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Simple Summary: We studied determinants of response to immune-checkpoint inhibition in ad-
vanced non-small cell lung cancer patients. Specifically, we evaluated the association with response
of multiple simple pre-treatment blood markers available from routine examination. We first used
classical statistical tools and then developed a machine learning algorithm for individual predictions.
We obtained a 69% accuracy. Hemoglobin levels and performance status were the strongest predic-
tors. Neutrophil-to-lymphocyte ratio was also associated with outcome. A benchmark of 8 machine
learning models also evidenced that the best model performed almost equally well than a logistic
regression (basic statistical learning model).

Abstract: Background: Immune checkpoint inhibitors (ICIs) are now a therapeutic standard in
advanced non-small cell lung cancer (NSCLC), but strong predictive markers for ICIs efficacy are
still lacking. We evaluated machine learning models built on simple clinical and biological data to
individually predict response to ICIs. Methods: Patients with metastatic NSCLC who received ICI
in second line or later were included. We collected clinical and hematological data and studied the
association of this data with disease control rate (DCR), progression free survival (PFS) and overall
survival (OS). Multiple machine learning (ML) algorithms were assessed for their ability to predict
response. Results: Overall, 298 patients were enrolled. The overall response rate and DCR were 15.3%
and 53%, respectively. Median PFS and OS were 3.3 and 11.4 months, respectively. In multivariable
analysis, DCR was significantly associated with performance status (PS) and hemoglobin level
(OR 0.58, p < 0.0001; OR 1.8, p < 0.001). These variables were also associated with PFS and OS and
ranked top in random forest-based feature importance. Neutrophil-to-lymphocyte ratio was also
associated with DCR, PFS and OS. The best ML algorithm was a random forest. It could predict
DCR with satisfactory efficacy based on these three variables. Ten-fold cross-validated performances
were: accuracy 0.68 ± 0.04, sensitivity 0.58 ± 0.08; specificity 0.78 ± 0.06; positive predictive value
0.70 ± 0.08; negative predictive value 0.68 ± 0.06; AUC 0.74 ± 0.03. Conclusion: Combination of
simple clinical and biological data could accurately predict disease control rate at the individual level.
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1. Introduction

Immune checkpoint inhibitors (ICIs) are now a therapeutic standard in several ad-
vanced cancers, particularly in stage IV non-small cell lung cancer (NSCLC) without genetic
alteration [1,2]. The development of ICIs is leading to treat an increasing number of pa-
tients with these expensive drugs. Even if the overall response rate is higher with ICIs
than chemotherapy, it is equal to about 20% for ICIs in monotherapy [2]. Consequently,
there are still 4 patients out of 5 with no response to single agent ICI. Thus, identification of
predictive markers for ICIs efficacy is an important unmet medical need.

Biologically, ICIs mechanism of action rely on the immune system and tumor micro-
environment. Tumor-infiltrating lymphocytes (TILs) are known to have different effects on
survival [3]. Blood counts may be a surrogate marker of these TILs and reflect inflammation
and adaptive immune response in lung cancer [4]. In this respect, analysis of blood counts
before the start of ICIs showed some interesting correlation with response. In a meta-
analysis [5], particularly in melanomas treated with Ipilimumab, a higher lymphocyte
count and relative lymphocyte count predicted better overall survival (OS), as for a higher
eosinophil count and lower neutrophil count. Neutrophil to lymphocyte ratio (NLR)
at baseline has also been investigated, and its decrease was associated with better OS,
progression-free survival (PFS) and response [6]. The derived NLR (dNLR = absolute
neutrophils count/[white blood count—absolute neutrophils count]) is another ratio which
has already been an alternative to NLR in melanomas [7,8] and metastatic colorectal
cancer [9]. Furthermore, for lung cancer, in a Chinese meta-analysis published in 2016 [10],
high levels of platelet to lymphocytes ratio (PLR) at baseline were associated with poor
OS and PFS, but in all types of treatment. Specifically for NSCLC treated by ICIs, a study
showed that a score combining dNLR greater than 3 with elevated LDH was correlated with
worse outcome for ICIs [11]. Furthermore, an Italian study in NSCLC patients treated by
ICIs [12] showed that low NLR and low PLR at baseline were associated with development
of immune related adverse events (IRAEs), and low NLR was associated with better
outcomes (OS, PFS). However, a comprehensive analysis of all classical blood markers for
prediction of efficacy in a large number of patients is still lacking [13].

In the era of precision medicine, machine learning (ML) has recently developed as an
alternative to classical statistical analysis [14]. The main difference is that statistical analysis
focuses on inference and association between variable(s) and outcome(s), while ML puts
emphasis on predictive performances only [15]. In oncology, ML has demonstrated great
success for prediction from large-dimensional ‘big’ data, such as genomics or imaging [14].
Nevertheless, such data science methods also have relevance to establish predictive models
from smaller sets of variables [16]. In addition, successes have mostly been limited to
diagnosis and prognosis but seldom for predictive applications in a clinical oncology
context (i.e., for therapeutic decision).

We hypothesized that ML could be useful to accurately predict the efficacy of ICIs in
NSCLC patients. The present study aimed to develop a ML model for the selection of patients
which could benefit from treatment with ICIs, from simple clinical and biological data.

2. Materials and Methods
2.1. Patients

In this observational monocentric retrospective study, we analyzed data from all
patients older than 18 years of age who were diagnosed with advanced NSCLC and who
received at least 1 cycle of ICI (anti-PD-L1, anti PD-1 or anti-CTLA-4), alone or in combina-
tion (anti-PD(L)1 and anti-CTLA4) following a first cycle of non-ICI systemic therapy from
2 April 2013 to 14 February 2017. Patients were treated according to available guidelines.

The study protocol and retrospective data collection were approved by the Institutional
Review Board of the French Society of Respiratory Diseases (Société de Pneumologie de
Langue Française—SPLF), under reference number: CEPRO 2019-007 and patients have
signed an informed consent.
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2.2. Data

Data were retrieved from electronic patient records. Clinical and epidemiological data
(age, gender, tobacco status, asbestos exposure, performance status, body mass index), disease
characteristics (histology, mutation status, TNM stage), treatment data (type, treatment line,
toxicity), biological data (last blood count before first infusion of ICI) and outcome data
(response and survival) were collected. From the pre-treatment blood counts, we calculated
the PLR, NLR and derived NLR (dNLR) = absolute neutrophils count/(white blood count
− absolute neutrophils count). Performance status was dichotomized into <2 or ≥2.

Tumor response was assessed once every 2 months through computed tomography
scans, according to the Response Evaluation Criteria in Solid Tumors, version 1.1 [17].
Definition of response here is the best response observed. Overall response rate (ORR)
included patients with complete or partial responses. Disease control (DCR) included
patients with complete, partial responses or stable disease. Overall survival was defined as
the time from start of immunotherapy to death from any cause, censored at the date of last
follow-up. Progression-free survival was defined as the time from start of immunotherapy
to documented disease progression or death from any cause, censored at the date of last
follow-up period.

2.3. Statistical Analysis

In exploratory data analysis, two-tailed Student’s t-tests were used for continuous
variables and chi-squared tests for categorical variables. Association of clinical and biolog-
ical data response was assessed using univariable and multivariable logistic regression,
as implemented in the glm function of the R software (version 3.6) [18]. Survival analyses
of OS and PFS were performed using univariable and multivariable proportional hazard
Cox’s regression models [19,20]. Continuous variables were centered and scaled before
these analyses.

2.4. Machine Learning

Feature selection was performed using feature importance given by a random forest
classification algorithm applied on the entire data set (randomForest R package, no tuning,
1000 trees). Once sorted by mean decrease accuracy, incremental logistic regression models
were built with increasing number of variables. The selected optimal set of features was the
maximal one before observing a decrease in 10-fold cross-validated accuracy. Predictive
machine learning (ML) models were further built and assessed using repeated nested
k-fold cross-validation with 5 repeats of 3 outer loops (to assess generalizability) containing
each 5 repeats of 3 inner loops (to tune the models). Thus, 15 train and test sets were built
to test the predictive performances. The models were implemented under the tidymodels
framework in R version 4.0.4 [21]. They included: logistic regression (glm), random forest
(ranger, 1000 trees), single layer neural network (2600 maximum number of weights), naïve
Bayes, k-nearest neighbors (kknn, rectangular kernel function) and support vector machines
(with linear, polynomial or radial basis kernel function). For each outer fold, models were
tuned and trained on the train set and predictions were assessed on the test set. The
decision tree was built using the rpart engine and tuned for hyper-parameters of tree depth,
minimum number of data points required for further splitting (min_n) and complexity
parameter (cost_complexity), using a grid search and a 10-fold cross-validation. The tree
was then trained on the entire set.

3. Results
3.1. Patients and Disease Characteristics

Overall, 298 patients treated with ICIs for stage IV or relapsed NSCLC were retrieved
from our database and analyzed. Patient and disease characteristics are summarized in
Table 1. Regarding the treatments with ICIs, 89% (n = 266) of patients received an anti-PD-1
antibody, with 96.7% (n = 286) patients being pretreated with chemotherapy prior to ICIs.
The report of blood counts values at start of treatment with ICIs are reported in Table S1.
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Table 1. Patients and disease characteristics.

Variable N = 298 1

Age 62 (55, 69)

Sex
Female 99 (33%)
Male 199 (67%)

Tobacco status
Former Smoker 140 (47%)

Non smoker 36 (12%)
Smoker 122 (41%)

Brain metastases 72 (29%)

Performance status

≥2 26 (8.9%)
0–1 265 (91%)

Mutation profile
ALK 1 (0.8%)
BRAF 9 (7.4%)
EGFR 14 (11%)
KRAS 87 (71%)

Other mutation 5 (4.1%)
ROS1 2 (1.6%)

Wild type 4 (3.3%)

Immunotherapy type
anti-CTLA-4 3 (1.0%)

anti-PD-1 266 (89%)
anti-PD-L1 26 (8.7%)

Combination 3 (1.0%)

Previous treatment
Chemotherapy 281 (95%)

Chemotherapy + immunotherapy 5 (1.7%)
Targeted therapy 11 (3.7%)

Response
Complete response 2 (0.7%)

Partial response 44 (15%)
Progressive disease 131 (45%)

Stable disease 113 (39%)
1 Median (inter-quartile range); n (%).

3.2. Statistical Analysis
3.2.1. Response

The DCR was 53.4% and ORR was 15.4%. Exploratory data analysis was conducted
for association of the considered variables with outcome (Figure 1). Significant associa-
tions were found for NLR (p < 0.001), derived NLR (p < 0.001), hemoglobin (p < 0.0001),
leukocytes (p < 0.01) and neutrophils (p < 0.001). These results were confirmed by logistic
regression analysis, with additional significance of (Table 2). However, in multivariable
analysis, only hemoglobin and PS remained significant. They also remained significant
in multivariable analysis controlling for possible additional confounding factors: sex,
immunotherapy type and smoking status.



Cancers 2021, 13, 6210 5 of 12

Cancers 2021, 13, x FOR PEER REVIEW 5 of 13 
 

3.2. Statistical Analysis 
3.2.1. Response 

The DCR was 53.4% and ORR was 15.4%. Exploratory data analysis was conducted 
for association of the considered variables with outcome (Figure 1). Significant 
associations were found for NLR (p < 0.001), derived NLR (p < 0.001), hemoglobin (p < 
0.0001), leukocytes (p < 0.01) and neutrophils (p < 0.001). These results were confirmed by 
logistic regression analysis, with additional significance of (Table 2). However, in 
multivariable analysis, only hemoglobin and PS remained significant. They also remained 
significant in multivariable analysis controlling for possible additional confounding 
factors: sex, immunotherapy type and smoking status. 

 
Figure 1. Exploratory data analysis. (A) Boxplots of continuous variables. (B) Barplots of categorical variables. BMI = body 
mass index, NLR = neutrophil-to-lymphocyte ratio, PLR = platelets-to-lymphocytes ratio, CR = complete response, PR = 
partial response, SD = stable disease and PD = progressive disease. Stars indicate statistical significance: **: p < 0.01, ***: p 
< 0.001, ****: p < 0.0001, n.s. = non-significant. 

Table 2. Logistic regression analysis for disease control. 
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CI]  
p  Signif  Odds Ratio [95% CI] p Signif 

Lymphocytes 1.1 [0.83, 1.4] 0.678  0.98 [0.15, 5.2] 0.984  
NLR 0.49 [0.31, 0.73] 0.000879 *** 0.68 [0.098, 1.9] 0.651  

Platelets 1 [0.82, 1.3] 0.762  1.3 [0.72, 2.4] 0.404  
PLR 0.84 [0.64, 1.1] 0.156  1.1 [0.5, 2.4] 0.788  

Leukocytes 0.68 [0.5, 0.89] 0.00791 ** 0.6 [0.0022, 3 × 102] 0.847  
Hemoglobin 1.9 [1.5, 2.5] 9.26 × 10−7 *** 1.8 [1.3, 2.4] 0.000122 *** 

dNLR 0.63 [0.47, 0.83] 0.00155 ** 0.8 [0.33, 2.7] 0.689  
Neutrophils 0.62 [0.45, 0.83] 0.00232 ** 1.5 [0.0047, 2.7 × 102] 0.863  
Monocytes 0.87 [0.69, 1.1] 0.226  0.86 [0.5, 1.4] 0.545  

Figure 1. Exploratory data analysis. (A) Boxplots of continuous variables. (B) Barplots of categorical variables. BMI = body
mass index, NLR = neutrophil-to-lymphocyte ratio, PLR = platelets-to-lymphocytes ratio, CR = complete response, PR = par-
tial response, SD = stable disease and PD = progressive disease. Stars indicate statistical significance: **: p < 0.01, ***: p < 0.001,
****: p < 0.0001, n.s. = non-significant.

3.2.2. Survival Analysis

Progression-free and overall survival are reported in Figure S1. The median PFS was
3.27 months (95% CI: 2.63–4.07) and median OS was 11.4 months (95% CI: 8.8–15.5). Propor-
tional hazard Cox regression confirmed association of hemoglobin and performance status
with response. They were significantly correlated with PFS and OS, in univariable and
multivariable analysis (Tables S2 and S3). They also remained significant in multivariable
analysis controlling for possible additional confounding factors: sex, immunotherapy type
and smoking status.

3.3. Machine Learning

The ML analysis was conducted for prediction of DCR (classification task) and com-
prised two steps. First, feature selection and then ML classification. The first step was
conducted using random forest-based mean decrease in accuracy (Figure 2A) followed by
selection of an optimal number of predictors (Figure 2B). The former revealed hemoglobin
level as the strongest predictor of DCR. The second strongest predictor was performance
status, followed by NLR. Adding further predictors resulted in a decrease in the cross-
validated accuracy of logistic regression models (Figure 2B). Thus, these three variables
were selected for further inclusion in ML models.
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Table 2. Logistic regression analysis for disease control.

Univariable Logistic Regression Multivariable Logistic Regression

Variable Odds Ratio [95% CI] p Signif Odds Ratio [95% CI] p Signif

Lymphocytes 1.1 [0.83, 1.4] 0.678 0.98 [0.15, 5.2] 0.984
NLR 0.49 [0.31, 0.73] 0.000879 *** 0.68 [0.098, 1.9] 0.651

Platelets 1 [0.82, 1.3] 0.762 1.3 [0.72, 2.4] 0.404
PLR 0.84 [0.64, 1.1] 0.156 1.1 [0.5, 2.4] 0.788

Leukocytes 0.68 [0.5, 0.89] 0.00791 ** 0.6 [0.0022, 3 × 102] 0.847
Hemoglobin 1.9 [1.5, 2.5] 9.26 × 10−7 *** 1.8 [1.3, 2.4] 0.000122 ***

dNLR 0.63 [0.47, 0.83] 0.00155 ** 0.8 [0.33, 2.7] 0.689
Neutrophils 0.62 [0.45, 0.83] 0.00232 ** 1.5 [0.0047, 2.7 × 102] 0.863
Monocytes 0.87 [0.69, 1.1] 0.226 0.86 [0.5, 1.4] 0.545
Eosinophils 1.3 [0.97, 1.9] 0.139 1.1 [0.75, 1.8] 0.582
Basophils 1.2 [0.95, 1.8] 0.177 1.2 [0.89, 1.8] 0.321

BMI 1.2 [0.95, 1.5] 0.123 1 [0.76, 1.3] 0.997
Performance status 0.5 [0.39, 0.64] 6.21 × 10−8 *** 0.58 [0.44, 0.75] 7.79 × 10−5 ***

Stars indicate statistical significance: ** : p < 0.01, *** : p < 0.001. CI = confidence interval. signif = significant.

Figure 2. Variable selection. (A) Feature importance based on random forest classification and mean decrease in accuracy.
(B) Accuracy score of incremental logistic regression models built on an increasing number of predictors (i.e., the first one
contains only hemoglobin, the second hemoglobin and NLR, etc.). NLR = neutrophil-to-lymphocyte ratio. PLR = platelet-to-
lymphocyte ratio. BMI = body mass index.

Multiple machine learning models using this set of variables were then assessed for their
predictive abilities of DCR (Figure 3 and Table 3). First, learning curves—which evaluate
the predictive abilities of the models with increasing number of patients—demonstrated that
convergence to the optimal predictive power had been reached, for each model (Figure S2).
Receiver-operator curves were similarly discriminant across the algorithms (Figure 3A), apart
from k-nearest neighbors (knn) and the polynomial support vector machine (SVM) with
poorer performances. Aside knn, mean areas under the curve ranged 0.72–0.74 (Table 3).
Similarly, precision (sensitivity)–recall (positive predictive value) curves were comparable
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(Figure 3B). Best accuracy was 68%, achieved by the random forest model. Sensitivity was
generally low (max 0.58, random forest) while specificity was high (0.73–0.94, Table 3). Best
positive (naive Bayes, 0.72) and negative (random forest, 0.68) predictive values suggested
good predictive power (Table 3). Altogether, the ML algorithms performances suggested
the random forest algorithm as the most adequate, achieving highest score in the largest
number of them (accuracy, area under the ROC curve, sensitivity and negative predictive
value, Table 3) and exhibiting the smallest inter-score variability (Figure 3C).
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Table 3. Summary of machine learning algorithms predictive performances (mean ± standard deviation, bold entries are
maximum values).

Model Accuracy ROC AUC PPV NPV Sensitivity Specificity

Random Forest 0.68 ± 0.04 0.74 ± 0.03 0.70 ± 0.08 0.68 ± 0.06 0.58 ± 0.08 0.78 ± 0.06
Logistic Regression 0.67 ± 0.04 0.73 ± 0.03 0.69 ± 0.08 0.67 ± 0.06 0.57 ± 0.09 0.77 ± 0.07

Naive Bayes 0.67 ± 0.04 0.73 ± 0.03 0.72 ± 0.07 0.65 ± 0.06 0.49 ± 0.07 0.83 ± 0.05
Single Layer Neural

Network 0.66 ± 0.03 0.72 ± 0.03 0.69 ± 0.09 0.66 ± 0.06 0.54 ± 0.09 0.78 ± 0.07

k-Nearest Neighbour 0.66 ± 0.04 0.69 ± 0.04 0.65 ± 0.07 0.66 ± 0.06 0.58 ± 0.07 0.73 ± 0.07
Linear SVM 0.58 ± 0.09 0.73 ± 0.03 0.72 ± 0.09 0.58 ± 0.10 0.19 ± 0.25 0.94 ± 0.09

Polynomial SVM 0.55 ± 0.08 0.73 ± 0.03 0.61 ± 0.13 0.58 ± 0.13 0.19 ± 0.29 0.89 ± 0.23
Radial basis SVM 0.55 ± 0.08 0.73 ± 0.03 0.67 ± 0.17 0.56 ± 0.06 0.20 ± 0.28 0.88 ± 0.25

A random forest algorithm being hard to interpret, we also trained a decision tree
algorithm (Figure 3D). This confirmed performance status (<2 versus ≥2) and hemoglobin
level (optimal threshold 13 g/dL) as the most important predictive variable. Then NLR,
consistently with our random forest-based importance analysis. This tree could be useful
for clinical decision at bedside. For instance, patients with performance status <2 and
hemoglobin ≥13 g/dL are predicted to have an 83% chance of disease control.

4. Discussion

The selection of patients who will benefit from ICIs therapies is crucial in the era
of precision medicine, in order to develop new strategies for those patients who are not
likely to respond from current strategies. Clinical examination and blood counts are easily
acquired, but their predictive power in combination remains to be determined. While
classical statistical methods are appropriate and have been employed for determination
of association with outcome [11,22], ML techniques are more adapted for prediction tasks.
Therefore, we decided to analyze our data with the help of such methods.

Although well developed in several areas of science and industry, especially for
dealing with ‘big data’, the use of ML for clinical oncology has remained limited to
date [14,23]. In particular, very few studies have investigated ML for prediction of re-
sponse to immune-checkpoint blockade, and none has focused on the predictive value of
blood counts [16,24–26]. In addition, the main limitation of such studies is the small sample
size, despite being a critical determinant to ensure the robustness and generalizability of
the results [27]. For instance, Wiesweg et al. had 55 patients in the training set and 36 in
the test set [25].

In comparison, we analyzed the data from 298 patients, allowing to have higher
statistical power. Training and test sets were thus composed of about 200 and 100 patients
in training and tests, respectively. This large number of patients ensured that the models
had enough information to learn and predict (Figure S2). Our results even show that
200 patients are sufficient to reach the optimal accuracy, for models with six variables.
Importantly, our data was collected from clinical practice (i.e., real-world data), which
implies larger heterogeneity but is also more reflective of the reality at bedside [22]. The
random forest algorithm emerged as the algorithm with best trade-off over all the metrics
considered, resulting in a 68% mean accuracy and 0.74 mean area under the ROC curve, on
test sets. Nevertheless, logistic regression, single layer neural network and naïve Bayes
models performed almost equally well, suggesting that similar predictive power can be
achieved with a standard, linear statistical learning algorithm such as logistic regression.
This is in line with a review that suggested no benefit of ML over logistic regression for
clinical prediction models [28].

Associations between blood count and efficacy were consistent with previous studies,
in particular correlations with hemoglobin, NLR, dNLR and PLR, were the same than in
previous studies [5,6,10,11,29]. This consistency comforts the interest of pre-treatment blood
counts for prediction of ICIs efficacy. Neutrophils and leukocytes levels were also associated
and predictive of response, a finding from our study that has not been reported elsewhere,
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to our knowledge. We also demonstrated that an ECOG performance status ≥2 was
significantly associated with response, a result that remained to be fully established [30,31].
High PS and a high NLR were correlated with worse outcomes, consistently with the
physio-pathological immune hypothesis of peripheral lymphocytes stimulation with ICIs,
which could lead to redirect TILs to destruct tumor cells through an activation cascade.

The present study focused on the predictive power of blood biomarkers, but the model
could include additional variables, even if their predictive values are not perfect individ-
ually. PD-L1 expression [32], because of its discordant results, its heterogeneity among
histological components [33] and its poor accuracy when assessed in peripheral blood [34],
is not an ideal predictive biomarker but would probably increase the performance of our
model. Some characteristics based on genomic alterations could also be added. Tumor
mutational burden (TMB), defined as the total number of nonsynonymous mutations in
the tumor exome [35] and evaluated by next-generation-sequencing (NGS), seems to be a
potential biomarker [36]. Even if its measure has some limitation such as high cost, large
input DNA amount needed and time of analysis, lung cancer is among tumors with the
highest TMB [37], which correlates with ICI efficacy in NSCLC [38]. Importantly, our results
compare favorably with the latter study, where predictive power of (durable) response
from PD-L1 expression (AUC = 0.646) or TMB (AUC = 0.601) was inferior. K-RAS mutation
is a frequent genetic alteration with contrasting implications for ICIs efficacy. It was initially
not linked with poor response to ICIs [39], but a better response when mutated was shown
in 2019 [40], whereas the co-occurring genomic alteration of K-RAS and STK11/LKB1 was
associated with a primary resistance to PD1 axis blockade [41]. Other recent work using
metabolomics data obtained from blood sampling demonstrated impressive predictive
power of response, although with small sample sizes [42–44]. The integration of such
markers in our model might improve its efficacy. Based on the combination of quantitative
imaging and machine learning, radiomics study have also started to emerge for prediction
of ICIs efficacy from radiological images [24,45]. Such studies should nevertheless be
carefully evaluated for their added predictive power in comparison to simpler biomarkers
as the ones used here [46].

The first limitation of our study is the retrospective design and the limited number of
centers involved (2 centers). Another limitation is the lack of tumor PD-L1 assessment. This
testing was not systematically performed from 2013 to 2017 as nivolumab in second-line
or more did not require the PD-L1 status to be prescribed to NSCLC patients. This status
could have helped our algorithm using a quantitative variable, freeing ourselves from a
qualitative threshold as currently used: 1% for the refund of Durvalumab in France for the
maintenance after a radio-chemotherapy or pembrolizumab in second-line therapy [47]
and 50% for the use of Pembrolizumab in first-line therapy [2]. Nevertheless, the PD-L1
determination methods were not the same as nowadays, involving either a different or
biased analysis or a new determination of PD-L1 status.

Certain confounding factors such as bacterial and viral infection, demographic vari-
ables such as race, recent chemotherapy, or the use of corticosteroids before treatment could
have modified the blood counts analyzed in this study. These data were not collected and
not analyzed in our study because we wanted a simple tool to help clinical practice, which
could benefit to the majority of patients. Furthermore, blood counts were not necessarily
sampled the day of first ICIs infusion, but sometimes one or some days before. This period
of time could also have modified the values. On the other hand, our study reflects clinical
practice in real-life.

Eventually, the majority of studies to date, including ours, have focused on static
pre-treatment predictive markers. However, dynamic markers that integrate on-treatment
data start to emerge, with promising predictive value [48]. In such context, the use of
statistical Bayesian modeling is particularly appropriate and holds great promise [49].
For ICI, a mathematical model-derived kinetic parameters of tumor kinetics regrowth
during relapse has been shown to be the best predictor of overall survival in multivariable
analysis including baseline clinical markers [50]. More mechanistic mathematical models
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for tumor-immune-ICI-radiotherapy dynamics have also been proposed [51]. In light of
our results, such models should be applied to include dynamics of blood counts.

5. Conclusions

Blood counts prior to ICIs (elevation of hemoglobin, decrease of NLR, leukocytes or
neutrophils) and clinical status (good PS) were significantly associated with better DCR
in multivariable analysis. The practical application of these associations using machine
learning algorithms was able to predict individual response to treatment. This could be
improved further by increasing the number of variables in the model and should be further
validated in an independent cohort.
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