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Abstract: This research proposes a damage identification approach for storage tanks that is based on
adding virtual masses. First, the frequency response function of a structure with additional virtual
masses is deduced based on the Virtual Distortion Method (VDM). Subsequently, a Finite Element
(FE) model of a storage tank is established to verify the proposed method; the relation between
the added virtual masses and the sensitivity of the virtual structure is analyzed to determine the
optimal mass and the corresponding frequency with the highest sensitivity with respect to potential
damages. Thereupon, the damage can be localized and quantified by comparing the damage factors
of substructures. Finally, an experimental study is conducted on a storage tank. The results confirm
that the proposed method is feasible and practical, and that it can be applied for damage identification
of storage tanks.
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1. Introduction

With recent advances in structure health monitoring [1–5] and damage detection [6–10], new
technologies and methods has been proposed and developed. With the development of petrochemical
industry and the implementation of the National Petroleum Strategic Reserve Plan in China, more and
more tanks will be in construction and service. However, once accidents happen to these tanks, they
might result in loss of life and property. Therefore, the problem of monitoring of the tanks that are
in service has attracted more and more attention. Aiming at this problem, this paper proposes and
verifies a practical and accurate method for the damage identification of storage tanks.

At present, the detection methods applicable to monitoring of tanks mainly include X-ray
detection [11], acoustic emission [12–14], ultrasonic detection [15–18], magnetic flux leakage
detection [19,20], eddy current [21], etc. The advantage of these nondestructive detection methods [22]
is that they do not depend on the finite element model [23] of the structure; however, they cannot
quantitatively evaluate the degree of damage. Some of them are also time-consuming and costly
because of the need to empty the storage tanks prior to damage identification.

In recent years, damage identification techniques based on vibration testing [24,25] have been
widely developed and applied; it is very important in such approaches to select a suitable damage
index [26]. These methods can identify the damage before it is visible [27,28], so that the structure
can be repaired before the damage becomes severe. Structural modes are characteristic functions of
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physical parameters of structures [29], so that changes of physical parameters inevitably lead to changes
of structural modes [30]. The modes are thus widely used in structural damage identification [31].
Methods that are based on modal analysis and frequency response are widely used in damage
identification of civil engineering structures like bridges or cable structures, and their feasibility in
such cases has been validated in practice. However, actual storage tanks are cylindrical and usually
circumferentially symmetrical, so that various similar damages at different locations (at the same
height) may result in exactly the same modal change. Such problems increase the difficulty of damage
identification of tank structures and limit the scope of application of the modal-based methods.

Recently, the method of additional masses, based on structural modes and frequencies, has been
applied in damage identification. Kołakowski et al. [32] use the Virtual Distortion Method (VDM)
to identify structural damage both in static and in dynamic analysis, and the results are verified by
experiments and numerical simulations. Kołakowski et al. [33] demonstrate the capability of VDM in
linear and nonlinear analysis and proves it to be an efficient reanalysis tool in various applications.
Dackermann et al. [34] add physical masses to a two-story framed structure to stimulate frequency
changes due to structure damage. Based on this methodology, Suwala et al. [35] present a model-free
method for off-line identification of structural mass modifications and verify it experimentally.
Lu et al. [36] add masses to various beam structures and analyze their influence on the process of
structural damage identification; it is concluded that the value, number, and position of additional
masses all have significant effect on the accuracy of damage identification. Adding masses to a
structure can greatly increase the quantity of modal information and its sensitivity to damage [37], but
it is usually difficult and inconvenient to add real masses to structures.

In 2018, Hou et al. [38] add virtual masses to a plane frame structure by the VDM, and the
effectiveness of the method is validated by numerical simulation and in experiment. In this paper,
the idea of using additional masses to increase the amount and sensitivity of the test data is used to
improve the accuracy of damage identification of tank structures. Furthermore, when combined with
the basic idea of the VDM, the feasibility of the method is improved by employing virtual masses
instead of actual physical masses. Based on the VDM, only one set of excitations and the corresponding
accelerations are measured to construct numerically the frequency response of the structure with
added virtual masses. In practical engineering applications, it avoids the significant difficulties of
adding physical masses and reduces the difficulty of practical operation.

Firstly, this paper introduces how the VDM is applied to add virtual masses. Subsequently, the
damage location is preliminarily estimated based on the obtained modal information of substructures
with the additional virtual masses. Furthermore, the damages of the substructures with additional
virtual masses are quantified based on the response sensitivity, and finally the effectiveness of the
method is verified through the tank model.

2. Damage Identification of Storage Tanks Using Additional Virtual Masses

2.1. Adding Virtual Masses

Based on the basic idea of the VDM [18,22], the frequency response of the structure after adding
the virtual mass m can be numerically constructed using a set of excitations and the corresponding
acceleration responses. The added mass is called virtual, because the process is purely numerical and
it involves no physical masses. The formula is as follows:

Hpp(ω, m) =
A(ω)

F(ω) + mA(ω)
(1)

where Hpp(ω, m) represents the acceleration frequency response after adding the virtual mass m to the
direction of the degree of freedom p. F(ω) and A(ω) represent the spectra of the measured excitation
forces and the accelerations in the direction of the degree of freedom p, respectively. The mass m is
the additional virtual mass. Adding a virtual mass affects the natural frequencies of the structure
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and their sensitivity with respect to damage. Specific values of the added masses are selected to
maximize these sensitivities, and the resulting modified, sensitive natural frequencies are used for
damage identification.

2.2. Preliminary Localization of Damage

General storage tanks are often cylindrical with the wall thickness depending on the height only
(constant in the circumferential direction). Based on this structural characteristic, the location and
degree of damage can be preliminarily estimated by analyzing the frequencies of the structure with a
mass sequentially added in consecutive points of the circumferential direction.

An area of storage tanks is selected to be identified; it can be either the entire tank or a local
area. The region is divided into n × l substructures, which are denoted by SV,H (Figure 1). The
subscript V represents the index in the vertical direction and the subscript H represents the index in
the circumferential/horizontal direction, where V = 1, 2, . . . n, H = 1, 2, . . . l. The same virtual mass
mV is sequentially added to each substructure in a loop and the obtained (virtual) new structure is
denoted by GV,H(µ, m). The first natural frequency with a high sensitivity is expressed by ω̃V,H(mV).
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Figure 1. Schematic sketch of substructures.

If there is no damage in the structure, then the dynamic characteristics of all the substructures
GV,H(µ, m) are the same when the height V is fixed, and so also ω̃V,H(mV) does not depend on H.
Therefore, by inspecting the frequency ω̃V,H(mV) in the circumferential direction H, the location and
the extent of the damage can be preliminarily determined.

Along the direction of height (indexed with the subscript V), the frequency ω̃V,H(mV) varies
even without damage, because the distance between the substructures and the boundaries (as well
as the wall thickness) are different. In order to facilitate the comparison of the frequencies, they are
first normalized with respect to the maximum frequency at each height V. The damage identification
factor DV,H is introduced in Equation (2), where ω̃Vmax is the maximum frequency in the row V.
By assessing the values of DV,H , the damage of each substructure in the considered region can be
qualitatively estimated.

DV,H = 1− ω̃V,H

ω̃Vmax
(2)

ω̃Vmax = max(ω̃V,1, ω̃V,2, . . . , ω̃V,l) (3)

2.3. Damage Identification Based on Sensitivity

If the above method is used to determine whether there is damage in the tank, the damage extent
can be further quantitatively identified by employing a finite element model.
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The natural frequencies of the virtual structures that were obtained in the previous section are
called experimental frequencies, and the counterpart frequencies of the finite element model of the
tank with added masses are called numerical frequencies. The total square error between the numerical
and the experimental frequencies is taken as the objective function to be minimized by optimizing the
substructure parameters, so that the damage is quantified in this way. The objective function T(µ) is
defined as in Equation (4). In order to express it conveniently, the analyzed natural frequencies of all
the substructures are uniformly indexed by a common single index i (instead of two separate indices V
and H). The Gauss–Newton method is adopted as the optimization method.

T(µ, m) =
1
2

n

∑
i=1

(∆ωi(µ, m))2 (4)

The relative error ∆ωi(µ, m) between the numerical natural frequency ωi(µ, m) and the
experimental natural frequency ωA,i(m) of the i-th substructure with the added virtual mass m is
expressed as in Equation (5). The damage factor µ is the stiffness reduction ratio of the substructure
before and after the damage, and its maximum is equal to 1.

∆ωi(µ, m) =
ωA,i(m)−ωi(µ, m)

ωA,i(m)
(5)

The first derivative and the second order derivative of T(µ) can be obtained:

∇T(µ) = −PT(µ)∆ω(µ, m) (6)

∇2T(µ) ≈ PT(µ)P(µ) (7)

where ∆ω(µ, m) is the vector that collects the relative errors of all substructures, and P is the Jacobi
matrix of ∆ω(µ, m) with respect to µ:

µ = [µ1, µ2, . . . , µn]
T

∆ω = [∆ω1, ∆ω2, . . . , ∆ωn]
T

P =
[
PT

1 , PT
2 , . . . , PT

n
]

PT
i =

[
∂ωi(µ1)

∂µ1
, ∂ωi(µ2)

∂µ2
, . . . , ∂ωi(µn)

∂µn

]T

(8)

As in the Newton method, the Taylor expansion of ∇T(µ) is performed at µ0 up to the second
term, while the higher-order terms are neglected:

∇T(µ) ≈ ∇T(µ0) +∇2T(µ0)(µ− µ0) (9)

To obtain the minimum value of T(µ), the first derivative of T(µ), i.e., ∇T(µ) is supposed to be
zero, which yields the following update formula that should lead towards the extreme point of T(µ):

µ = µ0 −
(
∇2T(µ0)

)−1
∇T(µ0) (10)

Equations (6) and (7) are substituted into Equation (10) to obtain Equation (11).

µ = µ0 + P+∆h(µ, m) (11)

The matrix P+ represents the generalized inverse matrix of P, which can be obtained by the
singular value decomposition (SVD). The damage factor µ can be approximated by Equation (11).
Subsequently, the obtained µ is taken as the initial value of the next iteration and a new sensitivity



Sensors 2019, 19, 220 5 of 17

matrix P is obtained by using the new structural parameters. The above steps are repeated until the
iterations converge.

3. Experiments of Tanks

3.1. Models of the Experiment

The model in the experiment is a small cylindrical storage tank without a cap, as shown in Figure 2.
For the tank model, the diameter of the tank wall is 300 mm. The height is 400 mm and the thickness
of the side wall is 2 mm. The elastic modulus of steel structure of the tank is assumed to be 206 GPa
and the density is 7.85 × 10−3 g/mm3. The tank wall is welded to a rectangular steel plate and the
size of the bottom plate is 370 mm × 370 mm with a thickness of 8 mm. The tank model is bolted to
the optical test platform, and a counterweight block is placed at each corner of the tank bottom plate in
order to ensure full contact between the tank bottom and the test platform.

Sensors 2019, 19, x FOR PEER REVIEW 5 of 16 

 

of the side wall is 2 mm. The elastic modulus of steel structure of the tank is assumed to be 206 GPa 
and the density is 7.85 × 10−3 g/mm3. The tank wall is welded to a rectangular steel plate and the size 
of the bottom plate is 370 mm × 370 mm with a thickness of 8 mm. The tank model is bolted to the 
optical test platform, and a counterweight block is placed at each corner of the tank bottom plate in 
order to ensure full contact between the tank bottom and the test platform. 

 
Figure 2. The damage area to be identified. 

In this experiment, a force hammer is used to exert the excitation load. The force hammer is 
produced by PCB Company (New York City, NY, USA) and it is shown in Figure 3a. It is equipped 
with a force sensor that is capable of measuring the excitation force [39]. In order to avoid repeated 
rebound excitations, a hard rubber hammer head is selected in this experiment, so that a smooth and 
gentle exciting force can be obtained. Acceleration response acquisition sensor is a single-axis 
accelerometer that is produced by PBC Company (USA) and is shown in Figure 3b. It is difficult to 
connect the accelerometer with the tank model because the side wall of the tank structure is a smooth 
circular steel plate and the liquid needs to be stored in it. In this experiment, a high-strength magnet 
was installed at the bottom of the sensor and fixed with screws, so that the sensor can be easily and 
quickly installed and removed. The total weight of the sensor and magnet is 27.7 g. 

  
(a) Modal force hammer (b) Acceleration sensor 

  
(c) PXI-1045 chassis (d) PXI-4472 module 

Figure 3. Instruments. 

The signal acquisition equipment is the PXI-1045 chassis and the dynamic signal acquisition 
module NIPXI-4472 produced by National Instrument (NI), as shown, respectively, in Figure 3c,d. 

Figure 2. The damage area to be identified.

In this experiment, a force hammer is used to exert the excitation load. The force hammer is
produced by PCB Company (New York City, NY, USA) and it is shown in Figure 3a. It is equipped with
a force sensor that is capable of measuring the excitation force [39]. In order to avoid repeated rebound
excitations, a hard rubber hammer head is selected in this experiment, so that a smooth and gentle
exciting force can be obtained. Acceleration response acquisition sensor is a single-axis accelerometer
that is produced by PBC Company (USA) and is shown in Figure 3b. It is difficult to connect the
accelerometer with the tank model because the side wall of the tank structure is a smooth circular steel
plate and the liquid needs to be stored in it. In this experiment, a high-strength magnet was installed
at the bottom of the sensor and fixed with screws, so that the sensor can be easily and quickly installed
and removed. The total weight of the sensor and magnet is 27.7 g.



Sensors 2019, 19, 220 6 of 17

Sensors 2019, 19, x FOR PEER REVIEW 5 of 16 

 

of the side wall is 2 mm. The elastic modulus of steel structure of the tank is assumed to be 206 GPa 
and the density is 7.85 × 10−3 g/mm3. The tank wall is welded to a rectangular steel plate and the size 
of the bottom plate is 370 mm × 370 mm with a thickness of 8 mm. The tank model is bolted to the 
optical test platform, and a counterweight block is placed at each corner of the tank bottom plate in 
order to ensure full contact between the tank bottom and the test platform. 

 
Figure 2. The damage area to be identified. 

In this experiment, a force hammer is used to exert the excitation load. The force hammer is 
produced by PCB Company (New York City, NY, USA) and it is shown in Figure 3a. It is equipped 
with a force sensor that is capable of measuring the excitation force [39]. In order to avoid repeated 
rebound excitations, a hard rubber hammer head is selected in this experiment, so that a smooth and 
gentle exciting force can be obtained. Acceleration response acquisition sensor is a single-axis 
accelerometer that is produced by PBC Company (USA) and is shown in Figure 3b. It is difficult to 
connect the accelerometer with the tank model because the side wall of the tank structure is a smooth 
circular steel plate and the liquid needs to be stored in it. In this experiment, a high-strength magnet 
was installed at the bottom of the sensor and fixed with screws, so that the sensor can be easily and 
quickly installed and removed. The total weight of the sensor and magnet is 27.7 g. 

  
(a) Modal force hammer (b) Acceleration sensor 

  
(c) PXI-1045 chassis (d) PXI-4472 module 

Figure 3. Instruments. 

The signal acquisition equipment is the PXI-1045 chassis and the dynamic signal acquisition 
module NIPXI-4472 produced by National Instrument (NI), as shown, respectively, in Figure 3c,d. 

Figure 3. Instruments.

The signal acquisition equipment is the PXI-1045 chassis and the dynamic signal acquisition
module NIPXI-4472 produced by National Instrument (NI), as shown, respectively, in Figure 3c,d. The
PXI-1045 supports the LabVIEW software, which is used to collect data according to the acquisition
needs. The PXI-4472 acquisition module has eight channels, which is enough to collect the exciting
force signal of the hammer and the acceleration response signal of the acceleration sensor.

3.2. Numerical Finite Element Model

3.2.1. Foundation of the Model

The finite element model of storage tank is established in ANSYS and the shell63 element is
adopted for both the tank wall and the bottom plate. In grid generation, the tank wall is divided
into 280 elements, and the tank bottom is divided into 108 elements, totaling 388 elements. Each
substructure of the tank wall is composed of four elements.

A vertical three-dimensional spring element combin14 was added under each node of the tank
floor to simulate the effect of the test platform on the upper structure of the tank, and a horizontal
toroidal three-dimensional spring element combin14 was set to simulate the effect of bolts and
counterweight blocks on the tank. The vertical spring stiffness is 5 × 106 N/m and the horizontal
spring stiffness is 6 × 107 N/m. Schematic sketch of the spring support is shown in Figure 4.
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3.2.2. Modal Analysis

The first three natural frequencies of the tank model (Table 1) and the first three non-repeating
natural vibration modes (Figure 5) are obtained by ANSYS. Because the tank structure is a symmetrical
spatial structure, there are repeated frequencies, and several frequencies are very similar. In order to
facilitate the optimization and calculation of structural parameters, the stiffness matrix and the mass
matrix are derived by ANSYS, and the subsequent calculations are carried out by MATLAB.

Table 1. The first three natural frequencies/Hz.

Order 1 2 3

Frequency 330.71 526.86 739.38
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3.2.3. Model Modification

The elastic modulus of steel is given in the FE model, but the assumed value is uncertain due
to different kinds of steel that could be used for the tank. Therefore, the assumed elastic modulus of
tank steel is corrected, and the correction factor K is defined as the ratio of the actual elastic modulus
E of the tank structure to the numerical value assumed in the FE model. The proper value of the
correction factor K is found by comparing the first two natural frequencies of the tank with an added
virtual mass (as calculated by the finite element model established in ANSYS and MATLAB) with the
corresponding frequencies that were found experimentally with real physical mass added to the tank
structure. By minimizing the sum of the squares of the frequency differences, the optimum K is found
to be 0.9223 and so the revised elastic modulus is 190 GPa. The comparison between the frequencies
before and after modification and the experimental values is shown in Table 2.

Table 2. Comparison of the first three natural frequencies before and after stiffness correction/Hz.

Order of Frequency 1 2 3

Original 330.71 526.86 739.38
Modified 316.12 503.36 727.79

Experimental value 320.83 502.05 720.19
Error 1.47% 0.26% 1.06%

3.2.4. Partition into Substructures

One-third of the tank wall is selected as the area to be identified. Because the steel plate at the
bottom of the tank wall is close to the weld and the stiffness error is large, it is not studied. Accordingly,
the region to be identified is divided into 20 substructures, denoted by SV,H, where V and H represent
the vertical and horizontal positions of the substructures in the original structure respectively.

3.2.5. Construction of Virtual Masses

The acceleration frequency response is obtained by applying the excitation perpendicularly to the
middle of the wall of the substructure S2,3 in the numerical undamaged model. The amplitude of the
acceleration frequency response is shown in Figure 5 (Original). Subsequently, 0.6 kg of mass is added
to the substructure in the numerical model and the amplitude of the resulting acceleration frequency
response is shown in Figure 5 (FEM, Finite Element Method). Finally, the amplitude of the frequency
response after adding 0.6 kg of virtual mass is calculated by the VDM by substituting the original
frequency response into Equation (1), and the result is shown in Figure 6 (VDM). The curves VDM
and FEM can be compared to be identical. It shows that the VDM accurately computes the frequency
response of the structure with added virtual masses, so that one does not need to assemble a finite
element model for this purpose, which greatly improves the calculation efficiency due to the simplicity
of Equation (1).

In addition, it can be seen from Figure 5 that the excitation of the original tank results in several
low-order modes being excited with comparable amplitudes. However, after adding the virtual mass,
the tank vibrates mainly in its first natural mode, which is easier to be determined and used for
damage identification. The subsequent sensitivity analysis shows that the mode has a high sensitivity
to damage.
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3.2.6. The Relation between Sensitivity and Added Masses

First, the virtual mass m is added to the middle of the substructure S3,3. The relative sensitivity of
the first three frequencies of substructure S3,3 is calculated and shown in Figure 7. The formula for
calculating the relative sensitivity is shown in Equation (12).

Rlp =
∂ωip

ωp∂µl
=

ϕT
p Kl ϕp

2ω2
p

(12)

The relative sensitivity is the sensitivity normalized with respect to frequency, which facilitates
the comparison of the sensitivities of several natural frequencies.
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Figure 7. The relation between relative sensitivity and additional masses after adding virtual masses.

As can be seen from Figure 7, the relative sensitivity of the first natural frequency increases rapidly
with the increase of the mass value, reaches its maximum at 0.2 kg, and then decreases slowly. When
considering the difference between the numerical model and experimental model, we finally decide to
use 0.3 kg as the minimum value of added mass, because when the mass value exceeds 0.3 kg, the
relative sensitivity of the first natural frequency is relatively high and stable. The relative sensitivity
of the second natural frequency achieves its maximum at 0.1 kg, and then decreases slowly. Finally,
the relative sensitivity of the third natural frequency reaches its maximum initially value very quickly,
and then drops quickly, too. Virtual mass is then sequentially added to the other 19 substructures to
construct a full set of 20 virtual structures GV,H(µ, m). For damage identification purposes, the first
natural frequency is selected by analyzing the relationship between the sensitivity and the added
virtual masses of all 20 substructures.
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3.3. Verification of Virtual Masses Method

For the tank test model (Figure 8), an additional verification of the procedure for virtual mass
addition is performed. The second natural frequency of the four substructures in the column V = 2 is
taken as an example. In the middle of each substructure, the modal force hammer is used to excite
the tank in the direction perpendicular to the wall. The acceleration response in the corresponding
position is collected by the acceleration sensor. The frequency response with the added virtual mass is
constructed by Equation (1), and the second natural frequency is extracted for additional 0.3 kg, 0.6 kg
and 0.9 kg virtual masses while using the peak value extraction method. Subsequently, the actual mass
blocks of 0.3 kg, 0.6 kg, and 0.9 kg shown in the Figure 9 are added in the middle of each substructure.
After applying the excitation (Figure 10), the acceleration response (Figure 11) at the corresponding
position is measured and the corresponding frequency response (with added real mass) is obtained
by the FFT algorithm. The contour plot of the experimental model of the substructure after adding
virtual mass is shown in Figure 12. The brightness reflects the amplitude of the frequency response,
that is to the natural frequencies of the virtual structure. Comparing the second natural frequency
of the substructures V = 2 with real mass and with virtual mass, it can be found in Table 3 that the
frequency of the substructure with real mass is very close to that computed by the VDM, and the error
is very small.Sensors 2019, 19, x FOR PEER REVIEW 10 of 16 
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Mass Type S1,2 S2,2 S3,2 S4,2

0.3 kg
VDM 478.76 470.83 468.76 458.56
True 472.67 470.96 474.17 456.40
Error 1.29% 0.03% 1.14% 0.47%

0.6 kg
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3.4. Damage Identification of the Damaged Storage Tank

The validity of the VDM-based method for adding virtual masses presented in Section 2.1 is
verified in an experiment of the original tank structure model without any additional damages. For
the purpose of damage identification, the wall thicknesses of substructures S3,2 and S2,4 are reduced by
0.6 mm and 0.4 mm, respectively, by grinding, as shown in Figure 13. The damage location is then
identified by comparing the dynamic information data of each substructure circumferentially. Finally,
the damage factor of the substructure was obtained by sensitivity iteration coupled with the numerical
FE model.
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3.4.1. The Comparison of Structural Frequency before and after Damage

By measuring the dynamic response information of the tank structure before and after damage,
the first two natural frequencies before and after damage are obtained. The excitation force is applied
in the middle position of the substructure before and after the damage, and the acceleration frequency
response is measured, as shown in Figure 14.
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Figure 14. Frequency domain response of substructures before and after damage.

As can be seen from Table 4 and Figure 14, the difference of the frequency-domain response
of the tank structure before and after damage is very small, and the frequency responses are very
close. Therefore, such overall information of the structure is hardly useful as an indicator to identify
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the structural damage. It is necessary to combine the local response information of the structures to
identify the damage.

Table 4. Comparison of the two natural frequencies before and after damage/Hz.

Order of Frequency 1 2 3

Undamaged 320.83 502.05 720.19
Damaged 317.16 498.27 713.22
Difference 1.14% 0.75% 0.98%

3.4.2. Localization of Damage

The acceleration response and excitation data of the damaged tank were measured by the sensors
that were placed in the middle of each substructure. The VDM and Equation (1) are employed
to calculate the corresponding FRFs of each substructure with 0.9 kg virtual mass. Finally, the
second natural frequencies are found by peak picking. When the frequencies of each substructure are
listed in Table 5, it can be found that the frequencies of the damaged substructures S3,2 and S2,4 are
obviously lower than those of the left and right substructures. According to Equation (2), the damage
identification factors of each substructure are calculated and shown in Figure 15.

Table 5. The second natural frequency for all substructures with an additional 0.9 kg virtual mass, as
computed by the VDM for the tank after damage/Hz.

H1 H2 H3 H4 H5

V4 434.29 438.41 432.48 432.75 429.94
V3 437.68 397.27 435.31 439.55 431.74
V2 408.87 411.08 410.60 367.25 402.53
V1 385.16 383.45 381.28 371.43 372.19
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Figure 15. Damage identification factors.

It can be clearly seen that the damage factors of substructures S3,2 and S2,4 are much higher than
those of the other substructures, indicating that damage exists in substructures S3,2 and S2,4. Note that
this result (detection and localization of the damages) is obtained without employing any FE model of
the tank.

3.4.3. Identification of Damage Degree

Through an analysis of the damage factor in the previous section, the damage location, and a first
rough estimation of the damage degrees are obtained. However, to achieve more accurate quantitative
results, it is necessary to identify the damage factor of the structures employing the FE model. To
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facilitate optimization, the nine substructures of the damaged area found in the previous section are
renumbered to 1–9, as shown in Figure 16.
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Figure 16. Schematic sketch of the substructures in the damage area.

In the previous sections, the natural frequencies are calculated after adding a 0.9 kg virtual mass
to each substructure in the damage area. Using this result and the numerical FE model, the sensitivity
optimization is carried out according to Equation (11), and the damage factors that were identified
in multiple iterations are shown in Figure 17. The flowchart of the proposed technique is shown in
Figure 18.

It can be found that the identified damage factors of substructures 1 and 8 are 0.3637 and
0.3947, respectively, while the thickness of steel plate of these two substructures is decreased to
0.7 and 0.8 of its original value, respectively. The difference is because the stiffness reduction ratio
is not directly proportional to the thickness reduction ratio. According to the basic formula of the
cross-section stiffness for a plate, the stiffness reduction ratio is close to the third power of the thickness
reduction ratio.
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4. Conclusions

Aiming at the characteristics of symmetric spatial geometry, the resulting dense low-order modes
and insensitivity of global responses to local damages of tanks, a damage identification method by
adding virtual masses is proposed. The validity of the method is verified by a comparison with a FE
model of the tank, and it is then further validated experimentally using a lab-scale tank. The following
conclusions are obtained:

(1) By adding virtual masses to the tank, the modal characteristics of the tank are changed. The
frequency information with a high sensitivity to local damage can be obtained and the amount of
test modal data can be increased.

(2) Based on the basic theory of the VDM, the frequency response of the tank with an arbitrary mass
added is constructed by employing only a single pair of the excitation and acceleration responses
of the original structure, which further increases the flexibility and applicability of the method.

(3) A set of frequency responses can be obtained by sequentially adding a virtual mass to each
substructure of the tank structure. The damage location can be determined by comparing the
selected natural frequencies of the substructures at the same height, without any FE model. Finally,
the accurate damage factors of substructures can be quantitatively identified by a sensitivity-based
optimization that employs a numerical FE model. The feasibility of the approach in practical
engineering has been verified.
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