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Abstract: The cluster of metabolic disorders includes obesity, dyslipidemia, hypertension, and
glucose intolerance, increasing the risk of developing cardiovascular diseases and type 2 diabetes.
Evolving proofs suggest an essential role of microbiota in human health and disease, including
digestion, energy and glucose metabolism, immunomodulation, and brain function. The frequency
of overweight is increasing, and the main causes for this are highly processed foods and less active
lifestyles. Research is underway to unravel the probable relationship between obesity and intestinal
microbiota. Here, we propose a method to understand and elucidate the synergistic function of
prebiotics and probiotics in treating obesity. The biomarkers of obesity, such as cholesterol, gut
permeability, oxidative stress, bacterial toxins, cytokines, and short-chain fatty acids, were analyzed in
Thai obese individuals after being supplemented with a synbiotic preparation containing Lactobacillus
paracasei, Bifidobacterium longum, Bifidobacterium breve, inulin, and fructooligosaccharide. The results
reveal that the supplementation of synbiotics significantly altered the obesity-associated biomarkers
in an appositive way. Further studies are warranted to use synbiotics as an adjuvant therapy for the
management of obesity-related health issues.

Keywords: obesity; synbiotics; Lactobacillus; Bifidobacterium; inulin; fructooligosaccharide

1. Introduction

Obesity is one of the major health issues worldwide, leading to other health issues
such as cardiovascular diseases, diabetes, and hypertension‘ which result in morbid obesity.
A long-term imbalance in energy consumption, an irregular diet, altered gut microbiota,
environmental factors, and genetic makeup are the primary causes of obesity [1]. According
to a WHO report, about 650 million adults are obese, and 1.9 billion are overweight. Of
these, possibly 38 million children (less than five years old) are obese [2].

The intestinal microbiota composition has a critical role in obesity [1]. For example, the
Firmicutes to Bacteroidetes proportion was found to be higher in overweight/obese people
compared to ordinary people. Energy absorption and storage may be associated with the
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balance of Firmicutes in intestinal microbiota [3,4]. The dysbiosis in intestinal microbiota
is associated with cell homeostasis changes and affects the integrity of tight junctions,
resulting in a decline in gut permeability [5]. Dysbiosis also influences inflammation,
insulin resistance, and fat deposition, leading to the development of obesity. It increases
the bacterial toxic load (i.e., lipopolysaccharide) in the host [6].

Probiotic bacteria are live microorganisms that confer a health benefit on the host
when administered in suitable amounts. Recent studies have highlighted the beneficial
effects of probiotics supplementation in hosts with metabolic disorders, cognitive declines,
and cancers via the positive regulation of gut microbiota [1,7–9]. The supplementation
of synbiotics (a mixture of probiotics and prebiotics) may effectively improve intestinal
microbiota composition compared to probiotics or prebiotics supplements [10].

The combination of Lactobacillus and Bifidobacterium, along with prebiotics, could
provide synergic effects to the host. So far, studies on the influence of the supplemen-
tation of synbiotic preparations containing Lactobacillus paracasei, Bifidobacterium longum,
Bifidobacterium breve, inulin, and fructooligosaccharide on cholesterol profiles, cytokines,
markers of leaky gut, antioxidant levels, and short-chain fatty acids (SCFAs) contents in
Thai obese adults have not yet been reported. Thus, we aimed to study the effect of a
synbiotic intervention on the biomarkers of cholesterol, gut permeability, oxidative stress,
bacterial toxins, cytokines, and SCFAs in Thai obese subjects.

2. Materials and Methods
2.1. Study Design and Subjects

The study on the effects of synbiotics on obesity was conducted with randomized,
double-blind placebo-controlled trials of Thai obese adults. The participants of this study
provided their informed consent for participation before they joined the study. The Good
Clinical Practices were followed in the study. The Ethics Committee of Mae Fah Luang
University approved the study protocol (Code: REH-62151).

The inclusion criteria included Thai obese adults (BMI ≥ 25 kg/m2) according to the
Asia-Pacific criteria, aged 18–65 years, who were willing to participate and complete the
study. Subjects with kidney diseases, cardiovascular issues, gouty arthritis, and gastroin-
testinal tract discomforts were excluded from the study.

Randomization was conducted with computer-generated codes using Random Allo-
cation Software version 1.0.0 (Isfahan, Iran) [11]. The researchers and participants were
blinded to the group assignment. Participants were randomized to receive either a synbi-
otic preparation (Lactobacillus paracasei, Bifidobacterium longum, Bifidobacterium breve, inulin,
and fructooligosaccharide) or placebo for 12 week-long supplementations. After 12 weeks
of supplementation, participants were asked to return for follow-up visits. The study
flowchart and enrollment are described in Figure 1.

2.2. Treatment

Aluminum foil sachets containing 5 × 1010 CFU of probiotics (2 × 1010 CFU of
Lactobacillus paracasei, 1 × 1010 CFU of Bifidobacterium longum, 2 × 1010 CFU of Bifidobac-
terium breve) and prebiotics (5 g of inulin and 5 g of fructooligosaccharide) were provided
to the subjects in the synbiotic group. The concentration of Bifidobacterium breve was de-
cided based on the anti-obesity effects of B. breve reported in a randomized, double-blind,
placebo-controlled trial [12]. The combination of synbiotic and the concentration of other
probiotics used in this study were based on our results (unpublished data). The probiotics
were received from Lactomason Co., Ltd., (Gyeongsangnam-do, South Korea), and pre-
biotics were purchased from BENEO-Orafti S.A., (Oreye, Belgium). Those in the placebo
group were provided with 10 g of corn starch. All subjects were instructed to regularly
take the supplementation by dissolving the contents of one sachet in a glass of water
before breakfast.
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Figure 1. The study flowchart and enrollment.

2.3. Assessments
2.3.1. Clinical Data

The subjects’ personal history was assessed, including education, physical activities,
smoking and alcohol drinking habits, and pharmacological treatments.

Demographic characteristics, including age, diabetes, alcohol drinking, and obesity
index, were recorded manually. Body weight, body mass index (BMI), body fat, visceral fat,
basal metabolic rate (BMR), and muscle were measured using an electronic scale (Picooc®,
Model S1 Pro, Beijing, China).

2.3.2. Laboratory Data

Blood, fecal, and urine samples were collected at baseline and the end of the study
(Figure 2). The biochemical analyses including total cholesterol (TC), HDL-cholesterol
(HDL-C), LDL-cholesterol (LDL-C), triglycerides (TG), and fasting blood sugar (FBS) levels
were determined from blood using the automated machine at AMS Clinical Service Center,
Chiang Mai University, Chiang Mai, Thailand. Other biomarkers in the blood such as
high sensitivity C-reactive protein (hs-CRP), immunoglobulin A (IgA), lipopolysaccha-
rides (LPS), zonulin (ZO-1), and inflammatory chemokines/cytokines were determined
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using an ELISA commercial kit (OriGene Technologies, Rockville, MD, USA for hs-CRP,
Elabscience®, Houston, TX, USA for IgA, MyBioSource®, San Diego, CA, USA for LPS
and IDK®, Bensheim, Germany for ZO-1). Plasma total antioxidant capacity (TAC) was
determined by a 2,2′-Azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical
scavenging capacity assay [13,14]. The determination of malondialdehyde (MDA) was
performed with the thiobarbituric acid reactive substances (TBARS) method [15,16]. The
dismutation of superoxide radicals was determined using the assay of superoxide dismu-
tase (SOD) [17], and reduced glutathione (GSH) in the plasma was determined using the
recycling assay of 5,5′-dithiobis (2-nitrobenzoic acid) (DTNB) [18].
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Fecal samples were collected to determine the short-chain fatty acids using high-
performance liquid chromatography (HPLC) according to the following conditions: Shodex
SH1011 as a column, 5 mM sulfuric acid as the mobile phase, with a flow rate of 0.6 mL/min
at 210 nm and 75 ◦C [19,20], and putrefaction using HPLC with the following conditions:
C18 (4.6 mm × 15 cm) as a column, methanol: water (60:40 v/v) as mobile phase, with a
flow rate of 0.5 mL/min at 200 nm [21–23].

Urine samples were used to determine intestinal permeability. The subjects were
given mannitol and lactulose at a ratio of 1:2, dissolved in water. After taking mannitol and
lactulose, subjects were asked to collect urine within 6 h [24]. We measured the total urine
volume from each subject and analyzed the intestinal permeability using a colorimetric
commercial kit (EnzyChrom™, BioAssay, Hayward, CA, USA). Neuroinflammation mark-
ers in the urine, such as quinolinic acid (QA) and 5-hydroxyindoleacetic acid (5-HIAA),
were determined using an ELISA commercial kit (Fivephoton Biochemicals™, San Diego,
CA, USA for QA and Immusmol, Bordeaux, France for 5-HIAA).

2.3.3. Statistical Analyses

Demographics were continuously analyzed using a t-test and discrete data using exact
values. Data were analyzed using the paired t-test of means using STATA version 15.1
(StataCorp, College Station, TX, USA) for Windows licensed to the Faculty of Pharmacy,
Chiang Mai University, Chiang Mai, Thailand. A descriptive analysis of the collected
parameters was expressed as an absolute number and percentage. The continuous variables
were represented as mean ± standard deviation (SD) or standard error of the mean (SEM)
depending on their statistical distribution. The group’s data were calculated using a t-test
and Gaussian regression analysis. The minimum level of statistical significance was set to
p < 0.05 (two-tailed).
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3. Results

A total of 72 subjects completed the study. There were no differences between synbiotic
and placebo groups in terms of the initial measurements of age, body weight, BMI, body
fat, visceral fat, muscle, arm, waist, and hip circumferences, waist/hip ratio, blood urea
nitrogen content, creatinine, aspartate aminotransferase, and alanine aminotransferase,
except in their BMR (Table 1).

Table 1. Basic characteristics of the study subjects.

Parameters
Synbiotic Group Placebo Group p-Value

(N = 36) (N = 36)

Age (years) 54.78 ± 1.92 58.94 ± 1.32 0.078
Body weight, cm 69.09 ± 1.90 68.17 ± 1.63 0.712

Body mass index, kg/m2 28.97 ± 0.77 30.01 ± 0.47 0.248
Body fat, % 33.09 ± 1.18 35.36 ± 0.87 0.125

Visceral fat, % 14.18 ± 0.88 15.36 ± 0.43 0.223
Muscle, % 56.48 ± 3.85 59.19 ± 1.44 0.497
BMR (kcal) 1409.42 ± 31.93 1323.04 ± 23.86 0.033 *

Arm circumference, cm 30.71 ± 0.49 30.62 ± 0.48 0.893
Waist circumference, cm 94.73 ± 1.92 95.79 ± 1.34 0.651
Hip circumference, cm 103.09 ± 1.38 104.33 ± 1.10 0.486

Waist/hip ratio 0.92 ± 0.01 0.92 ± 0.01 0.94
Diabetes, n (%) 7 (19.44%) 13 (36.11%) 0.188

Alcohol drinking, n (%) 6 (16.67%) 4 (11.11%) 0.735
Blood urea nitrogen (mg/dL) 14.89 ± 0.93 16.86 ± 1.84 0.699

Creatinine (mg/dL) 1.09 ± 0.09 1.08 ± 0.10 0.964
Aspartate aminotransferase (IU/L) 25.43 ± 4.62 24.73 ± 2.32 0.744
Alanine aminotransferase (IU/L) 27.59 ± 6.00 23.68 ± 2.97 0.925

* = Significant difference in p-value at 95% confidence interval. The proportion was analyzed using an exact
probability test, and the continuous demographic data were analyzed using a t-test. BMR: basal metabolic rate.

There were no changes in all studied parameters after 12 weeks in the placebo group
compared with baseline values. In the synbiotic group, significant differences were ob-
served after 12 weeks of supplementation in body weight, BMI, body fat, waist circum-
ference, waist/hip ratio, HDL-C, LDL-C, IL-6, IL-10, IL-1β, TNF-α, IgA, LPS, and ZO-1
values compared to the baseline values. No significant changes were observed in visceral
fat, muscle, BMR, arm and hip circumferences, TC, TG, and hsCRP values in the synbiotic
group (Table 2).

The antioxidant systems (TAC, MDA, GSH, total SOD, and Cu, Zn-SOD) of the subjects
were documented. There were no statistically significant changes in the synbiotic and
placebo groups after 12 weeks of supplementation (Table 3). The levels of butyric acid,
propionic acid, acetic acid, and lactic acid were significantly changed after 12 weeks of
synbiotic supplementation, whereas no changes were observed in the placebo group. The
levels of lactulose, QA, the QA/5-HIAA ratio, cresol, and indole were significantly changed
in the synbiotic group, which was not observed in the placebo group after 12 weeks
(Table 3).

The significant changes in the studied parameters between the synbiotic and placebo
groups after 12 weeks were calculated. The body weight, FBS, and cytokines, IgA,
hsCRP, LPS, and QA levels were significantly altered compared to the placebo group
(Tables 4 and 5). There were no notable changes in the rest of the studied parameters
between the synbiotic and placebo groups.
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Table 2. Changes in the studied parameters within groups at different times, expressed as mean ± SE.

Parameters
Synbiotic (N = 36)

p-Value
Placebo (N = 36)

p-Value
Baseline 12 Weeks Baseline 12 Weeks

Body weight, cm 69.09 ± 1.90 67.45 ± 1.85 <0.001 * 68.17 ± 1.63 67.71 ± 1.71 0.067
Body mass index, kg/m2 28.97 ± 0.77 28.58 ± 0.75 0.017 * 30.01 ± 0.47 30.13 ± 0.58 0.662

Body fat, % 33.09 ± 1.18 31.96 ± 1.20 0.043 * 35.36 ± 0.87 36.27 ± 1.22 0.310
Visceral fat, % 14.18 ± 0.88 13.85 ± 0.79 0.162 15.36 ± 0.43 15.56 ± 0.52 0.445

Muscle, % 56.48 ± 3.85 56.08 ± 3.81 0.284 59.19 ± 1.44 59.01 ± 1.42 0.860
BMR (kcal) 1409.42 ± 31.93 1411.27 ± 29.61 0.898 1323.04 ± 23.86 1309.68 ± 24.87 0.102

Arm circumference, cm 30.71 ± 0.49 30.59 ± 0.57 0.808 30.62 ± 0.48 30.51 ± 0.53 0.795
Waist circumference, cm 94.73 ± 1.92 92.76 ± 1.84 0.009 * 95.79 ± 1.34 95.34 ± 1.45 0.648
Hip circumference, cm 103.09 ± 1.38 102.50 ± 1.30 0.419 104.33 ± 1.10 103.84 ± 1.31 0.705

Waist/hip ratio 0.92 ± 0.01 0.90 ± 0.01 0.018 * 0.92 ± 0.01 0.92 ± 0.01 0.961
Total cholesterol (mg/dL) 200.97 ± 8.40 195.50 ± 6.48 0.171 203.30 ± 8.11 199.97 ± 7.67 0.626

Triglyceride (mg/dL) 150.24 ± 16.04 145.97 ± 14.66 0.469 148.64 ± 11.04 149.88 ± 11.20 0.893
HDL-cholesterol (mg/dL) 50.21 ± 2.42 53.10 ± 2.53 0.030 * 50.42 ± 1.47 50.91 ± 2.56 0.813
LDL-cholesterol (mg/dL) 123.93 ± 8.61 112.66 ± 6.62 0.017 * 123.35 ± 7.35 116.48 ± 7.06 0.295

FBS (mg/dL) 111.79 ± 7.44 109.00 ± 6.02 0.373 109.68 ± 6.76 118.18 ± 6.89 0.084
IL-6 (pg/mL) 11.65 ± 1.17 7.24 ± 1.63 0.017 * 11.84 ± 0.49 11.82 ± 1.16 0.116
IL-10 (pg/mL) 1.04 ± 0.19 9.91 ± 2.04 0.018 * 1.56 ± 0.13 9.20 ± 5.00 0.153
IL-1β (pg/mL) 7.79 ± 0.76 5.42 ± 0.80 0.008 * 6.97 ± 0.64 6.29 ± 0.39 0.117

TNF-α (pg/mL) 13.75 ± 2.93 7.59 ± 1.54 0.011 * 9.25 ± 0.90 9.22 ± 0.56 0.679
IgA (ng/mL) 521.02 ± 69.33 636.48 ± 79.23 0.004 * 579.40 ± 54.02 504.73 ± 60.96 0.877
hsCRP (ml/L) 0.017 ± 0.006 0.008 ± 0.002 0.086 0.012 ± 0.001 0.015 ± 0.001 0.078
LPS (pg/mL) 108.99 ± 9.62 55.00 ± 6.09 <0.001 * 93.92 ± 7.87 81.42 ± 6.18 0.054

ZO-1 (ng/mL) 1.37 ± 0.17 0.98 ± 0.18 0.032 * 1.42 ± 0.17 1.41 ± 0.16 0.551

* = Significant difference in p-value at 95% confidence interval. HDL = High-Density Lipoprotein; LDL = Low-Density Lipoprotein;
FBS = Fasting Blood Sugar; IL = Interleukin; TNF-α = Tumor Necrosis Factor alpha; IgA = Immunoglobulin A; hsCRP = High Sensitivity
C-Reactive Protein; LPS = Lipopolysaccharide; ZO = zonulin.

Table 3. Changes in the studied parameters within groups at different times, expressed as mean ± SE.

Parameters
Synbiotic (N = 36)

p-Value
Placebo (N = 36)

p-Value
Baseline 12 Weeks Baseline 12 Weeks

Lactulose 0.16 ± 0.03 0.07 ± 0.02 <0.001 * 0.12 ± 0.03 0.08 ± 0.02 0.135
Lactulose/mannitol ratio 0.20 ± 0.06 0.09 ± 0.01 0.072 0.14 ± 0.02 0.12 ± 0.02 0.315

QA (ng/mL) 23.53 ± 2.42 13.75 ± 1.71 <0.001 * 22.44 ± 1.69 24.25 ± 1.46 0.375
5-HIAA (mg/L) 5.04 ± 1.12 9.61 ± 1.95 0.051 4.00 ± 0.66 4.95 ± 0.93 0.642

QA/5-HIAA Ratio 3.14 ± 1.60 1.04 ± 0.46 0.008 * 5.76 ± 2.23 4.71 ± 1.77 0.756
Cresol (umol/g sample) 0.24 ± 0.03 0.09 ± 0.05 0.017 * 0.31 ± 0.16 0.14 ± 0.05 0.225
Indole (umol/g sample) 0.06 ± 0.01 0.04 ± 0.00 0.035 * 0.11 ± 0.06 0.06 ± 0.02 0.18
Skatole (umol/g sample) 0.07 ± 0.03 0.04 ± 0.00 0.285 0.05 ± 0.03 0.15 ± 0.07 0.285

Butyric acid (mmol/g sample) 38.01 ± 8.59 93.80 ± 18.96 0.002 * 46.40 ± 12.29 80.03 ± 32.27 0.311
Propionic acid (mmol/g sample) 259.16 ± 38.67 624.12 ± 82.82 <0.001 * 209.44 ± 72.32 466.52 ± 178.52 0.124

Acetic acid (mmol/g sample) 202.63 ± 37.70 425.89 ± 50.86 <0.001 * 206.56 ± 61.60 400.27 ± 69.40 0.161
Lactic acid (mmol/g sample) 54.42 ± 17.98 175.81 ± 36.88 0.002 * 92.11 ± 53.12 140.03 ± 57.00 0.866

TAC (µmol/mL) 0.195 ± 0.003 0.200 ± 0.011 0.664 0.180 ± 0.012 0.193 ± 0.008 0.08
MDA (µmol/mL) 0.45 ± 0.06 0.53 ± 0.09 0.301 0.52 ± 0.04 0.45 ± 0.03 0.157

GSH (µg/mL) 44.99 ± 17.46 30.98 ± 10.63 0.075 24.87 ± 6.86 17.29 ± 8.83 0.08
Total SOD (Units/mL enzyme) 56.91 ± 5.52 57.30 ± 6.28 0.854 54.01 ± 11.78 59.29 ± 7.24 0.492

Cu,Zn-SOD (Units/mL enzyme) 16.93 ± 3.13 44.57 ± 17.96 0.345 35.28 ± 7.34 39.49 ± 19.28 0.686

* = Significant difference in p-value at 95% confidence interval. QA = Quinolinic acid; 5-HIAA = 5-Hydroxyindoleacetic acid; TAC = Total
Antioxidant Capacity; MDA = Malondialdehyde; GSH = Glutathione Reduced; SOD = Superoxide Dismutase.

A Gaussian regression analysis of the data suggested that the synbiotic supplemen-
tation for 12 weeks significantly altered the body weight, body fat, muscle content, BMR,
waist circumference, IL-6, IL-1β, TNF-α, LPS, ZO-1, lactulose/mannitol ratio, QA, 5-HIAA,
QA/5-HIAA ratio, and butyric acid. There were no significant changes observed in choles-
terol and antioxidant profiles (Table 6).
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Table 4. Comparison of the changes in studied parameters between groups. Changes represent the
difference between baseline and at the end of the study.

Parameters
Baseline–12 Weeks

p-Value
Synbiotic (N = 36) Placebo (N = 36)

Body weight, cm −1.64 −0.46 0.002 *
Body mass index, kg/m2 −0.39 0.13 0.128

Body fat, % −1.13 0.92 0.068
Visceral fat, % −0.32 0.19 0.242

Muscle, % −0.40 −0.18 0.448
BMR (kcal) 1.85 −13.36 0.483

Arm circumference, cm −0.12 −0.11 0.809
Waist circumference, cm −1.97 −0.45 0.113
Hip circumference, cm −0.59 −0.49 0.51

Waist/hip ratio −0.014 0.001 0.604
Total cholesterol (mg/dL) −5.47 −3.33 0.695

Triglyceride (mg/dL) −4.28 1.24 0.521
HDL-cholesterol (mg/dL) 2.9 0.48 0.066
LDL-cholesterol (mg/dL) −11.28 −6.87 0.599

FBS (mg/dL) −2.79 8.5 0.043 *
IL-6 (pg/mL) −4.41 −0.02 0.010 *
IL-10 (pg/mL) 8.87 7.64 0.142
IL-1β (pg/mL) −2.37 −0.69 0.041 *

TNF-α (pg/mL) −6.16 −0.04 0.005 *
IgA (ng/mL) 115.46 −74.67 0.049 *
hsCRP (ml/L) −0.009 0.003 0.002 *
LPS (pg/mL) −53.99 −12.50 0.002 *

ZO-1 (ng/mL) −0.39 −0.01 0.061
* = Significant difference in p-value at 95% confidence interval. HDL = High-Density Lipoprotein;
LDL = Low-Density Lipoprotein; FBS = Fasting Blood Sugar; IL = Interleukin; TNF-α = Tumor Necrosis Fac-
tor alpha; IgA = Immunoglobulin A; hsCRP = High Sensitivity C-Reactive Protein; LPS = Lipopolysaccharide;
ZO = zonulin.

Table 5. Comparison of the changes in studied parameters between groups. Changes represent the
difference between baseline and at the end of the study.

Parameters
Baseline–12 Weeks

p-Value
Synbiotic (N = 36) Placebo (N = 36)

Lactulose −0.08 −0.04 0.002 *
Lactulose/mannitol ratio −0.11 −0.02 0.508

QA (ng/mL) −9.78 1.8 <0.001 *
5-HIAA (mg/L) 4.58 0.94 0.157

QA/5-HIAA Ratio −2.10 −1.05 0.095
Cresol (umol/g sample) −0.15 −0.16 0.661
Indole (umol/g sample) −0.03 −0.05 0.379
Skatole (umol/g sample) −0.031 0.103 0.121

Butyric acid (mmol/g sample) 55.79 33.64 0.229
Propionic acid (mmol/g sample) 364.96 257.09 0.258

Acetic acid (mmol/g sample) 223.25 193.71 0.47
Lactic acid (mmol/g sample) 121.39 47.92 0.162

TAC (µmol/mL) 0.005 0.013 0.557
MDA (µmol/mL) 0.08 −0.07 0.117

GSH (µg/mL) −14.01 −7.59 0.584
Total SOD (Units/mL enzyme) 0.39 5.28 0.917

Cu,Zn-SOD (Units/mL enzyme) 27.64 4.21 0.251
* = Significant difference in p-value at 95% confidence interval. QA = Quinolinic acid; 5-HIAA = 5-
Hydroxyindoleacetic acid; TAC = Total Antioxidant Capacity; MDA = Malondialdehyde; GSH = Glutathione
Reduced; SOD = Superoxide Dismutase.
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Table 6. Gaussian regression analysis summary at week 12 of supplementation for synbiotic group.

Parameter Coefficient 95% CI p-Value

Body weight, cm −1.76 (−3.17 to −0.34) 0.018 *
Body mass index, kg/m2 0.123 (−0.64 to 0.88) 0.744

Body fat, % −2.55 (−4.74 to −0.37) 0.023 *
Visceral fat, % −0.17 (−0.96 to 0.61) 0.651

Muscle, % −5.13 (−8.82 to −1.44) 0.027 *
BMR (kcal) 57.27 (2.77 to 111.76) 0.040 *

Arm circumference, cm −0.14 (−2.61 to 2.33) 0.909
Waist circumference, cm −2.73 (−5.23 to −0.23) 0.033 *
Hip circumference, cm −4.54 (−10.06 to 0.97) 0.103

Waist/hip ratio −0.02 (−0.05 to 0.01) 0.131
Total cholesterol (mg/dL) −8.01 (−26.91 to 10.90) 0.397

Triglyceride (mg/dL) −0.02 (−23.02 to 22.97) 0.998
HDL-cholesterol (mg/dL) 3.22 (−1.84 to 8.27) 0.207
LDL-cholesterol (mg/dL) −10.57 (−26.42 to 5.28) 0.186

FBS (mg/dL) −2.24 (−16.42 to 11.94) 0.751
IL-6 (pg/mL) −4.50 (−8.78 to −0.23) 0.040 *
IL-10 (pg/mL) 5.18 (−9.96 to 20.32) 0.477
IL-1β (pg/mL) −1.43 (−2.78 to −0.08) 0.039 *

TNF-α (pg/mL) −4.26 (−6.51 to −2.01) 0.001 *
IgA (ng/mL) 117.99 (−55.97 to 291.95) 0.179
hsCRP (ml/L) −0.003 (−0.011 to 0.005) 0.497
LPS (pg/mL) −32.59 (−53.68 to −11.49) 0.004 *

ZO-1 (ng/mL) −0.57 (−1.08 to −0.06) 0.032 *
Lactulose −0.02 (−0.07 to 0.02) 0.319

Lactulose/mannitol ratio −0.12 (−0.20 to −0.04) 0.008 *
QA (ng/mL) −8.22 (−16.04 to −0.40) 0.041 *

5-HIAA (mg/L) 8.59 (0.68 to 16.50) 0.036 *
QA/5-HIAA Ratio −7.15 (−13.69 to −0.61) 0.035 *

Cresol (umol/g sample) 0.09 (−0.30 to 0.48) 0.583
Indole (umol/g sample) −0.004 (−0.054 to 0.046) 0.865
Skatole (umol/g sample) −0.47 (−2.07 to 1.12) 0.165

Butyric acid (mmol/g sample) 59.74 (20.30 to 99.17) 0.009 *
Propionic acid (mmol/g sample) −171.28 (−541.06 to 198.51) 0.335

Acetic acid (mmol/g sample) −111.03 (−324.73 to 102.68) 0.28
Lactic acid (mmol/g sample) 6.73 (−135.27 to 148.73) 0.919

TAC (µmol/mL) −0.03 (−0.09 to 0.04) 0.284
MDA (µmol/mL) 0.43 (−0.36 to 1.22) 0.18

GSH (µg/mL) 7.48 (−6.37 to 21.33) 0.208
Total SOD (Units/mL enzyme) −32.33 (−91.18 to 26.52) 0.179

Cu,Zn-SOD (Units/mL enzyme) −74.39 (−203.46 to 54.67) 0.131
* = Significantly difference in p-value at 95% confidence interval. Compare with the placebo group at
week 12, HDL = High-Density Lipoprotein; LDL = Low-Density Lipoprotein; FBS = Fasting Blood Sugar;
IL = Interleukin; TNF-α = Tumor Necrosis Factor alpha; IgA = Immunoglobulin A; hsCRP = High Sen-
sitivity C-Reactive Protein; LPS = Lipopolysaccharide; ZO = zonulin; QA = Quinolinic acid; 5-HIAA = 5-
Hydroxyindoleacetic acid; TAC = Total Antioxidant Capacity; MDA = Malondialdehyde; GSH = Glutathione
Reduced; SOD = Superoxide Dismutase.

4. Discussion

The synergistic blend of both prebiotics and probiotics reduces plasma fasting in-
sulin [25]. The most-used prebiotics are arabinoxylan and fructans [26]. The synbiotic
supplementation of Bifidobacteria strains along with galactooligosaccharide may improve
intestinal barrier function and possess anti-obesity effects [27].

There is a need for more approaches to aid in weight loss or to control obesity. Supple-
mentation with Lactobacillus plantarum in obese mice reduced the deposition of adipose and
upregulated the expression of lipid oxidative genes compared to control mice [28]. In order
to treat obesity, Lactobacillus species can be used in combination with dietary management.
L. sakei was found to impose anti-obesity effects when used in obese murine models [29,30].
The synbiotic supplements contained L. acidophilus, Bifidobacterium lactis, B. longum and
B. bifidum as well as prebiotic galactooligosaccharide mixture, which increased the abun-
dance of gut microbiome and also improved markers of metabolic syndrome as well as
immune function in obese adults [31–34]. The supplementation of L. gasseri SBT2055-
mediated fermented milk for 12 weeks reduced the weight and the abdominal visceral and
subcutaneous fat mass in obese human subjects [35].
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Treating obesity has been a long-term—but not well-defined—methodology that has
been linked with gut microbial management. Even though there have been numerous
research works carried out on obesity, the clarification needed regarding the treatment of
obesity remains lacking. The present study was performed to inspect the impact of the
supplementation of a synbiotics preparation containing L. paracasei, B. longum, B. breve,
inulin, and fructooligosaccharide on body composition and metabolic biomarkers in Thai
obese subjects.

The supplementation of pro-, pre-, and synbiotics to an organism might alter the secre-
tion of some hormones and neurotransmitters as well as inflammatory factors that inhibit
the avidity towards food, therefore reducing weight gain [36]. Many systemic reviews
and meta-analyses provide evidence about synbiotics intake assisting the lipid profile and
improving dyslipidemia [37]. Synbiotic supplements and foods potentially modulate the
gut microbiota as well as improving the metabolism of lipids, insulin resistance, and liver
enzymes to a greater extent than either pro- or prebiotics alone [38].

A well-known characteristic of probiotics is their involvement in an improved serum
lipid profile through immunomodulatory properties [39]. They also may reduce inflamma-
tory cytokines and Toll-like receptor 4 (TLR-4) activation, leading to a great impact on the
serum lipid profile [40]. Probiotics integrate cholesterol in their cellular membrane [41] and
convert it into coprostanol [42], resulting in a reduction in cholesterol absorption and serum
total cholesterol levels by means of higher bile salt excretion [43,44]. It is a well-known
fact that probiotics supplementation can modulate body weight and BMI if the tested
individuals are treated for a longer duration. In addition to this, previous study suggests
that the outcomes in weight reduction could be effective when prebiotics and probiotics
are used together [45].

Overall findings from animal and human studies revealed the more beneficial func-
tions of synbiotics in weight reduction and the modulation of the gut microbiome [27,46]
compared to prebiotics and probiotics alone [47–49].

Obese individuals showed low-grade inflammation because of the increased produc-
tion of cytokines, C-reactive proteins (CRP), interleukins (IL), tumor necrosis factor (TNF),
and lipopolysaccharides (LPS) [50,51], which in turn resulted in metabolic dysfunction and
obesity-linked disorders [52].

The dietary supplementation of synbiotics prepared using L. gasseri and galactoman-
nan and inulin fibers reduced the weight and anti-inflammatory effects of synbiotic prepa-
rations along with L. rhamnosus (CGMCC 1.3724), L. plantarum, L. paracasei F19, L. acidophilus
and LactisBb12, which together with oligo fructose and inulin showed beneficial effects on
waist and hip circumference and BMI in obese people [53].

The randomized controlled trails in obese and prediabetes subjects showed variable
results such as reduced TC, TG [31,54], and LDL levels [54,55], and the inflammation
markers hs-CRP, TNF, LPS, and MDA were also found to be reduced [55–57]. Hotamis-
ligil [58] and Lubberts [59] demonstrated that obese individuals express more TNF-α
mRNA and protein when compared to lean controls. Thus, the increase in TNF-α in-
duced IL-6 and IL-7 gene expression [60]. So far, the gathered evidence substantiates the
role of peripheral 5-hydroxyindole-3-acetic acid (5-HIAA), the derivative end product of
serotonin (5-HT) that is also involved in the pathogenesis of obesity and abnormal lipid
and glucose metabolism [61]. In addition, 5-HIAA is associated with chronic low-grade
inflammation, which in turn leads to metabolic syndrome. There is a strong association
between serum 5-HIAA and central obesity [61]. However, 5-HT has long been known to
be involved in the control of appetite, energy balance, and weight control [62,63]. Kinoshita
and colleagues proved that 5-HT is responsible for adipocyte differentiation and might
lead to adipogenesis and obesity [64]. Kim and colleagues showed that 5-HIAA is directly
correlated with low-glyceride levels. Furthermore, there is a negative correlation between
HDL cholesterol and 5-HIAA. In addition, an increase in 5-HIAA concentration increases
plasma triglyceride levels, but the HDL cholesterol remains unaltered. Similarly, higher
5-HT concentrations were also detected in the blood of high-fat-diet-fed mice [65]. It is
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a well-known fact that zonulin is the physiological modulator of intestinal permeability
and also a serum biomarker for impaired intestinal permeability [66–68]. The zonulin level
was found to be elevated above the reference value in individuals with morbid obesity. S-
zonulin was partially controlled after a 6-month-long conservative weight loss intervention
and further reduced after bariatric surgery [69].

A meta-analysis by Ramezani Ahmadi and colleagues suggested that, compared to
placebo, supplementation with pro/synbiotics pointedly reduced the serum zonulin level
among selected subjects. Due to the comparison between probiotics and synbiotics, the
finding of a significant level of serum zonulin reduction was only in subjects treated with
probiotics [70]. The role of IL-1β in regulating adipose inflammation and fat-liver cross
talk has been questioned. IL-1β regulates the lipid storage capacity in adipose tissues of
the liver; however, in its absence, the adipose tissue expands, increasing in response to
excess calories [71]. However, it is clear that IL-1β is a major promoter of adipose tissue
inflammation in obese subjects [72].

Our results shows that 12 weeks of synbiotics supplementation significantly reduced
body weight, BMI and body fat, visceral fat, BMR, and arm, waist, and hip circumferences
compared to the placebo group (Table 1) in Thai obese subjects. The same parameters
showed significant reductions in different time periods as well (Table 2). Reductions in IL-6,
IL-1β, TNF-α, LPS, ZO-1, lactulose/mannitol ratio, QA, 5-HIAA, QA/5-HIAA ratio, and
butyric acid levels were observed in the 12-week synbiotics-supplemented group (Table 6).
The results support the notion that the potential use of synbiotics could be a promising
choice for the treatment and/or management of obesity. This study may stimulate interest
in molecular underpinnings beyond these significant results. Moreover, the study shows
that synbiotic involvements in treating obesity could be a hopeful suggestive therapy in
obesity and other related metabolic disorders.

5. Conclusions

The intake of synbiotics for a stipulated period of time had a moderating effect on
body weight, BMI, body fat, visceral fat, BMR, and arm, waist, and hip circumference. The
effects of synbiotic supplementation were proven to greatly reduce the above-mentioned
parameters when administered for prolonged period of time. This evidence suggests
that synbiotic supplementation produces a stronger effect compared to separate prebiotic
and probiotic treatments. Additional anti-obesity effects can be obtained when obese
subjects carry out synbiotic supplementation alongside any physical activity. The present
study demonstrated that 12 weeks of synbiotic supplementation significantly reduced the
physical parameters as well as the inflammation markers IL-6, IL-1β, TNF-α and other
obesity markers including LPS, zonulin, 5-HIAA, and QA in Thai obese subjects. These
obtained results offer a new platform to document other new markers and the effect of
various other synbiotic supplementation combinations in the study of obesity.
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