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As the prevalence and life expectancy of type 2 diabetes mellitus (T2DM) continue to increase, the importance of effective detec-
tion and intervention for the complications of T2DM, especially neurocognitive complications including cognitive dysfunction 
and dementia, is receiving greater attention. T2DM is thought to influence cognitive function through an as yet unclear mecha-
nism that involves multiple factors such as hyperglycemia, hypoglycemia, and vascular disease. Recent developments in neuro-
imaging methods have led to the identification of potential neural correlates of T2DM-related neurocognitive changes, which ex-
tend from structural to functional and metabolite alterations in the brain. The evidence indicates various changes in the T2DM 
brain, including global and regional atrophy, white matter hyperintensity, altered functional connectivity, and changes in neuro-
metabolite levels. Continued neuroimaging research is expected to further elucidate the underpinnings of cognitive decline in 
T2DM and allow better diagnosis and treatment of the condition.
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INTRODUCTION

Diabetes mellitus (DM) has risen as an important global health 
concern with a continued worldwide increase in its prevalence 
[1]. Type 2 diabetes mellitus (T2DM) in particular is expected 
to become more common and widespread in many countries, 
with the proliferation of obesity and the aging of the popula-
tion [2]. Meanwhile, achieving a normal life expectancy for 
T2DM patients has become more attainable through effective 
modulation of the life-threatening cardiovascular and renal 

complications associated with the disease [1,3]. Accordingly, 
an improved understanding of debilitating diabetic complica-
tions is now of even greater importance for the long-term 
management of T2DM. In particular, T2DM-induced neuro-
cognitive changes including cognitive decline and dementia 
may significantly affect the quality of life of patients and their 
caregivers and pose challenges to clinicians and researchers. 
In the present review, we will discuss the characteristic cogni-
tive impairment observed in T2DM and present a summary of 
the outcomes from recent neuroimaging studies focusing on 
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T2DM-related brain deficits in humans.

FEATURES OF NEUROCOGNITIVE CHANGES 
IN T2DM

DM in general is known to increase the risk of cognitive dys-
function and dementia [4-6]. A recent systematic review of 
longitudinal population-based studies revealed that the inci-
dence rates of dementia were higher in diabetic populations 
than in nondiabetic populations [6]. A number of DM-related 
factors such as macrovascular and microvascular diseases, 
glucose toxicity, and hyperinsulinemia have been suggested to 
be involved in the emergence of cognitive impairment in DM 
[6], but the complexity of multifactorial influences makes it 
difficult to precisely delineate the exact determinants of the 
phenomenon.
 The incidence rate of dementia in T2DM is suggested to be 
1.5 to 2.5 times higher than that in the general population [2]. 
A meta-analysis based on nine population-based longitudinal 
studies in T2DM revealed a meaningful association between 
T2DM and progressive cognitive decline, including develop-
ment of dementia [7]. Interestingly, the same cognitive do-
mains that are impaired in T2DM are also observed to be af-
fected in prediabetic stages [8], despite a smaller effect size 
[9]. These prediabetic cognitive deficits raise the possibility 
that glucose intolerance, which starts to arise in prediabetic or 
early diabetic stages, may play a role in the decline of cogni-
tive function.

FACTORS INFLUENCING NEUROCOGNITIVE 
IMPAIRMENT IN T2DM

Complex factors including comorbid vascular diseases and the 
level of glycemic control are believed to influence the mani-
festation of cognitive impairment related to T2DM [2,10]. 
Here, we will briefly review some of the potential risk factors 
that have been repeatedly identified in the existing literature: 
hyperglycemia, hypoglycemia, and vascular diseases [2].

Hyperglycemia
Acute hyperglycemia induced by a glucose clamp technique in 
T2DM was reported to impede cognitive function in T2DM 
[11]. Also, in older women, an increased level of glycated he-
moglobin (HbA1c), an indicator of average blood glucose lev-
els over the past few months, was associated with the risk of 
developing cognitive impairment in later years [12]. These 

outcomes support the hypothesis that the hyperglycemic state 
is a major player in DM-related cognitive decline.
 Determining the extent of the effect of hyperglycemia on 
cognitive decline in T2DM is complicated since many other 
factors associated with the diabetic condition also appear to be 
involved. For instance, according to a recent study with an el-
derly cohort, the effect of elevated fasting plasma glucose 
(FPG) levels on cognitive decline was not greater than that of 
hypertriglyceridemia or low high density lipoprotein levels 
[13]. Another study reported that the degree of hyperglycemia 
measured by the HbA1c level exhibited less predictive power 
as compared to the diabetic status itself [14]. It should be not-
ed that using HbA1c or FPG as a marker for hyperglycemia in 
T2DM may have inherent limitations, as these measures do 
not fully reflect the short-term temporal variations in the hy-
perglycemic condition. Indeed, an investigation of the rela-
tionship between the T2DM-related cognitive decline and dai-
ly fluctuations in glucose levels found an independent correla-
tion between glycemic instability and cognitive decline [15], 
indicating the potential importance of day-to-day glycemic 
control in DM-related cognitive impairment.

Hypoglycemia
Acute hypoglycemia, which may occur as a side effect of insu-
lin administration, is known to disrupt brain functional efficien-
cy [16]. In particular, an episode of severe hypoglycemia is 
known to be associated with neuronal damage in the brain areas 
crucial for learning and memory, including the hippocampus 
and cerebral cortices [17]. Hypoglycemia is thus likely to be in-
fluential in DM-related cognitive decline and related brain defi-
cits. The excitotoxic effect of increased neuroactive amino acids 
has been suggested as a potential mechanism of neuronal dam-
age induced by hypoglycemia [18]. The activation of neuronal 
nicotinamide adenine dinucleotide phosphate oxidase during 
glucose reperfusion, rather than hypoglycemia itself, has also 
been proposed as the direct cause of the neuronal damage [19].
 Although hypoglycemia is more frequently observed in pa-
tients with T1DM, it is also common in patients with T2DM 
who are treated with insulin or orally-administered glucose-
lowering drugs [20]. Thus far, investigations into the potential 
causal relationship between hypoglycemia and cognitive im-
pairment in T2DM have resulted in mixed findings. In a study 
with an elderly population with T2DM, severe hypoglycemia 
was found to increase the risk of dementia [21]. Yet, there is 
evidence that cognitive dysfunction may actually be a cause of 
hypoglycemia rather than the result of it, as cognitive dysfunc-
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tion may hinder adequate glycemic modulation through regu-
lar drug administration [22-24]. 

Vascular diseases
T2DM shows high comorbidity with many macrovascular and 
microvascular diseases [25]. A substantial amount of research 
suggests that vascular complications are a risk factor for cog-
nitive decline in patients with DM [26,27]. DM has been sug-
gested as an important risk factor in the pathogenesis of vas-
cular dementia [28]. In patients with DM, brain alterations in-
cluding white mater hyperintensity (WMH) and subcortical 
atrophy may arise as a result of the degeneration of cerebral 
small vessels [29]. These alterations are associated with the 
emergence of cognitive dysfunction [29]. Identification of a 
shared mechanism linking DM, cerebrovascular diseases, and 
cognitive decline would be an important research goal for the 
early detection of and intervention in DM-related neurocogni-
tive impairment.

NEURAL CORRELATES OF NEUROCOG- 
NITIVE IMPAIRMENT IN T2DM: EVIDENCE 
FROM NEUROIMAGING STUDIES

Both acute and chronic brain alterations in DM are presumed 
to be associated with the generation of cognitive impairment 
in DM [30]. Even though the exact pathophysiology linking 
DM and cognitive dysfunction remains unclear, recent brain 
imaging studies aided by state-of-the-art neuroscientific tech-
niques have begun to shed light on related issues. In the fol-
lowing section, we will review the neuroimaging findings on 
the structural, functional, and metabolic changes that occur in 
the T2DM brain, to provide a more integrative understanding 
of the neurocognitive complications in T2DM.

Brain structural changes
DM is known to induce not only macroscopic but also micro-
scopic changes in the brain. Several neuroimaging studies in-
dicate that the brain structural alterations frequently observed 
in T2DM include global and regional atrophy in cortical and 
subcortical regions [31,32] and WMH [33].

Global brain atrophy and ventricular enlargements
Reductions in the total brain volume or cortical/subcortical 
brain volume in T2DM have been indicated by several neuro-
imaging studies [34]. Modest cerebral atrophy in the T2DM 
population has been consistently observed [32,35]. Further-

more, a significant association has been found between cere-
bral atrophy in DM and cognitive impairment, even after the 
effect of comorbid vascular diseases was adjusted [33]. Ven-
tricular enlargement, an important index of cerebral atrophy 
and potential surrogate marker for dementia [36], has also 
been implicated in T2DM-related brain changes. A study with 
a middle-age population revealed a significant association be-
tween DM and greater ventricular size [37]. Furthermore, ac-
cording to recent case-controlled studies, patients with T2DM 
showed greater increments in lateral ventricular volumes as 
well as shape alterations compared to control subjects [38,39]. 
With regard to the longitudinal trajectory of the changes, the 
rate of increase in lateral ventricular volumes in elderly pa-
tients with DM was faster than the rate of aging-related chang-
es [40,41].
 A number of factors have been suggested to be associated 
with brain atrophy in T2DM. Factors including retinopathy, 
extent of brain infarction, HbA1c level, and disease duration 
were associated with cortical atrophy [27,33]. In addition, sev-
eral cross-sectional studies have demonstrated that indices 
such as comorbid hypertension, level of glycemic control, and 
history of hypoglycemic events are factors that may potential-
ly affect the progression of cerebral atrophy in DM [35,40,42-
45]. Results from animal models bring up the possibility that 
factors like glucose toxicity, hyperinsulinemia, and vascular 
damage have accelerating effects on the brain atrophy process 
[46,47]. Meanwhile, the use of cholesterol-lowering statin 
drugs is associated with less brain atrophy [27,44]. In sum, 
these findings propose the involvement of multiple factors in 
the development of DM-related brain structural alterations, al-
though the inconsistency in research outcomes has not yet 
been entirely resolved. 
 Notably, along with the T2DM population, the prediabetic 
population also tends to exhibit cognitive dysfunction [48] and 
reduction in total brain volume [49]. As conditions like hyper-
insulinemia and impaired glucose tolerance start to emerge 
during the prediabetic stage, cognitive dysfunction as well as 
brain alterations may occur even in the early stages of T2DM.

Regional brain atrophy
Animal studies have presented the associations of the diabetic 
state with the neuronal changes in specific brain regions such 
as the hippocampus and prefrontal cortex, as well as with cog-
nitive deficits [50,51]. By implementing a variety of neuroim-
aging analysis methods including voxel-based morphometry 
and cortical thickness analysis, recent human studies also have 



Neurocognitive Changes in Type 2 Diabetes Mellitus

Copyright © 2014 Korean Endocrine Society www.e-enm.org 115

yielded evidence of associations between DM and regional 
brain deficits [34]. The most consistently reported regional at-
rophy in the T2DM population is found in the medial temporal 
lobe, especially in the hippocampus [31,40,52]. For instance, 
cortical thickness and subcortical volumetric analysis of the 
T2DM group revealed prominent deficits in the hippocampus 
and middle temporal gyrus [40]. Another study demonstrated 
that T2DM was related to a higher risk of hippocampal atro-
phy [43]. Additionally, a volumetric reduction restricted to the 
hippocampus was observed along with a decline in memory 
function, starting from the early stages of T2DM [52]. Atro-
phic alterations in the medial temporal lobe, especially in the 
hippocampus, have also been reported as a robust neuroimag-
ing finding in Alzheimer dementia (AD) [36] and thus suggest 
a possible mechanism connecting DM and dementia.
 In addition to the brain volumetric reductions in the medial 
temporal lobe, deficits in the prefrontal regions have also been 
noted in a substantial body of research [53-56]. Specifically, 
patients with T2DM showed gray matter deficits in the pre-
frontal areas including the anterior cingulate and orbitofrontal 
regions, and the findings were robust even after adjusting for 
global brain atrophy [53,55]. The existing evidence suggests 
that prefrontal regions may act as neural correlates associated 
with depression and cognitive dysfunction [57,58]. Accord-
ingly, prefrontal structural alterations in the diabetic brain may 
play a crucial role in central nervous complications, particu-
larly in the depressive symptoms and cognitive impairment 
observed in T2DM.

White matter hyperintensity
WMH, a commonly observed phenomenon in the elderly 
brain, is known to increase with the normal aging process 
[59,60]. The findings on WMH in T2DM are rather inconsis-
tent compared to those on cerebral atrophy [34]. Although 
some studies have identified DM as a risk factor accelerating 
the generation of WMH [61,62], in a longitudinal study no 
significant difference in the WMH progression rate was found 
between T2DM and control groups [40]. Furthermore, in a 
meta-analysis that inspected studies primarily conducted with 
a visual rating technique, no consistent association was found 
between T2DM and WMH [34]. While some researchers have 
presented additional negative findings [31,32,59], others have 
reported a significant association between WMH severity and 
DM [33,61]. In a study using volumetry analysis rather than 
visual rating, a prominent increase in the volume of white 
matter lesions was observed [38]. Some recent neuroimaging 

studies present region-specific effects, since subcortical white 
matter lesions, but not periventricular white matter regions, 
show a significant association with T2DM [33,63]. In these 
studies, WMH severity was associated with the magnitude of 
the cognitive impairment, suggesting a role for WMH in the 
cognitive changes associated with T2DM [35,63]. The incon-
sistency in the research outcomes on WMH in T2DM may be 
explained by the different methodologies used for WMH rat-
ing and the large interindividual variability in WMH [34]. Ac-
cordingly, further large-scale longitudinal studies with appro-
priate quantitative methods to evaluate WMH are warranted.
 Although WMH is considered to have complex interactions 
with vascular factors, the precise mechanisms involved are yet 
to be elucidated. A number of studies in T2DM proposed indi-
ces such as macrovascular factors, illness duration, HbA1c 
levels, hyperinsulinemia, and hypertension to be related to 
WMH in T2DM [6,27,63,64]. The presence of WMH in the 
deep white matter is correlated with neurodegenerative chang-
es as well as with vascular abnormalities [65-67].

Brain functional changes
Changes in brain functional connectivity can be induced by 
structural changes, but they may also emerge before clinically 
observable changes in cognitive function occur, preceding ap-
parent structural alterations [68,69]. There have been reports 
suggesting a resemblance between alterations of brain func-
tional connectivity in T2DM and those in mild cognitive im-
pairment in AD [70-72]. Furthermore, decreased glucose me-
tabolism in the frontal, parieto-temporal, and cingulate regions, 
a characteristic feature in AD, is also observed in the prediabet-
ic state [73]. In patients with T2DM, the functional connectivi-
ty between the hippocampus and other brain regions is reduced 
[72,74], and the decline in cognitive performance in T2DM is 
associated with a reduction in functional connectivity [72].
 In a resting-state functional magnetic resonance imaging 
study, patients with DM and microvascular complications 
showed a decrease in brain functional connectivity, whereas 
those without such complications and healthy controls did not 
[75]. Diabetic retinopathy, an example of microvascular com-
plications, has been identified as an independent risk factor for 
cognitive decline in DM [73]. Given these findings, microvas-
cular complications may be potential players in the develop-
ment of brain functional abnormalities and the associated cog-
nitive decline observed in T2DM.
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Metabolic brain changes: results from magnetic resonance 
spectroscopy
Magnetic resonance spectroscopy (MRS) enables noninvasive 
inspection of metabolites in the brain. MRS is also valuable for 
the detection of brain damage or abnormalities that would appear 
normal on other modalities [76], and thus may prove particularly 
useful in investigating the neurocognitive changes in DM.
 Both human and animal MRS studies of DM suggest a de-
crease in the N-acetylaspartate (NAA)/creatine (Cr) ratio in a 
relatively consistent manner, while there are mixed results for 
the choline (Cho)/Cr ratio [77]. In a study using a rat model of 
DM, reductions in the NAA/Cr ratio and the NAA/Cho ratio 
were observed in diabetic rats, whereas the Cr/Cho rate was 
not significantly changed [78]. In a few human MRS studies, 
the NAA/Cr ratio was also found to be reduced in patients 
with DM [79-81]. A study reported that the Cho/Cr ratio was 
decreased in the frontal and parietal lobes of patients with 
T2DM [81], while another study observed an increase in the 
occipital lobe [82]. In the most recent MRS study on T2DM, a 
decrease in the NAA/Cr ratio and an increase in the Cho/Cr 
ratio in the lenticular nucleus were noted [77]. The literature 
suggests an association between NAA and neuronal damage, 
as well as one between Cho and glial proliferation [83]. These 
abnormalities in NAA and Cho levels in T2DM are in accor-
dance with the hypothesis that DM may incur aberrant chang-
es in the brain metabolites and associated neuronal damage.
 Glutamate is another key substance in the investigation of 
DM using MRS [84]. Glutamate is a highly important neu-
rotransmitter involved in many crucial brain activities such as 
cognition [85,86] and can be particularly useful in the assess-
ment of glucose metabolism within the cerebrum [87]. A num-
ber of MRS studies in T1DM illustrate associations between 
DM and glutamatergic alterations in the brain [56,88], yet the 
direction of change in glutamate levels appears to differ de-
pending on the region of interest. While patients with T1DM 
show an elevated level of glutamate in the prefrontal region 
[56], the glutamate levels in T1DM have been reported to be 
lower in the occipital and parieto-occipital regions [88]. In de-
pressed patients with T2DM, glutamine and glutamate con-
centrations were significantly reduced in the subcortical re-
gions relative to healthy and diabetic control subjects [89]. A 
study based on a rat model found impaired glutamate-gluta-
mine cycling in T2DM [90], while in a rat model of diabetic 
retinopathy, hyperglycemia was found to induce a dysfunction 
in glutamate transporters [91].
 Since glutamate in the synaptic space would introduce a 

significant amount of noise to glutamatergic signal transduc-
tion, it is essential to uptake glutamate that has been released 
to the extracellular space [92,93]. Insulin not only enhances 
the glucose reuptake processes but also normalizes the altered 
glutamate uptaking properties in astrocytes [94]. Accordingly, 
the altered ability of glutamate reuptake in T2DM brain astro-
cytes indicates a potential impairment of brain signal trans-
mission in DM [95]. As a considerable portion of the energy 
consumed in the brain is used in glutamatergic signaling [96], 
we propose that the diabetic brain, which shows lowered glu-
cose metabolism, may also have difficulties in glutamate sig-
naling. In any case, the investigation of DM-induced metabo-
lite alterations in the human brain is still in its early stages, 
and further research should follow.

CONCLUSIONS

As T2DM has arisen as a global health problem affecting nu-
merous individuals [1,3], the neurocognitive complications of 
T2DM including cognitive decline and dementia bring up im-
portant and challenging research questions in both clinical and 
research fields. Several conditions including hyperglycemia, 
hypoglycemia, and vascular diseases are suggested to be in-
volved in the development of cognitive impairment in T2DM, 
although the precise mechanism is yet unclear due to the com-
plexity of multifactorial influences. Recently, neuroimaging 
methods have been implemented in the investigation of the 
neural correlates underlying the association between T2DM 
and cognitive dysfunction. Studies have revealed changes in 
the T2DM brain at structural, functional, and metabolite levels 
and their potential role in cognitive changes. With further 
methodological developments, future neuroimaging studies in 
T2DM are expected to elucidate the underlying neural mecha-
nisms of DM-related cognitive deficits.
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