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Lung cancer is a fatal tumor threatening human health. It is of great significance to explore a
diagnostic method with wide application range, high specificity, and high sensitivity for the
detection of lung cancer. In this study, data fusion and wavelet transform were used in
combination with Fourier transform infrared (FTIR) spectroscopy and Raman
spectroscopy to study the serum samples of patients with lung cancer and healthy
people. The Raman spectra of serum samples can provide more biological information
than the FTIR spectra of serum samples. After selecting the optimal wavelet parameters for
wavelet threshold denoising (WTD) of spectral data, the partial least squares–discriminant
analysis (PLS-DA) model showed 93.41% accuracy, 96.08% specificity, and 90%
sensitivity for the fusion data processed by WTD in the prediction set. The results
showed that the combination of FTIR spectroscopy and Raman spectroscopy based
on data fusion and wavelet transform can effectively diagnose patients with lung cancer,
and it is expected to be applied to clinical screening and diagnosis in the future.
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INTRODUCTION

Lung cancer is a malignant tumor with a high incidence rate and a high mortality rate threatening
human health (Sung et al., 2021). Due to the lack of biomarkers in lung cancer, most patients are in
the middle and advanced stage at the time of treatment (Stapelfeld et al., 2020). At present, the
screening methods of lung cancer mainly include X-ray examination, low-dose computed
tomography, and magnetic resonance imaging (MRI), but these technologies have some
disadvantages, such as unable to apply to specific populations, high false positive rate, and low
sensitivity (Thakur et al., 2020; Xu et al., 2021). Therefore, there is a need to find an early diagnostic
method with wide application range, high specificity, and high sensitivity.

Vibrational spectroscopy is an important tool in the field of analytical chemistry and bioanalysis,
of which Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy have been widely
used in cancer diagnosis in recent years (Auner et al., 2018; Christensen et al., 2019; Baiz et al., 2020).
In our previous work, we studied the serum samples of patients with lung cancer and healthy people
using FTIR spectroscopy and found that the concentrations of protein, lipid, and nucleic acid
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molecules in the serum of patients with lung cancer were higher
than those of healthy people (Yang et al., 2021a). Song et al.
classified the tissues of healthy people and patients with lung
squamous cell carcinoma using Raman spectroscopy combined
with principal component analysis–linear discriminant analysis
(PCA-LDA) (Song et al., 2020). These reports demonstrate the

potential of FTIR spectroscopy and Raman spectroscopy in the
diagnosis of lung cancer.

Data fusion has been widely used in the analysis and
determination of biological and pharmaceutical components in
recent years because of its integration of multiple methods to
obtain more effective and comprehensive data (Haware et al.,

FIGURE 1 | FTIR spectra of serum from patients with lung cancer (A) and healthy people (B). Raman spectra of serum from patients with lung cancer (C) and
healthy people (D). (The corresponding average spectra are shown in bold).

TABLE 1 | Peaks of FTIR and Raman spectra and their assignments.

Wavenumber/Raman shift Peak assignments References

Wavenumber (cm−1) — —

2,959 C-H asymmetric stretching vibration of CH3 in lipid —

2,930 C-H asymmetric stretching vibration of CH2 in lipid —

1740 C=O stretching vibration from ester carbonyl in triglycerides —

1,646 α-helix structure in amide I protein —

1,542 N-H functional group in amide II protein —

1,243 P=O asymmetric stretching vibration of PO2
− in nucleic acids —

1,079 P=O symmetric stretching vibration of PO2
− in nucleic acids Yang et al. (2021a)

Raman shift (cm−1) — —

1,005 Symmetric ring breathing mode in phenylalanine, CHO, and protein Bahreini et al. (2019)
1,129 C-N stretching in protein Lakshmi et al. (2002); Chan et al. (2006)
1,155 C-C stretching in glucose, CHO, and protein Bahreini et al. (2019)
1,302 C-H vibration in triglycerides Silveira et al. (2002)
1,448 CH3-CH2 bending of phospholipids and the protein side chains Yan et al. (2020)
1,520 C=C stretching in porphyrin Movasaghi et al. (2007)
1,656 C=C stretching in lipid and amide I protein Cheng et al. (2020)
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2011; Comino et al., 2018; Feng et al., 2020; Zhang et al., 2020;
Zhao et al., 2020; Azcarate et al., 2021). There are reports that
data fusion was used in FTIR spectroscopy and Raman
spectroscopy for the diagnosis of thyroid dysfunction and
cervical cancer. Chen et al. studied the blood of patients with
thyroid dysfunction and healthy people using FTIR
spectroscopy and Raman spectroscopy combined with data
fusion and achieved an accuracy of 83.48% (Chen et al.,
2020). Zhang et al. studied the tissue samples from
patients with cervical cancer using Raman spectroscopy
and obtained an accuracy of 93.51% using characteristic
data after fusion of first and second derivatives (Zhang
et al., 2021). Therefore, data fusion combined with FTIR
spectroscopy and Raman spectroscopy has the potential to

diagnose various diseases, so it is expected to be applied in the
diagnosis of lung cancer.

As a powerful signal processing technology, wavelet transform
has been widely used in imaging, chromatography, vibration
spectroscopy, and so on (Sudarshan et al., 2016; Jiang and Ma,
2020; Wahab and O’Haver, 2020; Sun et al., 2017; Godinho et al.,
2014; Martyna et al., 2015; Dinç and Yazan, 2018). There are
reports that wavelet transform and data fusion were used in
combination with some other techniques to detect prostate
cancer and neurocysticercosis. Tiwari et al. fused the data of
magnetic resonance (MR), imaging (MRI), and spectroscopy
(MRS) using multimodal wavelets (MaWERiC) and found that
the MaWERiC had better detection results for prostate cancer
than any single data (Tiwari et al., 2012). Chavan et al. proposed a

FIGURE 2 | Acccv of the PLS-DA model using FTIR spectral data processed by WTD in four thresholds: heursure (A), minimaxi (B), rigrsure (C), and sqtwolog (D).

TABLE 2 |Calibration results for FTIR spectral data processed by different WTD algorithms. (The best threshold, wave function, and DL for the PLS-DAmodel are presented
in bold).

Threshold Wave function DL Calibration

Acccv (%) Specv (%) Sencv (%)

heursure db08 6 95.30 96.76 92.36
minimaxi fk4 7 95.27 99.05 88.75
rigrsure fk8 8 95.27 98.81 85.12
sqtwolog fk8 5 95.30 98.21 90.79

The meaning of the bold values is the best processing method for PLS-DA model.
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non-subsampled rotated complex wavelet transform
(NSRCxWT) extraction image fusion algorithm based on
computed tomography (CT) and MRI features and found that

the image quality processed under this algorithmwas much better
than the original image quality, which was more conducive to the
diagnosis of neurocysticercosis (Chavan et al., 2017). However,

FIGURE 3 | Acccv of the PLS-DA model using Raman spectral data processed by WTD in four thresholds: heursure (A), minimaxi (B), rigrsure (C), and
sqtwolog (D).

FIGURE 4 | Acccv of the PLS-DA model using FTIR and Raman spectral data processed by WTD in different DLs.
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the method of combining wavelet transform and data fusion
using FTIR spectroscopy and Raman spectroscopy has not been
studied in the diagnosis of lung cancer.

In this study, data fusion and wavelet transform were used in
combination with FTIR spectroscopy and Raman spectroscopy to
make full use of the FTIR and Raman spectral information of
serum samples, and then distinguish the serum of patients with
lung cancer from that of healthy people. The purpose is to explore
a wide applicable and high-accuracy diagnostic method for lung
cancer and to lay the foundation for the clinical application of
FTIR spectroscopy and Raman spectroscopy in the diagnosis of
lung cancer in the future.

MATERIALS AND METHODS

Serum Samples
Serum samples from 92 patients with lung cancer and 155
samples from healthy people were obtained from The First
People’s Hospital of Yunnan Province, and all research content
was conducted according to the Declaration of Helsinki.

Spectra Acquisition
FTIR spectra of serum were measured in the range of
4000–600 cm−1 by a Frontier spectrometer (Perkin Elmer)
with the same test method as in our previous work (Yang
et al., 2021a). Each IR spectrum was an accumulation of 32
scans at a resolution of 4 cm−1. Serum samples (30 μl) were
dropped on clean glass slides to measure Raman spectra using
a confocal micro Raman spectrometer (ANDOR SR-500-
type) in the range of 800–1800 cm−1 through a ×50
objective lens with an excitation wavelength of 532 nm for
the laser. The laser power at the serum sample was 12 mW.
Each Raman spectrum was scanned for 10 s and accumulated
three times.

Wavelet Threshold Denoising
Wavelet transform is the projection of signal on a wavelet base
(Rameshnath and Bora, 2019). It gradually refines the signal in
multiple-scale through expansion and translation operations
and, finally, realizes the time subdivision of high frequency and
the frequency subdivision of low frequency so as to focus any
details of the signal. In the wavelet domain, the wavelet
coefficient of the signal is larger than that of the noise. The
basic principle of wavelet threshold denoising is to set an
appropriate threshold. The wavelet coefficients larger than the
threshold are considered to be generated by the signal and
should be preserved. Those smaller than the threshold are
considered to be generated by noise and set to zero, thus
achieving the purpose of denoising (Donoho and Johnstone,
1995). Wavelet denoising removes noise and maintains the
details of the signal using multi-scale and multi-resolution
characteristics of wavelet transform. Compared with the low-
pass filter based on Fourier transform, wavelet denoising has a
better effect (Peng et al., 2021).

The effect of the WTD algorithm on FTIR and Raman
spectral data mainly depends on the optimal wavelet function,

wavelet decomposition level (DL), and wavelet threshold.
Choosing an appropriate wavelet function is helpful to
maximize the coefficient value in the wavelet domain.
Generally, the appropriate wavelet function is determined
by the specific practical requirements (Liu et al., 2021). In
wavelet decomposition, the choice of DL is also a very
important step. The larger the DL is, the more obvious the
characteristics of noise and signal are, which is more
conducive to the separation of them. Unfortunately, the
larger the number of DL is, the greater the distortion of
the reconstructed signal is. The selection of threshold is
divided into two parts: the selection of threshold function
and the selection of threshold. The commonly used threshold
functions are mainly soft threshold function and hardness
threshold function. The result of the soft threshold function is
smoother than the hard threshold, so the soft threshold
function was selected (Sanam and Shahnaz, 2013).

Spectral Data Preprocessing
In the process of spectral measurement, there are some inevitable
interference factors, such as background disturbance, light
scattering, and particle size, which influence the quality of raw
spectra and decrease the accuracy of classification models (Chen
et al., 2004). Therefore, several different preprocessing methods
were used in order to reduce the unnecessary signal variations,
such as normalization, Savitzky–Golay (SG) filter, first derivative
(FD), second derivative (SD), and standard normal variate (SNV)
(Roy, 2015; Everard et al., 2016).

Data Fusion
Date fusion is the process of integrating data from different
sources. The main purpose of data fusion is to find more
valuable data set, which might improve the accuracy of
prediction and present a better interpretation of the results (Li
et al., 2021). In this study, matrices of FTIR and Raman spectral
data were integrated into a single matrix. The FTIR matrix and
Raman matrix were concatenated on the column forming a two-
dimensional merged data matrix that has the same rows with the
analyzed samples.

Partial Least Squares–Discriminant
Analysis
PLS-DA is a linear pattern classification method, which is
widely used to deal with complicated data by reducing
dimension. In this study, all samples were divided into a
calibration set (60%) and a prediction set (40%) by the
Kennard–Stone algorithm. Samples of patients with lung
cancer were coded 1, while those of healthy people were
coded 2, and the discriminant threshold of the model was
set to 1.5. The performance of the PLS-DA model was
evaluated in terms of accuracy, specificity, and sensitivity of
calibration (Acccv, Specv, and Sencv) and prediction (Accp,
Spep, and Senp) (Yang et al., 2021b). The PLS-DA model,
spectral data preprocessing, and WTD algorithm were
performed using the MATLAB software (version R2019a,
MathWorks).
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TABLE 3 |Model performances of the PLS-DA model using FTIR spectral data with different preprocessing methods. (The best processing method for the PLS-DA model
are presented in bold).

Method Calibration Prediction

Acccv (%) Specv (%) Sencv (%) Accp (%) Spep (%) Senp (%)

No 93.26 96.78 86.51 94.95 98.31 90.00
Normalization 94.62 97.80 88.34 93.94 98.31 87.50
SNV 94.65 100.00 85.56 97.98 100.00 95.00
SG 93.91 96.73 89.09 94.95 98.31 90.00
SG + Normalization 93.94 98.98 84.61 96.97 96.61 97.50
SG + Normalization + SNV 93.91 99.16 81.30 94.95 100.00 84.50
FD 92.55 98.41 79.59 92.93 100.00 82.50
FD + Normalization 87.23 94.62 73.66 89.90 96.61 80.00
FD + Normalization + SNV 87.20 95.49 72.24 91.92 96.61 85.00
SD 77.68 75.17 85.20 79.80 72.80 90.00
SD + Normalization 77.74 81.59 69.99 81.82 86.44 75.00
SD + Normalization + SNV 78.39 82.44 74.94 83.84 88.14 77.50
WTD 95.30 96.76 92.36 94.95 94.92 95.00
WTD + Normalization 93.23 98.81 82.63 94.95 100.00 87.50
WTD + Normalization + SNV 95.27 97.08 92.36 95.96 94.92 97.50

No: No preprocessing; SNV: standard normal variate; SG: Savitzky–Golay filter; FD: first derivative; SD: second derivative; WTD: wavelet threshold denoising.
The meaning of the bold values is the best processing method for PLS-DA model.

TABLE 4 |Model performances of the PLS-DAmodel using Raman spectral data with different preprocessing methods. (The best processing method for the PLS-DAmodel
are presented in bold).

Method Calibration Prediction

Acccv (%) Specv (%) Sencv (%) Accp (%) Spep (%) Senp (%)

No 82.38 58.65 75.09 69.70 49.02 91.67
Normalization 85.13 91.13 74.60 72.73 76.47 68.75
SNV 83.83 85.59 80.29 69.70 64.71 75.00
SG 83.02 60.99 68.46 67.68 47.06 89.58
SG + Normalization 86.43 89.39 79.76 76.77 76.47 77.08
SG + Normalization + SNV 85.78 87.47 81.91 74.75 76.47 72.92
FD 79.72 90.28 55.03 54.55 88.24 18.75
FD + Normalization 82.53 92.90 58.30 80.81 84.31 77.08
FD + Normalization + SNV 83.15 93.28 60.80 83.84 84.31 83.33
SD 74.40 68.06 88.21 65.66 58.82 72.92
SD + Normalization 81.08 91.23 58.24 71.72 76.47 66.67
SD + Normalization + SNV 80.43 90.15 58.00 70.71 70.59 70.83
WTD 89.80 90.89 88.16 76.77 56.86 97.92
WTD + Normalization 89.18 93.65 80.44 69.70 64.71 75.00
WTD + Normalization + SNV 87.14 90.51 79.57 69.70 64.71 75.00

No: No preprocessing; SNV: standard normal variate; SG: Savitzky–Golay filter; FD: first derivative; SD: second derivative; WTD: wavelet threshold denoising.
The meaning of the bold values is the best processing method for PLS-DA model.

TABLE 5 | Performances of the PLS-DA model using data fusion combined with different preprocessing methods. (The best results for the PLS-DA model are presented in
bold).

Method Calibration Prediction

Acccv (%) Specv (%) Sencv (%) Accp (%) Spep (%) Senp (%)

No 92.86 96.99 84.67 93.41 98.04 87.50
Normalization 93.57 98.21 83.96 91.21 94.12 87.50
SNV 94.29 95.75 86.91 91.21 94.12 87.50
SG 95.71 100.00 87.69 92.31 98.04 85.00
SG + Normalization 92.86 97.19 84.13 91.21 90.20 92.50
SG + Normalization + SNV 91.43 98.10 76.62 91.21 90.20 92.50
WTD 95.00 97.80 90.25 93.41 96.08 90.00
WTD + Normalization 92.86 94.73 87.14 81.32 80.39 82.50
WTD + Normalization + SNV 92.86 95.95 85.56 81.32 80.39 82.50

No: No preprocessing; SNV: standard normal variate; SG: Savitzky–Golay filter; WTD: wavelet threshold denoising.
The meaning of the bold values is the best processing method for PLS-DA model.
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RESULTS AND DISCUSSION

Fourier Transform Infrared Spectra and
Raman Spectra of Serum
Figure 1 shows the FTIR spectra and Raman spectra of serum
samples. The main peaks and their assignments are listed in
Table 1. It can be found from Table 1 that the Raman spectra of
serum samples can provide more biological information than the
FTIR spectra of serum samples, such as porphyrin,
phospholipids, and glucose. It can be seen from Figure 1A
and Figure 1B that the IR spectra of serum from patients with
lung cancer are extremely similar to that of healthy people.
Figure 1C and Figure 1D show the Raman spectra of serum
from patients with lung cancer and that of healthy people,
respectively. Although some differences between the patients
with lung cancer and healthy people can be seen from the
original Raman spectra of serum samples, it is also necessary
to optimize and process the original FTIR and Raman spectral
data to distinguish them.

Model Performances for Spectral Data
Processed by Wavelet Threshold Denoising
In order to optimize the FTIR and Raman spectral data to
improve the classification effect of the PLS-DA model, ten
commonly used wavelet functions, bior2.2, coif1, coif3, db02,
db08, fk4, fk8, haar, sym5, and sym8, were tested. Each wavelet
function was performed under 1–8 wavelet DLs to study the effect
of DL on the denoising effect (Liu et al., 2021). At the same time,
four threshold acquisition methods, heursure, minimaxi, rigrsure,
and sqtwolog, were performed to further improve the denoising
performance. The optimal values of wavelet function, DL, and
wavelet threshold were determined by calculating the accuracy
(Acccv), specificity (Specv), and sensitivity (Sencv) at 7-fold cross-
validation by the PLS-DA model.

Model Performances for Fourier Transform Infrared
Spectral Data Processed by Wavelet Threshold
Denoising
Figure 2 shows the Acccv (mean value + error bar) of the PLS-DA
model using FTIR spectral data processed by WTD in four
thresholds. It is shown that the combination of different

thresholds and wavelet functions has different effects when
processing the same FTIR spectral data. Where the
combination of heursure and db08 (heursure-db08) has the
same and highest Acccv as the combination of sqtwolog and
fk8 (sqtwolog-fk8), but heursure-db08 has higher Sencv than
sqtwolog-fk8 (Table 2). Figure 4 shows the choice of the best
DL, where DL = 6 has the best performance for WTD (heursure-
db08) of FITR spectral data. Therefore, heursure-db08 and DL =
6 were selected as the optimal wavelet parameters for WTD of
FITR spectral data.

Model Performances for Raman Spectral Data
Processed by Wavelet Threshold Denoising
Figure 3 shows the Acccv (mean value + error bar) of the PLS-DA
model using Raman spectral data processed by WTD in four
thresholds. It is shown that the combination of minimaxi and
bior2.2 (minimaxi-bior2.2) has higher Acccv than the
combination of other thresholds and wavelet functions
(Figure 3D). Figure 4 shows that DL = 6 is the best DL for
WTD (minimaxi-bior2.2) of Raman spectral data. Therefore,
minimaxi-bior2.2 and DL = 6 were selected as the optimal
wavelet parameters for WTD of Raman spectral data.

Comparison of Wavelet Threshold Denoising With
Other Preprocessing Methods
After obtaining the optimal wavelet parameters, the spectral data
processed by WTD and other preprocessing methods were
analyzed with the PLS-DA model. Table 3 and Table 4 show
the accuracy, specificity, and sensitivity of FTIR and Raman
spectral data in the PLS-DA model, respectively. Compared
with the original spectral data and the data processed by other
preprocessing methods, the spectral data processed by WTD,
especially the Raman spectral data, obtained a good performance
in the PLS-DA model.

Data Fusion Combined with Wavelet
Threshold Denoising
In order to further improve the performances of the model, data
fusion was used to FTIR spectral data combined with Raman
spectral data to obtain more data information. Table 5 shows the
performances of the PLS-DA model using data fusion combined

FIGURE 5 | Score plot of the PLS-DA model using data fusion combined with WTD.
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with different preprocessing methods. It can be seen that the data
fusion has an improvement effect on each preprocessed data set.
Moreover, the fusion data processed by WTD has the highest
accuracy, sensitivity, and specificity in the PLS-DA model.
Figure 5 shows the score plot of the PLS-DA model using
data fusion combined with WTD. It can be seen that the
samples from patients with lung cancer coded 1 are separated
from those of healthy people coded 2 at threshold = 1.5. The PLS-
DA model shows good results with 93.41% Accp, 96.08% Spep,
and 90% Senp for the fusion data processed by WTD. The results
show that FTIR spectroscopy combined with Raman
spectroscopy based on data fusion and wavelet transform can
effectively distinguish the serum samples of patients with lung
cancer from those of healthy people.

CONCLUSION

Data fusion and wavelet transform were used in combination
with FTIR spectroscopy and Raman spectroscopy to study the
serum samples of patients with lung cancer and healthy people.
The results showed that the Raman spectra of serum samples can
provide more biological information than FTIR spectra of serum
samples. WTD filtered the invalid information from the original
spectral data, thus improving the performances of the PLS-DA
model. The performance of FTIR spectral data processed by
WTD in the model had higher accuracy than others. Although
the addition of Raman spectral data may increase the information
that is not conducive to the diagnosis of the PLS-DA model and
then reduce the performance of the fusion data processed by
WTD in the model, its combination with FTIR spectral data can
provide better biological information. Finally, the PLS-DA model
using the fusion data processed by WTD showed good results
with 93.41% accuracy, 96.08% specificity, and 90% sensitivity in
the prediction set, indicating that FTIR spectroscopy combined
with Raman spectroscopy based on data fusion and wavelet
transform could effectively distinguish the serum of patients
with lung cancer from that of healthy people. In our future
work, we will use richer wavelet denoising methods to
improve the performance of Raman spectral data in the
model, develop new methods that are more conducive to data

fusion by assigning different weights to different spectral datasets,
and then provide new methods for clinical screening and
diagnosis of lung cancer and other diseases.
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