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Abstract

Background: Molecular simulations are used to provide insight into protein structure and dynamics, and have the
potential to provide important context when predicting the impact of sequence variation on protein function. In
addition to understanding molecular mechanisms and interactions on the atomic scale, translational applications of
those approaches include drug screening, development of novel molecular therapies, and targeted treatment
planning. Supporting the continued development of these applications, we have developed the SNP2SIM workflow
that generates reproducible molecular dynamics and molecular docking simulations for downstream functional
variant analysis. The Python workflow utilizes molecular dynamics software (NAMD (Phillips et al,, J Comput Chem
26(16):1781-802, 2005), VMD (Humphrey et al., J Mol Graph 14(1):33-8, 27-8, 1996)) to generate variant specific
scaffolds for simulated small molecule docking (AutoDock Vina (Trott and Olson, J Comput Chem 31(2):455-61,
2010)).

Results: SNP2SIM is composed of three independent modules that can be used sequentially to generate the
variant scaffolds of missense protein variants from the wildtype protein structure. The workflow first generates the
mutant structure and configuration files required to execute molecular dynamics simulations of solvated protein
variant structures. The resulting trajectories are clustered based on the structural diversity of residues involved in
ligand binding to produce one or more variant scaffolds of the protein structure. Finally, these unique structural
conformations are bound to small molecule ligand libraries to predict variant induced changes to drug binding
relative to the wildtype protein structure.

Conclusions: SNP2SIM provides a platform to apply molecular simulation based functional analysis of sequence
variation in the protein targets of small molecule therapies. In addition to simplifying the simulation of variant
specific drug interactions, the workflow enables large scale computational mutagenesis by controlling the
parameterization of molecular simulations across multiple users or distributed computing infrastructures. This
enables the parallelization of the computationally intensive molecular simulations to be aggregated for
downstream functional analysis, and facilitates comparing various simulation options, such as the specific residues
used to define structural variant clusters. The Python scripts that implement the SNP2SIM workflow are available
(SNP2SIM Repository. https://github.com/mccoymd/SNP2SIM, Accessed 2019 February ), and individual SNP2SIM
modules are available as apps on the Seven Bridges Cancer Genomics Cloud (Lau et al,, Cancer Res 77(21):e3-e6,
2017; Cancer Genomics Cloud [www.cancergenomicscloud.org; Accessed 2018 November]).
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Background

Molecular simulation is a powerful tool used by computa-
tional biologists to analyze the relationship between protein
structure and its functional properties. Ranging from high
throughput drug screening to focused characterization of
protein conformational dynamics, the creative analysis has
several translational applications. Large libraries of drug
candidates can be evaluated to produce novel targeted ther-
apeutics, and insight into specific molecular interactions
between effective drugs and their protein targets aids the
design novel molecules [1, 2]. An advantage of the compu-
tational simulations is the ability to probe how variation in
the protein sequence alters those molecular interactions,
and can be extended to the development of therapies tar-
geted at specific sequence variants [3-6]. In addition to
drug discovery and design, the insight can be further ex-
tended to inform treatment planning when selecting an op-
timal targeted therapeutic strategy [7].

Due to an inherent tradeoff between resolution and
computational requirements, molecular simulations can
be divided between approaches which only simulate a
fraction of the overall molecule and those which expli-
citly consider all atomic interactions occurring within a
solvated system. Coarse grained methods which do not
explicitly consider the internal interactions occurring
within the protein backbone are used to address the
enormous search space that must be sampled when pre-
dicting how two molecules interact [8]. For example,
predicting how well a small molecule ligand will bind to
a target protein depends on the sum total of all the indi-
vidual atomic interactions. Depending on the chemical
nature of the ligand, the conformational diversity can be
quite large due to rotation around individual bonds and
limited steric constraints of a single ligand molecule.
Furthermore, the protein surface represents a large area
of potential interactions and exponentially increases the
degrees of freedom which must be explored when identi-
fying an optimally bound structure. In order to simplify
the search for optimized protein:ligand conformations and
to simulate high throughput binding of large libraries of
low molecular weight ligands, coarse grained docking
methods will typically only model the flexibility of the lig-
and and a small number of interacting protein residues
within a defined area of a rigid protein structure [8].

While the liberties taken by these types of simulations
allow for a greater throughput, they fail to account for
internal protein dynamics which may play a significant
role in the interacting complex. All-atom molecular dy-
namics (MD) simulations explicitly account for atomic
interactions occurring within a molecular system and
provide a way to understand the overall conformational
flexibility and structural dynamics [9]. However, even sys-
tems consisting of a small, solvated protein contain tens to
hundreds of thousands of atoms and each simulation step
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requires a summation of all the forces acting on each.
Even on high performance computational infrastruc-
tures, simulation runs can easily last weeks to generate
usable results. The increased computing cost is offset
by its unique insight and characterization of function-
ally relevant protein dynamics.

Both approaches find utility in specific applications,
and their individual strengths are leveraged to under-
stand the impact on protein sequence variation on small
molecule binding. Upon mutation of a residue, the change
in the amino acid side chain has the potential to alter the
functional interactions with a small molecule. If the
change occurs within the defined search space of a coarse
grained binding simulation, the new interactions can be
simulated directly. Typically, the structures used for bind-
ing simulations are derived from x-ray crystallography,
but simply swapping out amino acid side chains in the
intersecting residues may not fully account for the struc-
tural differences of the protein variant. Since the protein
backbone is treated as a rigid scaffold, the predicted bind-
ing characteristics do not account for those subtle changes
in the backbone geometry and could have a large influ-
ence on the results. Furthermore, these methods have
nothing to offer if the variation occurs outside of the de-
fined search space, especially those amino acids which are
buried within the folded protein structure. MD simula-
tions can address this limitation by comprehensively sam-
pling the conformational landscape of a protein variant to
generate characteristic scaffolds for downstream small
molecule docking.

Since a protein variant can alter the functional inter-
action with therapeutic molecules, predicting how small
molecules will bind to protein variants has a significant
application in personalized medicine. Not only can
simulation results be used in the development of tar-
geted therapies, it could also be informative in the selec-
tion of second line of therapy once drug resistance has
emerged. As the application of molecular profiling and
sequence analysis continues to gain a foothold in clinical
decision making, a well-defined, user friendly simulation
workflow and methodology will continue to be an im-
portant tool for translational computational biology. To
that end, we present SNP2SIM (Fig. 1), a scalable work-
flow for simulating the impact of protein sequence vari-
ation on binding to small molecule ligands.

Implementation

At its core, SNP2SIM is a modular set of simulation and
analysis tools wrapped in a command line Python script.
There are many molecular dynamics simulations packages
available, and the backend of the SNP2SIM workflow is
designed to easily incorporate additional simulation pack-
ages in the future to customize the workflow and better ac-
commodate user preferences. This initial implementation
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Fig. 1 The SNP2SIM workflow contains 3 functional modules (shown in orange) that execute all atom molecular dynamics of protein structure
variants using NAMD and VMD (varMDsim), clusters the resulting trajectories into a set of structures that represent the conformational dynamics
of the binding interface (varScaffold), and predicts the binding interactions of low molecular weight ligands using AutoDock Vina (drugSearch).
The input for each module (green) control their configuration, providing a way to standardize simulation parameters across parallel
computational infrastructures. The resulting structural datasets (blue) can be used to analyze protein:ligand interactions and enables large scale
investigations into the functional consequences of protein sequence variation
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is built around Nanoscale Molecular Dynamics (NAMD)
[10] and Visual Molecular Dynamics (VMD) [11] due to
their scalability, interoperability, and implementation
across a wide range of high performance computing in-
frastructures and operating systems. VMD is also used
to process the results of the NAMD simulations and
cluster the resulting trajectories according to structural
variation in the protein:ligand binding interface. A rep-
resentative conformation from each cluster is chosen to
create a set of variant specific protein structures that
reflect the subtle changes to its conformational diver-
sity. AutoDock Vina [12] is used to perform the small
molecule docking, and was selected due to its wide-
spread use, ease of implementation within the work-
flow, and computational performance.

Starting with only a PDB formatted file of the pro-
tein structure, three independently run functional
modules perform the molecular dynamics simulation
of a protein variant, cluster of the resulting trajectories
based on conformational variation in user defined
binding residues, and dock small molecule ligands into
each variant specific structural scaffolds. The work-
flow is designed to be used as a tool to aid large scale
computational mutagenesis studies, enabling uniform
application of simulation and analysis parameters.
SNP2SIM minimizes the simulation options exposed
to the user to control the generation of tool specific
preprocessing and analysis scripts, define the paramet-
rization options used in the configuration files, and
output simulation results into a predefined file
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structure. The standardized file structure and naming
conventions provide the option to implement the
modules across independent computational systems
and easily aggregate the results for downstream
analysis.

The command line implementation of SNP2SIM is
available for download from a GitHub repository [13],
and the varMDsim, varScaffold, and drugSearch modules
are also available as apps on the Seven Bridges Cancer
Genomics Cloud [14, 15]. Due to the nature of MD sim-
ulations, the computational requirements of the work-
flow are dependent on the overall size of the protein
structure and can grow to become quite significant, even
on high performance infrastructures.

varMDsim

With the minimal input of a PDB formatted protein struc-
ture file and simulation time in nanoseconds, the varMD-
sim module will generate a solvated, ionized water box
around a mutated protein structure, create the configur-
ation files for the all-atom, explicit solvent simulation with
periodic boundary conditions, and compile the results for
downstream analysis. Utilizing the VMD Mutator, Solvate,
and Autoionize plugins, the workflow will automatically
mutate the input structure prior to solvation. The
CHARMMS36 force field [16] is used to parameterize the
protein structure, and water molecules use the TIP3P
water model. The simulation configuration files are hard-
coded into the workflow, standardizing the resulting simu-
lation for reuse and promoting the reproducibility of the
computational simulations.

The run length of simulations is highly dependent on
the nature of the protein under study, and can become
significant for highly dynamic or large structures. How-
ever, since the aim is to capture subtle, variant induced
changes to the conformational dynamics of the ligand
binding interface, the structural diversity should be suffi-
ciently sampled after hundreds of nanoseconds. Since
SNP2SIM is configured to run the version of NAMD
(including those utilize GPUs) installed on the user sys-
tem, the varMDsim module can first be applied to
benchmark performance.

varScaffold

The simulation trajectories are analyzed using the varS-
caffold module to produce characteristic structures of
protein variants. More than merely clustering the collec-
tion of protein structures from the MD simulations,
varScaffold first aligns the entire set to a common refer-
ence frame (typically over the entire protein structure) be-
fore measuring the root mean square deviation (RMSD)
in the backbone of a subset of amino acids involved in
ligand binding. Using the VMD “measure cluster” com-
mand, where a user supplied RMSD threshold is used to
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identify the 5 most populated configurations of the bind-
ing residue geometry. If one of the clusters is assigned a
significant portion of the overall population of simulated
results, a representative structure is chosen as a variant
scaffold for downstream ligand binding.

The varScaffold module will accept multiple PDB or
DCD formatted trajectory files generated through paral-
lel execution of the varMDsim module. Since the clus-
ters are determined using a relatively small number of
residues, the number of populated clusters is very sensi-
tive to the RMSD threshold. The workflow enables the
iterative application of clustering parameters, allowing
the user to specify which binding residues are used to
define the binding interface geometry and determine the
optimal RMSD cutoff before applying the module to the
entire variant population.

drugSearch

The drugSearch module uses AutoDock Vina [12] to
bind a library of low molecular weight molecules into
the variant scaffolds. Unlike the previous modules which
are largely automated, the configuration of the drug-
Search module requires the user to define the ligand
binding site on a reference structure. This requires the
user to supply a PDB formatted protein structure (typic-
ally the structure used to initiate the varMDsim mod-
ule), and an associated parameter file that defines the
coordinates and dimensions of the search space. Add-
itionally, the user can specify a set of residues within
that search space model with flexible sidechains. These
search parameters can be determined using the Auto-
DockTools software package, which accompanies the
AutoDock Vina distribution.

The drugSearch module streamlines the process of lig-
and screening by aligning the individual variant scaffolds
to the reference coordinates, generates the AutoDock
Vina structural input and associated configuration files,
and sequentially predicts the binding interactions and
energies for individual ligands in the specified drug
library. Several large libraries of ligands from The Na-
tional Cancer Institute Developmental Therapeutics
Program (Diversity Set 5, Mechanistic Set 3, and Natural
Products Set 4) are included in the SNP2SIM repository,
and additional libraries can be easily incorporated. The
drugSearch module outputs the coordinates and binding
energies for the top 9 high affinity poses for each small
molecule.

Results

The immunomodulatory protein programmed death lig-
and 1 (PD-L1) was used to demonstrate a typical appli-
cation of the SNP2SIM workflow to drug development
in immunotherapy. In some cancers, overexpression of
PD-L1 leads to inactivation of the immune cells that
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attack the tumor, leading to the development of small
molecule inhibitors that selectively inhibit PD-L1 inter-
actions [17-20]. To understand how these molecules
may differentially bind to variants of PD-L1, known mu-
tations in the binding domain were processed through
the SNP2SIM workflow. The initial starting structure
used the Ig-like V-type domain from PDB: 4718, and 5,
100 ns simulations were generated for a set of protein
variant found in common experimental cell lines, as
well as those most commonly occurring across all can-
cer types (L53P, V68 L, L94 M, G95R, A97V, M115T)
[21]. Variant trajectories were aligned using the entire
domain backbone and clusters were defined using a 0.7
Angstrom RMSD cluster threshold for the backbone
atoms in residues interacting with low molecular
weight inhibitors in PDB crystal structures [17-20]
(Residues 19, 20 54, 56, 66, 68, 115, 116, 117, 121, 122,
123, 124, 125). These same interacting residues were also
modeled with flexible side chain torsions. The SNP2SIM
workflow was run using the Seven Bridges Cancer Gen-
omics Cloud infrastructure [14, 15], and the files needed
to run this example are provided in the SNP2SIM code
repository [13].

As demonstrated through the PD-L1 case study, the
SNP2SIM workflow enables the efficient parallelization
of the computationally intensive molecular dynamics
simulations and streamlines the generation of
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variant specific protein structure scaffolds for ligand
binding. The MD simulations were parallelized
across 5 independent runs, and integrated using the
varScaffold module. The resulting structural clusters
(Fig. 2) show that certain variants induce more conform-
ational flexibility than others. The wildtype PD-L1 struc-
ture had two clusters populated by at least 10% of the
simulated trajectory structures. Depending on the variant,
the number of structural clusters that lead to binding scaf-
folds decreased to one (94 M, and 97V), increased to
three (95R), or stayed the same (53P, 68 L, and 115 T), il-
lustrating the differential impact of sequence variation on
the overall conformational flexibility.

The representative structures can be analyzed to gain
insight into how they variant structures relate to each
other. When aligned over the protein backbone from the
initiating experimental structure, the range of variant
induced conformational flexibility can be seen in the
relative positions of the PD-L1 ligand binding residues,
and structural clustering using multiple protein structure
alignment [22] reveal how the most populated variant
structures (95R-1, 97 V-1, and 115 T-1) are structurally
divergent from the most populated wildtype conform-
ation (Fig. 3). The differences in flexibility translate to
changes in the predicted binding affinity to an interact-
ing ligand, and can be used to predict if a given drug will
be more or less likely to bind to a protein variant.
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PD-L1 Variant Structural Clustering
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Fig. 2 The breakdown of the results from the varScaffold module of the SNP2SIM workflow show the variation induced changes to the
organization of the PD-L1 binding residues in the simulated structures. The clusters are ranked by the total number of MD conformations that fall
within the user supplied RMSD threshold, and the remaining structures that are not assigned to the top 5 clusters are given the “Unclustered”
designation. A representative structure from each cluster that contains at least 10% of the total structures derived from the simulated trajectories
are used to create a representative scaffold for drug binding
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Fig. 3 a. The multiple structure alignment of scaffolds generated for PD-L1 variants shows the divergent impact of the amino acid substitution
on the protein structure. The variants are annotated with the rank (1, 2, or 3) that corresponds to the relative proportion of the MD structures
that occupy that structure. b When the representative scaffolds are aligned to the initial crystal structure (grey), the conformational changes of

the PD-L1 binding residues show the divergence of the variant structural scaffolds from those derived from the wildtype simulations (blue)

An initial indication of the potential of a variant to dis-
rupt binding can be determined by comparing the pre-
dicted binding affinity of the variant structure to the
affinity the wildtype [7]. The results from the drugSearch
module were used to generate the plots of predicted
variant drug resistance in Fig. 4. The results for only the
most populated wildtype structure are shown, but the
comparison of the variant scaffolds to the other wild-
type scaffold showed a similar pattern. The results
show that the most populated variant clusters (Cluster
1) can be more disruptive to binding than others, for
example the 115 T and 95R variants both seem to dis-
rupt binding to all the ligands. Additionally, different
structural clusters for the same mutation can show
divergent behavior, the most prominent example being
the difference between Cluster 1 and Cluster 3 for
the 97 V variant.

Discussion

The growing prevalence of genomic testing is reveal-
ing an enormous amount of rare variants with un-
known functional significance [23], underscoring the
need for predictive computational analysis to deter-
mine their biological impact. This is especially true for
variants which occur in proteins where the effective-
ness of targeted therapeutic strategies may be dis-
rupted. For example, missense mutations that emerge
in response to evolutionary pressures in a growing
tumor to disrupt binding of targeted inhibitor

molecules [24]. SNP2SIM enables the profiling of mul-
tiple approved inhibitors to inform the selection or de-
sign of an optimal therapy that maintains a positive
clinical response [7].

By simulating the variant specific contributions to the
overall protein conformational dynamics and ligand
binding, the unique impact of a variant can be quantified
even when the mutated residues do not occur at the
interaction interface. This offers an advantage over
using the crystal structure as the basis for small mol-
ecule docking simulations, instead providing a set of
structures that is specific to the impact of the given
variant. This is significant, as MD can capture conform-
ational states not represented in crystal structures [25].
Even for the wildtype structure, two populated confor-
mations were identified which show slightly modified
geometries of the protein backbone found in the crystal
structure.

Conclusions

The SNP2SIM workflow represents a higher reso-
lution approach to in silico ligand binding. Instead of
using a single structure derived from crystallography
experiments, a set of variant specific scaffolds are
used to predict the binging affinity to small molecule
ligands. The additional information on protein dy-
namics will ultimately produce more robust analysis
and improve predictive models used for downstream
drug development, design, and utilization. While the
current iteration of SNP2SIM only manages the
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execution of the simulation workflow, predicative
models can be built that integrate the data on the
population (Fig. 2), structural divergence (Fig. 3), and
binding interactions (Fig. 4).

The utility of a predictive, simulation based model,
and the insight it can provide to understanding the
functional changes of protein sequence variants, is
rate-limited by computational costs and scale of po-
tential variation. PD-L1 was chosen because it pre-
sented an optimal development case, where the size
and structural stability helped to minimize the com-
putational time required by the MD simulations.
When simulated larger domains, such as folds that
result in the ATP binding pocket in protein kinases,
the computational requirements to generate relevant
simulation timescales can grow to become prohibitive.
These barriers are being overcome through access to
cheap cloud computing and the development of re-
producible workflows that can integrate standardized

results from multiple research groups. And while a
lot has been done to lower the barrier for novice
users to access these tools through widely available
infrastructure such as the NCI cloud pilots, creating
an easy-to-use simulation and analysis workflow opens
the doors to many researchers who would otherwise not
have access. SNP2SIM ensures a uniform generation
of input files, application of simulation parameters,
and quantification of the results, and enables the par-
allel implementation of molecular simulations across
hardware infrastructure.

Availability and requirements
Project name: SNP2SIM.

Project home page: https://github.com/mccoymd/
SNP2SIM

Operating system: Linux.

Programming language: Python.
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Other requirements: Nanoscale Molecular Dynamics
(NAMD), Visual Molecular Dynamics (VMD), AutoDock
Vina, AutoDock Tools.

License: FreeBSD.

Any restrictions to use by non-academics: Yes, subject
to license and usage agreements for simulation software
packages.

Abbreviations

MD: Molecular Dynamics; NAMD: Nanoscale Molecular Dynamics; PD-
L1: Programmed death ligand 1; RMSD: Root mean square deviation;
VMD: Visual Molecular Dynamics
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