →F mT mT: { ( ), ( )}
θ φ+ +m T m T{ (( 1) ), (( 1) )} by the Neimark-Sacker bifurcation at ∼ .U 0 11 and its succession by period-6 cycle 

at ∼ .U 0 18 (Figs. 1(a) and 2). Further it develops into a chaotic attractor, that ultimately disappears through a 
crisis, when the stable fixed point is recovered.

We interrogate whether quantum equations manifest an analogue of the classical Neimark-Sacker bifurcation 
and study its properties.

A sufficiently large number of particles, =N 500, should bring the system close to the classical limit. The 
one-parameter bifurcation diagram displays the probabilities to find a given number of particles on the left site of a 
dimer, taken at stroboscopic times mT, = …m 0, 1, 2, , numerically given by the diagonal elements of the density 
matrix, ρ mT( )n n, . The qualitative structure of the bifurcation diagram obtained from the mean-field model is repro-
duced in the quantum case quite well, as for the birth of a torus, as for the onset of chaos and ultimate recovery of a 
stable fixed point, cf. Fig. 1(b). However, even for =N 500 some details differ, like the quantum bifurcation within 

∈ . .U [0 6, 0 7], that does not have a counterpart in the mean-field model. The discrepancy stems from truncation of 
double and higher order correlators, −OO N( )1 , in the mean-field approximation, retaining only expectation values, cf. 
Eqs. (6 and 7). We conjecture that by going to a higher-order mean-field approximation, one would obtain a 
higher-dimensional nonlinear system, where the corresponding classical bifurcation would emerge.

Next, we demonstrate the correspondence between the asymptotic states at stroboscopic Poincaré sections (for 
mean-field model) on the plane ϑ φ{ , } and Husimi distributions for the quantum system, Fig. 2. Indeed, the projec-
tion of the quantum attractor onto the classical phase space reveals the emergence of a bagel-shaped distribution 
after the invariant curve in the Poincaré section of the mean-field equations. Moreover, one observes the formation 
of a multi-period orbit on the quantum torus later on, cf. Fig. 2(d), the scenario typical of classical systems.

There are, however, quantitative differences: the bagel is already present at = .U 0 1 for the quantum model 
with =N 500, cf. Fig. 2(a), while the mean-field model still has a fixed point; the size of the bagel is slightly 
greater than the invariant curve in the classical case, cf. Fig. 2(b,c); the formation of a periodic orbit in the quan-
tum case occurs at lower U, cf. Fig. 2(d).
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We further investigated, whether quantum Neimark-Sacker bifurcation can be identified directly in quantum 
observables. Sampling attractor with quantum trajectories (cf. Section 1), we reconstruct histograms for strobo-
scopic observables n mT e mT( ), ( ), Eq. (10), and again witness the emergence of bagel-shaped distributions fol-
lowing quantum bifurcation, cf. Fig. 3 and compare to Fig. 2.

Quantum trajectory unraveling allows to get a deeper insight into the dynamics on quantum torus. That is, 
one can define the phase θm for each pair of stroboscopic observables, n mT e mT( ), ( ), as a polar angle, the origin 
placed at the center of mass of the stroboscopic 2D histogram, which is normalized in both dimensions to the 
same interval −[ 1, 1] (see Fig. 4, inset), and thus calculate the instantaneous rotation (or winding) number
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Figure 1.  One-parameter bifurcation diagrams for the classical and quantum systems. Color codes the 
histogram for (a) classical and (b) quantum trajectories, the maximal element for each value of U is normalized 
to 1, =N 500.
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Figure 2.  Stroboscopic Husimi distribution for the density matrix depending on interaction strength. 
Distributions are drawn for (a) = .U 0 1; (b) = .U 0 1125; (c) = .U 0 125; (d) = .U 0 15 and overlaid by Poincaré 
maps for the mean-field model (red). Here =N 500.
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In classical dynamics, the time-averaged ω discriminates two cases. For rational ω = p q/ , ∈p q,  , the invar-
iant torus contains a stable period-q orbit that is observed as an asymptotic solution, while for irrational ω the 
trajectories cover the torus densely. The regimes interchange with system parameters.
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Figure 3.  Histograms of expectation values for quantum trajectories at stroboscopic times. Trajectories are 
taken for different interaction strength: (a) = .U 0 1; (b) = .U 0 1125; (c) = .U 0 125; (d) = .U 0 15. The axes are 
scaled by the particle number, n mT N e mT N( )/ , ( )/ , here =N 500.
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Figure 4.  Color coded histogram of instantaneous rotation number, ω, for quantum trajectories in dependence 
on interaction strength, U. The maximal element for each value of U is normalized to 1. Solid line corresponds 
to the average rotation number, dashed lines indicate the levels for rational ω = 1/2 and ω = 3/5. Here 

=N 250. Inset: the phase θ is defined as a polar angle for centered and normalized observables.
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The dynamics on quantum torus can be characterized by the probability distribution of ωm, Fig. 4. About the 
bifurcation point ≈ .⁎U 0 1 the distribution is well-localized about ω = .0 58, different from the period doubling 
value 1/2, the bifurcation present for the other parameter values28,33. Our case is analogous to irrational rotation 
number for classical torus, so that quantum trajectories densely cover the bagel. The average rotation number 
increases with interaction strength, and becomes rational ω = 3/5 at ≈ .U 0 15. Then the stroboscopic distributions 
obtain a clear footprint of the corresponding period-5 structure (Figs. 2(c,d) and 3(c,d)), as in the classical case.

The bifurcation also affects the spectral properties of the system. This can be demonstrated by calculating and 
diagonalizing the Floquet map ∫= 





TTP LdtexpF
T

0
, where TT is time-ordering operator, that describes evolution 

of the density operator over a period of modulation under Eq. (1) 27. The largest eigenvalue of its spectrum, μ{ }k , 
= … +k N1, , ( 1)2, is always unity, μ = 11 , the rest are inside the unit circle, as per the dissipative nature of L. 

We follow the next to largest eigenvalues and find a conjugated pair that approaches the unit circle at the point of 
quantum bifurcation, μ ≈ θ±e i

2,3
0 (Fig. 5, inset). Its complex phases are consistent with the rotation number, 

θ πω≈ 20 . Repeating the treatment of ref. 33, one obtains that the two-time correlation of an observable in the 
asymptotic regime is incommensurate with the time-scale of modulation. Note that the spectral gap μ− | |1 2,3  
decreases with N, yielding the classical conjugate multipliers of the limit cycle at the Neimark-Sacker bifurcation 
point2 in the infinite-size limit, → ∞N . It also gives an estimate of relaxation time from a random initial condi-
tion to the asymptotic state, μ∼ − | | −t (1 )2,3

1, which can become very large with N, it follows.
Finally, we investigate the dependence on the number of bosons, N. The classical limit is formally obtained for 

→ ∞N , but the traits of classical Neimark-Sacker bifurcation are reproduced deep in the quantum regime, as 
soon as ∼N 25. In fact, the number of particles, N, can be considered as a bifurcation parameter itself. For 
instance, one can explore the case = .U 0 1125, when an invariant curve is already present in the mean-field 
model, cf. Figs. 2(b) and 3(b). However, the Husimi distribution for the quantum dimer with the relatively small 
number of particles, =N 50, is still unimodal, cf. Fig. 6(a). Increasing N one observes a transformation to a bagel 
shape (Fig. 6(b–d)), i.e. Neimark-Sacker bifurcation with the system size N.

In classical nonlinear systems the size of the invariant curve generically scales as a square root above the bifur-
cation point2. For the quantum bifurcation we define the diameter of the bagel D in the Husimi distribution as the 
distance between two maxima in the section ϕ π= /2. When the distribution is unimodal, we set =D 0. The 
resulting curves D(U) confirm a pronounced dependence on the number of particles, in particular, for the bifur-
cation point, cf. Fig. 5. The scaling of D(U) about the bifurcation point also depends on the number of bosons and 
is not universal.
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Figure 5.  Diameter of a bagel, D, in the Husimi distribution in dependence on the interaction strength, U. 
Results are obtained for the different number of particles: =N 50 (blue); =N 100 (red); =N 250 (green); 

=N 500 (purple). Inset: eigenvalues of Floquet map, PF, on a complex plane about the quantum bifurcation 
point (blue) and a unit circle (orange), = .U 0 12, =N 50; red points mark μ2,3.
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Conclusions
We found and investigated the quantum counterpart of the classical Neimark-Sacker bifurcation in an open peri-
odically modulated quantum dimer. The classical bifurcation in a dissipative nonlinear system is a birth of torus 
from a limit cycle (or an invariant curve from a fixed point for a time-discrete map). Concurrently, a conjugate 
pair of complex Floquet multipliers of a periodic trajectory crosses the unit circle.

The quantum Neimark-Sacker bifurcation is manifested by emergence of bagel-shaped stroboscopic distribu-
tions, as for Husimi projection on the classical phase space, as for quantum observables. The bifurcation is also 
seen in the spectral properties of the corresponding Floquet map, as a pair of its conjugate eigenvalues approach-
ing the unit circle. Quantum trajectories technique allows for unraveling the dynamics on the “quantum torus”, 
and a suitably generalized rotation number on it. In analogy to the classical case, irrational and rational rotation 
numbers yield bagel (dense torus) and multi-modal (periodic orbit on torus) distributions. The quantum bifurca-
tion depends on the system size – the number of bosons, and more sensitively for fewer particles, away from the 
mean-field limit. As such the number of particles is a bifurcation parameter.

We expect that the bifurcation can be found in the other open non-equilibrium quantum setups, to name a 
modulated open Dicke model, where its classical counterpart has been reported54. Thereby, cavity and circuit 
QED systems appear the first candidates for its experimental observation.
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