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Abstract

Leaf fungal microbiomes can be fundamental drivers of host plant success, as they contain
pathogens that devastate crop plants and taxa that enhance nutrient uptake, discourage
herbivory, and antagonize pathogens. We measured leaf fungal diversity with amplicon
sequencing across an entire growing season in a diversity panel of switchgrass (Panicum
virgatum). We also sampled a replicated subset of genotypes across 3 additional sites to
compare the importance of time, space, ecology, and genetics. We found a strong succes-
sional pattern in the microbiome shaped both by host genetics and environmental factors.
Further, we used genome-wide association (GWA) mapping and RNA sequencing to show
that 3 cysteine-rich receptor-like kinases (crRLKs) were linked to a genetic locus associated
with microbiome structure. We confirmed GWAS results in an independent set of genotypes
for both the internal transcribed spacer (ITS) and large subunit (LSU) ribosomal DNA mark-
ers. Fungal pathogens were central to microbial covariance networks, and genotypes sus-
ceptible to pathogens differed in their expression of the 3 crRLKs, suggesting that host
immune genes are a principal means of controlling the entire leaf microbiome.

Introduction

Microbial communities perform essential functions for their host organisms in all branches of
life. In some systems, hosts can tightly control the microbes with which they form symbioses
[1,2]. In others, the composition of the microbiome is more governed by ecological interac-
tions such as the order of species arrival or abiotic conditions during colonization [3,4]. A key
goal of microbial evolutionary ecology is to determine how both host and nonhost factors
influence microbiome assembly [5], particularly in natural settings where host influence is
more challenging to study.
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Communities that colonize available niches in the process of succession follow certain pre-
dictable ecological patterns. Early-arriving species are typically those with effective long-range
dispersal, while the climax community is dominated by species that can more effectively use
resources under competition [6]. While these broad patterns are generalizable, the composi-
tion of any particular successional community depends greatly on both the habitat colonized
and interspecific interactions such as priority effects, where the order of arrival of taxa governs
the success of later arrivals [7,8]. While most successional theory is based on studies in macro-
scale organisms, the principles of succession are evident in microbial communities as well, but
on a more rapid timescale [9-11].

In the case of microbiomes, host factors governing microbial succession must also be con-
sidered. Since the composition of the microbiome can greatly impact host fitness, it can be
evolutionarily beneficial for the host to play a role in the successional process, encouraging
mutualist colonization while dispelling pathogens as the community assembles. Hosts express
genes that influence colonizing microbes through several means, including immunity, mor-
phological adaptations [12], and chemical exudation [13]. While the immune system is often
effective at preventing detrimental infections, immune receptors may recognize and exclude
beneficial microbes if elicitors are structurally similar to a pathogen, so specific immunity can
have wider impacts on the microbiome [14]. Hosts require finely calibrated mechanisms for
attracting beneficial microbes without attracting pathogens in a constant coevolutionary push
and pull.

The phyllosphere microbiome, consisting of the microbes on and inside the plant leaf, com-
prises diverse taxa that impact plant health and productivity [15-18]. Leaf fungi in particular
are common plant pathogens [19], but nonpathogenic taxa may perform beneficial functions
for the host, including nutrient uptake and pathogen antagonism [20-25]. Since the phyllo-
sphere microbiome of perennial plants is reassembled at the start of each growing season in
freshly sprouted tissues, [26,27] it may show similar patterns to macro-scale secondary succes-
sional communities. Recent research has shown that host control of the leaf microbiome is
often governed by numerous loci of small effect directly impacting relatively few microbes
[28-30].

We hypothesized that the phyllosphere fungal microbiome develops seasonally as a succes-
sional community controlled by environmental factors, host genetics, and interspecific fun-
gal-fungal associations. We used amplicon sequencing to compare the relative importance of
these factors in the phyllosphere fungi of a replicated diversity panel of switchgrass (Panicum
virgatum [31]). We tested whether communities change directionally and whether the trajec-
tory of succession differed across switchgrass genetic subpopulations and across different
growing sites. Additionally, we sought to uncover whether specific genetic loci underlie host
control of the microbiome through genome-wide association study (GWAS) and RNA
sequencing analyses. Finally, we investigated the roles of specific fungal taxa in the microbiome
through network analysis. Specifically, we aimed to determine whether known switchgrass leaf
pathogens [32] covary with nonpathogenic symbionts, or are peripheral to microbial
communities.

Results
Succession varies across host subpopulations and planting sites

Switchgrass is a highly genetically diverse perennial grass native to North America, and both
plant traits and switchgrass—microbe interactions vary across its range [31-33]. We leveraged
this diversity to assess the difference in microbial communities across the 3 main switchgrass
subpopulations by randomly selecting 106 genotypes from a diversity panel [31] planted at our
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focal site, the Kellogg Biological Station (KBS), Michigan, United States of America. Of these,
28 genotypes were from the Midwestern subpopulation, 38 from the Atlantic, 31 from the
Gulf, and 9 showed signs of admixture between groups (Intermediate). These subpopulations
differ in morphological and ecological characteristics, so we expected that fungal succession
would differ as well across subpopulations. Switchgrass subpopulations correspond roughly to
3 morphological ecotypes: Midwest genotypes are mostly Upland, Gulf are Lowland, and
Atlantic mostly Coastal [31]. Since the samples used in this study largely followed this pattern,
subpopulation differences can also be considered ecotypic differences. We examined succes-
sion over time by sampling leaf tissue from each plant at 5 time points, then sequencing the
internal transcribed spacer (ITS) region of the phyllosphere-associated fungi in and on the
leaf. After quality filtering, we clustered 47.8 million ITS reads to 6,756 fungal operational tax-
onomic units (OTUs) that varied across genotypes and over time.

To determine the directionality of successional changes in the microbiome, we visualized
community differences with nonmetric multidimensional scaling (NMDS). NMDS accurately
preserved sample distances in reduced dimensions (Stress = 0.102; S1 Fig) and revealed clear
temporal community structure. NMDSI clustered closely with the date of collection, while
NMDS2 clustered more with host genetic subpopulation (Fig 1A). Notably, the first sampling
date was highly distinct from the later time points, showing greater variation within that time
point, as well as divergence from later time points (Fig 1). To explore the statistical significance
of patterns of succession, we used permutational multivariate analysis of variance (PERMA-
NOVA). Both sampling date (day of year, DOY) and subpopulation had significant effects on
community structure, but differed greatly in their explanatory power (Table 1). At the focal
site, KBS, collection date (DOY) explained the greatest amount of variation (19.4%), followed
by genetic subpopulation (5.7%), and there was a significant date-by-subpopulation interac-
tion (2%). To assess the impact of disease on leaf microbiome, we performed a separate test
with the subset of samples for which we were able to collect both infected and symptomless
leaves. We restricted permutations within individual plants to perform the equivalent of a
paired test of infection effects, resulting in a significant infection term that explained 7.79% of
the variation in community distance (p < 0.001).

In order to directly test the differences in succession across subpopulations, we modeled
changes in the multidimensional representation of fungal communities as directional trajecto-
ries [34]. Across the season, fungal communities on individual plants showed parallel changes
over time, with almost no reversals to earlier community states (Fig 1B), strongly indicating a
successional pattern. Switchgrass genetic subpopulations differed in both mean trajectory
length (df = 3, F = 2.786; p = 0.0453) and mean overall direction (df = 3, F = 3.677; p = 0.0151).
While little subpopulation difference is evident at the beginning of the season, climax fungal
communities were markedly different in the Midwestern population, which showed the great-
est divergence from others in trajectory direction (Fig 1B, Midwest-Atlantic; Tukey honest sig-
nificant difference [HSD] = 0.013, p = 0.050). This provided initial evidence that, while fungal
dispersal is similar across plant subpopulations, host plants influence the climax state of fungal
communities. Further, we tested for differences between genotypes that were presenting rust-
associated symptoms and genotypes that were not presenting symptoms. Infected and symp-
tomless plants changed along parallel trajectories that differed in length (df = 1, F = 5.274,

p =0.0238), but not in directionality (df = 1, F = 0.652, p = 0.421).

Fungal microbiomes can be greatly influenced by environmental factors in addition to host
factors. Therefore, we compared succession across environments by selecting a subset of 8
plant genotypes replicated in 3 additional sites across a latitudinal gradient in the USA. From
north to south, these field sites were Columbia, Missouri; Austin, Texas; and Kingsville, Texas
(S2 Fig). We sampled each site at 3 time points, standardized by phenology to account for
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Fig 1. Structural and successional change in the leaf phyllosphere community shown by 2 methods. Each point represents an individual plant sampled from the
experimental plot at KBS, Michigan. (A) NMDS. Dates are shown as DOY. Points are colored by DOY, and switchgrass subpopulations as shapes. (B) Trajectory plots of
principal coordinates of community distances. Transparent arrows represent individual switchgrass genotypes sampled over the 5 dates shown in (A), and colors show
genetic subpopulations. Solid colored arrows show mean subpopulation trajectories. Data underlying this figure can be found in S1 Data. DOY, day of year; KBS, Kellogg
Biological Station; NMDS, nonmetric multidimensional scaling.

https://doi.org/10.1371/journal.pbio.3001681.9001

seasonal differences across sites (S3 Fig). At most sites, collection date correlated with both
NMDS1 and NMDS2 (Fig 2; stress = 0.103). However, the northern and southern sites were
divided on a diagonal line orthogonal to collection date. The northern sites KBS and Colum-
bia, Missouri formed one cluster, while the southern sites, Austin, Texas and Kingsville, Texas
formed another (Fig 2). Differences across sites accounted for 29.6% of the variation in com-
munity dissimilarity across sites, but sampling date and subpopulation also structured the
community to a lesser extent (Table 1). While succession may show temporal patterns in
southern sites, the composition of fungal communities on leaves is largely distinct. A
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Table 1. PERMANOVA of a Bray-Curtis community dissimilarity matrix for genotypes at the focal site (n = 106) and those replicated across sites (n = 8).

KBS sequential

Df SumOfSqs R? F Pr (>F)
DOY 1 15.6 0.194 143.64 0.001
Subpopulation 4.6 0.057 14.03 0.001
DOY:Subpopulation 1.6 0.02 4.97 0.001
Residual 538 58.5 0.728
Total 545 80.3 1
Multisite sequential

Df SumOfSqs R? F Pr (>F)
Site 3 4.6 0.296 12.14 0.001
DOY 1 1.1 0.072 8.88 0.001
Subpopulation 2 0.7 0.046 2.82 0.001
DOY:Site 3 1.4 0.090 3.70 0.001
Residual 61 7.8 0.496
Total 70 15.6 1.000

DOY is sampling date, subpopulation indicates genetic group, and site indicates planting site. Terms are shown with sequential effects. All terms were significant with o

< 0.05.

DOY, day of year; KBS, Kellogg Biological Station; PERMANOV A, permutational multivariate analysis of variance.

https://doi.org/10.1371/journal.pbio.3001681.t001

significant site:sampling date interaction term indicates that succession differs across sites, but

additional samples may be needed to fully understand this pattern.

Host genetic subpopulations support divergent fungal communities

Beyond differences at the level of subpopulations, we expected that within-subpopulation

genetic differences would impact fungal diversity. To further examine genetic differences over
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Fig 2. Site-specific changes in microbial communities shown by NMDS. Genotypes were sampled at 4 sites. From
north to south: KBS, Michigan; Columbia, Missouri; Austin, Texas; and Kingsville, Texas. Northern sites are shown by
symbols, and southern by open shapes. Color indicates phenological stage sampled, “Early” samples were taken just
after emergence, “Mid” samples were taken during seed development, and “Late” samples were taken after senescence
began. Data underlying this figure can be found in S2 Data. NMDS, nonmetric multidimensional scaling.

https://doi.org/10.1371/journal.pbio.3001681.9002
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time, we compared host genetic distances to fungal community differences between plants at
the focal site, KBS. Genetic distances, calculated as Nei’s distance using 10.2 million single
nucleotide polymorphisms (SNPs) [35], revealed that host population genetic structure largely
matched the 3 major switchgrass genetic groups observed previously: “Gulf,” “Atlantic,” and
“Midwest” [31] (Fig 3A). These 3 subpopulations are deeply diverged and serve as discrete
gene pools within which we tested for host-driven fungal community divergence. Fungal com-
munity distances, calculated as Bray—Curtis community dissimilarity, varied across sampling
dates, but largely recapitulated the genetic structure of switchgrass (Fig 3B and 3C). Notably,
Mantel tests showed that fungal community structure was most closely correlated with host
genetic structure at DOY 260, when most plants had set seed (r = 0.453), but declined as senes-
cence progressed (Fig 3D). While we anticipated some degree of genetic influence, subpopula-
tions were even more highly structured than expected, with almost half of the variation in
fungal community distance explained by genetic distance when plants are setting seed (DOY
260). To confirm this pattern, we estimated pseudo-heritability values for community struc-
ture using the kinship matrix as a random effect in mixed models. Overall, there was weak her-
itability for variation on the second NMDS axis (H? = 0.132 £ 0.043), but this may be
attributable to high variation across time points (DOY 158: 0.120 + 0.188, DOY 212:

0.164 + 0.146, DOY 233: 0.184 £ 0.733, DOY 260: 0.950 + 0.176, DOY 286: 0.913 + 0.352).

Such tight host-microbiome genetic diversity associations imply a genetic basis of influence
on fungal community dynamics by their plant hosts. To identify the genetic loci that might
underlie this pattern, we calculated genome-wide associations (GW As) for microbiome struc-
ture. We used the second NMDS axis at DOY 260 from the above analysis (Figs 1 and S4) to
represent microbiome structure, since it showed the greatest clustering with subpopulation
(Figs 1A and 3C, additional time points in S5 Fig) and controlled for large-scale host genetic
structure by including a single variate decomposition of pairwise genetic distance as a covari-
ate in the linear models. We found several loci associated with the phenotype at a 5% false dis-
covery rate (FDR), but the GWA showed an excess of low p-values (quantile-quantile plot: S6
Fig) so we used a more conservative Bonferroni-corrected threshold to identify significant
SNPs (Fig 4A). This threshold revealed only 1 SNP on chromosome 2N significantly associated
with microbiome structure, Chr02N_57831909. This SNP is closely linked to several genes in
the switchgrass v5.1 genome annotation (Fig 4B and 4C). The 3 closest genes are homologous
to receptor-like kinases (RLKs) annotated in the closely related Panicum hallii (2 copies of cys-
teine-rich receptor-like protein kinase 6; XP_025800480.1 and XP_025800481.1, and 1 copy of
cysteine-rich receptor-like protein kinase 10; XP_025801715.1). This class of RLKs is diverse in
plants, but is known to contain many immune receptors [36], indicating a potential role for
these genes in host control of fungi.

We corroborated the importance of these candidate genes by comparing their expression
levels in divergent genotypes at the 3 of the 4 sites where phyllosphere experiments were con-
ducted, KBS, Columbia, and Austin. In each site, we sequenced leaf tissue RNA from multiple
biological replicates (n > 3) from 4 genotypes: 2 that are typically more susceptible to leaf fun-
gal pathogens (Midwest upland VS16 and DAC) and 2 that typically are more resistant (Gulf
lowland WBC and AP13) [32]. Consistent with host-gene driven variation in fungal commu-
nity assembly, all 3 candidate genes were much more highly expressed in susceptible than
resistant genotypes (Wald tests; Table 2). These differential genotype-specific patterns of
expression were very similar across planting sites (likelihood ratio test for ecotype X site inter-
action, p = 0.354).

As further confirmation of the importance of the outlier SNP, we selected several genotypes
that were not in the original study (# = 20) containing differing alleles of the outlier SNP. We
used the same protocols as the first round of sampling, but only sampled at one location at 2
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https://doi.org/10.1371/journal.pbio.3001681.9004

time points, KBS, Michigan. Fungal microbiomes in these samples conformed closely to our
predictions, with allelic variation at the Chr02N_57831909 locus influencing microbiome
structure (PERMANOVA F = 1.84, p = 0.016, R® = 0.064; S7 Fig). Although this was a smaller
subset of samples taken 3 years after the original samples, we were also able to confirm a strong
temporal influence on microbiome structure between the 2 time points (PERMANOVA

Table 2. Wald test for expression differences in 3 candidate genes between Midwest (more susceptible) and Gulf (more resistant) populations.

Wald test

Base mean Log fold change SE w p-value
Pavir.2NG521906 12.91 3.22 0.81 3.95 7.89E-05
Pavir.2NG521912 313.63 1.99 0.16 12.25 0.00E+00
Pavir.2NG521915 189.09 5.33 0.30 17.94 0.00E+00
Data underlying this table can be found in S1 Data.
https://doi.org/10.1371/journal.pbio.3001681.t002
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F =16.80, p < 0.001, R* = 0.293; S7 Fig). In addition, we sequenced the fungal large subunit
(LSU) in these samples to exclude any primer bias against any taxonomic group. LSU
sequences showed a similar temporal pattern to fungal ITS and were structured with the
Chr02N_57831909 locus in a strikingly similar pattern to ITS (PERMANOVA F = 2.66,

p =0.001, R* = 0.086; S7 Fig). For both amplicons, population structure as indicated by PCs 1
and 2 of the genomic SVD explain some variation in the microbiome, but not as much as alle-
lic variation at Chr02N_57831909. Together, these results suggest that the Chr02N_57831909
locus has a stable and deep influence on the microbial community.

Yeasts, pathogens, and mycoparasites are core phyllosphere microbiome
members

Given the large differences in leaf pathogen susceptibility across switchgrass subpopulations,
we sought to determine the influence of pathogenic fungi on other members of the fungal
microbiome. We examined the taxonomic relationships of the 7392 OTUs in our dataset
through a hybrid method that compares matches across fungal databases and BLAST (Basic
Local Alignment Search Tool) hits [37]. We identified 6,756 OTUs as fungi, and excluded 633
plant, and 3 metazoan OTUs. We performed NMDS and PERMANOVA analyses using the
full fungal community, but focused our taxon-specific analyses on OTUs at the focal site that
were present at high occupancy across time and showed relatively high abundance, often
referred to as the “core” microbiome [38]. This group consisted of 128 OTUs, the majority of
which were Dothideomycetes (43.5%) and Tremellomycetes (28.7%, S1 Table). We assigned
each of the core OTUs to a functional guild when possible using published literature (S1
Table). Of the core group, 23 OTUs were grass pathogens, and 9 were documented pathogens
of other plants. Four were known mycoparasites, fungi that prey upon other fungi. Three were
generalist decomposers or had an unclear functional guild, and the remaining 52 were yeasts
or yeast-like fungi. Compared to fungal species in soil, these taxa were especially enriched for
grass pathogens and yeasts and contained much fewer saprophytes [39].

To investigate how these functional guilds associate, we built covariance networks using
OTU relative abundances at each time point (Fig 5A). We summarized network statistics
across functional guilds to show that known grass pathogens are central to covariance net-
works, with high betweenness centrality (extent to which a node lies on paths connecting
other nodes) and degree (overall number of connections; Fig 5E). Standard deviation was high
within this group, however, reflecting seasonal and within-group differences. Yeasts, in con-
trast, showed higher modularity (compartmentalization; Fig 5E). This indicates that, while
yeasts are overall more speciose in the core microbiome, they covary less with the rest of the
microbial community than pathogens. Since yeasts are thought to be mostly commensal
inhabitants of the outer leaf surface [40], this difference may reflect their ecological or spatial
niche.

In addition to varying among functional groups, OTU covariance also significantly changed
over time as supported by the bootstrap-permutation based network comparisons between
each sampling point (Fig 5A and S6 and S2 Tables). To identify positive or negative covariance
temporal patterns within network members, we generated a Class-level heatmap showing the
proportion of edges linking OTUs within or between each Class at each time point (S8 Fig).
Due to the high proportions of Dothideomycetes (mixed guilds) and Tremellomycetes (yeast)
in the core, the majority of edges at every time point were within (38.3% to 48.6%) and
between (9.9% to 14.5%) OTUs in these classes. While the proportion of positive edges main-
tained more or less stable with time between OTUs in the Dothideomycetes (from 20.0% to
23.9%) and Tremellomycetes (from 23.0% to 17.4%) or within the 2 classes (from 3.6% to
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Fig 5. Network analysis of core OTUs. (A) Covariance networks of core OTUs over time. Nodes are colored by each OTU’s relative abundance in infected leaves with
visible symptoms. The shape of the node denotes network position, defined by Zi-Pi ratio. Edges are colored by the covariance sign. (B) Infection indicator taxa, including
best taxonomic match and z-score for indicator analysis. (C) Number of OTUs identified as important by several methods: MTV-LMM analyses that indicate time-
dependent OTUs, OTUs that impact the successional trajectory, and core OTUs with high occupancy-abundance. (D) Taxonomic information for the 14 OTUs identified
in all 3 analyses in (C). Best match denotes the lowest taxonomic level confidently identified for each OTU using BLAST. Guilds were estimated based on published
studies, references are in S1 Table. (E) Network statistics for fungal guilds, calculated as mean values across all time points, with (SD. Data underlying this figure can be
found in S5 Data. DOY, day of year; MTV-LMM, microbial temporal variability mixed linear model; OTU, operational taxonomic unit; SD, standard deviation.

https://doi.org/10.1371/journal.pbio.3001681.9005

2.8%), negative edges between classes increased from DOY 158 (6.7%) to DOY 233 (9.7%) and
DOY 286 (11.7%). This may indicate competition for host resources between these 2 classes of
fungi, resulting in more spatially heterogeneous distributions in the late season.

While patterns in this core group reflected major changes in the fungal microbiome, we
used several alternate methods to identify important OTUs. In addition to the core, we modi-
fied trajectory analyses (Fig 1B) by computationally removing each OTU from the analysis and
calculating the change in the overall community trajectory [34]. Nineteen OTUs significantly
impacted trajectories when they were removed, all of which overlapped with the core group
(Fig 5C). To examine priority effects, we used microbial temporal variability mixed linear
models (MTV-LMMs), which identify taxa for which variation in earlier time points explains
variation in later points [41]. Of the 153 OTUs we found in this analysis, 49 overlapped with
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the core, and 14 with both the core and trajectory analysis (Fig 5C). The 14 OTUs that were
identified as important using all 3 methods (Fig 5C and 5D) included taxa from several puta-
tive functional guilds, including yeasts, pathogens, and mycoparasites. Network connections
confirmed mycoparasitic interactions; we found a negative relationship between putative plant
pathogens Mycosphaerella tassiana and Microdochium seminicola versus mycoparasitic Epicoc-
cum dendrobii. In addition, we used indicator species analysis to identify OTUs that were over-
represented in leaves with fungal disease symptoms (Fig 5A). Although the major fungal
pathogen of switchgrass, Puccinia novopanici, was not identified as a core taxon, indicator spe-
cies analysis showed that putative mycoparasite Sphaerellopsis filum is present in the core and
significantly associated with fungal infection symptoms (OTU_4; Fig 5A).

Our analyses mostly identified the taxa that were abundant across samples. Rare taxa can be
important in microbial community functioning [42], but their role in overall ecological pat-
terns is less clear and more challenging to study. Therefore, we only examined rare taxa that
we expected a priori to play an important ecological role. Claviceps species were present in
119/760 samples, and were more highly abundant in the early season. Claviceps species pro-
duce alkaloid compounds that deter grazing [43], so this endophyte may play a role in protect-
ing young grass shoots. Metarhizium, a related genus, was present at low abundances in 43/
760 samples in the Columbia, Missouri and KBS, Michigan sites. Metarhizium species are
insect-pathogenic fungi [44], so may provide a similar protective role.

Discussion

Our results show strong support for the importance of time, geographic location and host
genetics in influencing the switchgrass phyllosphere microbial succession over the growing
season. We found evidence for clear successional dynamics that were consistent in direction
across growing sites, but were distinct in community composition. Fungal communities were
different across host genetic subpopulations, a pattern that may be driven by variation at 3
linked immune receptors. Leaf fungal communities are taxonomically diverse, but a few highly
abundant pathogens and yeast species play a disproportionate role in shaping community
progression.

Viewing the switchgrass leaf microbial community through the lens of succession allowed
us to delineate ecological patterns in these communities. Multidimensional scaling representa-
tions of the leaf communities at the focal site revealed a clear clustering by date of collection
on the first NMDS axis (Fig 1). This indicates that, as we predicted, date of collection is an
important source of variation in the switchgrass leaf fungal community. Further, measuring
the trajectories of these communities showed that succession is both directional and determin-
istic, since no samples showed negative trajectories (reversals of succession) by the end of the
season, and most samples followed a similar trajectory (Fig 1B). We observed similar patterns
to other studies that show early-season leaves as highly distinct from later time points, perhaps
owing to greater influence from soil microbes [16,45]. While the overall shape of trajectories
was similar among samples, the Midwestern population deviated from others, particularly in
the late season. The Midwestern population is notable since we have previously shown that it
is more susceptible to several fungal pathogens such as leaf rust (Puccinia novopanici) and leaf
spot (Bipolaris spp.; [32]; also see [46]) and has on average an earlier phenology than the other
population groups [33]. Leaf microbiome relationships are consistently distinct in this popula-
tion and may be linked to other traits such as cold tolerance that also differ [31,33].

In addition to temporal differences across subpopulations, the composition of fungal leaf
communities differed markedly across geographic locations. This may be partially due to sea-
sonality differences across the region we examined. The Kingsville, Texas site did not
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experience freezing temperatures between 1989 and 2020 (NOAA weather service), so peren-
nial grasses in the region may have living aboveground tissue year-round. Growing season
length has been shown as an important factor in governing the abundance and diversity of
endophytic fungi [47], so it is unsurprising that we saw large differences across this latitudinal
gradient. However, many other factors that influence fungal communities also differ across
these sites, including precipitation regime, soil type, and surrounding vegetation, so further
work is needed to determine if the growing season is truly the causal factor.

We predicted that fungal communities would be impacted by host genetics as well as loca-
tion. We found several lines of evidence for genetic control of the leaf microbiome. In addition
to examining differing successional trajectories across subpopulations, we tested the covari-
ance of genetic distance and fungal community differences using Mantel correlations.
Genetic-fungal community correlations increased until DOY 260, then declined as host senes-
cence began. Mantel tests are inappropriate for some ecological tests and often underestimate
p-values, but can be useful for exploratory analysis of distance matrices [48]. While there was
high variation in our pseudo-heritability estimates, the fact that they mirror temporal patterns
in the Mantel tests strengthens the general trend of greater genetic associations in the late sea-
son. Previous studies have found similarly high variation in microbiome heritability estimates
across time [29], so it is not surprising to see this in our case. Deng and colleagues calculated
H? for individual OTUs, which ranged from 0 to 0.66 and a Mantel’s correlation of r = 0.13
between genetic and microbiome composition in sorghum rhizosphere. This value of 7 is
lower than we saw in our study, possibly since it was based on a relatively small subset of sam-
ples. When selecting samples for this study, we randomly chose equal numbers of samples
from the 2 major switchgrass morphological ecotypes, upland and lowland switchgrass [49]
(S2 Fig). Lowland switchgrass, which is more highly represented in Gulf and Atlantic subpopu-
lations, is more resistant to several leaf fungal pathogens [32], so subpopulation differences
may be at least partially driven by differences in immunity across these genotypes. Since patho-
gens such as Microdochium and Alternaria were among the most abundant taxa in our sam-
ples, their differences across subpopulations may have driven overall community differences.
In addition to immunity, however, subpopulations differ in other traits that may contribute to
fungal colonization differences, such as leaf wax content [50], exudate concentration [51], and
phenology [33,49], so microbiome differences may be responding to multiple host plant traits.

A replicated receptor-like kinase is associated with fungal differences

We found one outlier SNP associated with microbiome structure. While there were several
peaks in the Manhattan plot (Fig 5A), our analysis showed a strongly skewed distribution of
observed versus expected p-value (S6 Fig), indicating a risk of Type I errors. This is probably
attributable to the low sample size in this GWAS. The influence of the identified locus is fairly
strong, contributing to a clear decrease on NMDS axis 2 when the minor allele is present
(MAF = 0.083; S9 Fig). This SNP is not in Hardy-Weinberg equilibrium in switchgrass; we
found only one minor-allele homozygote among our samples. This abnormal pattern may be
attributable to structural variation at this locus. Switchgrass subpopulations vary widely in
genome structure, which may result in alignment mismatches that resemble SNPs, particularly
in regions with multiple gene copies [52]. Indeed, this region shows an elevated number of
insertions and deletions compared to nearby sections of the 2N chromosome (S10 Fig, data
from [31]) and is adjacent to a region dense with repetitive long terminal repeat retroelements
(positions 60960000-60980000). Given the confirmatory results for this locus as well as the
RNA sequencing results, however, we expect that there is a true phenotypic association with
the locus, but that it may be with a structural variant rather than a true SNP.
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The 3 nearby genes we identified were replicated variants of a cysteine-rich RLK whose
function has not been experimentally verified in Panicum. RLKs are one of the largest plant
gene families, including over 600 members in Arabidopsis [36]. The best studied of these is
FLS2, which detects the bacterial flagellin protein and initiates an immune response cascade
[53]. The 3 RLKs we identified show high sequence similarity to immune-related cysteine-rich
RLKs in Arabidopsis and Oryza, and contain the “stress-antifungal domain” PF01657, which
has been linked to salt stress as well as fungal responses when present in several proteins
[54,55]. Arabidopsis CRK5, for example, alters defense responses either through resistance to
infection or programmed cell death, depending on how the gene is expressed [56], and CRK6
and CRK 14 are involved in the general non-self-response [57]. Related Arabidopsis genes
may be the targets of immune repression by bacterial strains [58]. Similarly, the Oryza gene
LIL1 (Os07g0488400) improves fungal rice blast resistance when overexpressed [59]. The pat-
tern of these receptors being more highly expressed in pathogen-susceptible plants may seem
counterintuitive given that many RLKs are immune receptors. However, this can often occur
when pathogens produce effector proteins that target immune receptors [60]. Necrotrophic
fungi in particular can benefit by over-inducing plant immune receptors to initiate pro-
grammed cell death, [61,62] then feeding on dead plant tissue.

Since allelic variants at this locus have now been associated with variation in the fungal
microbiome across several years in natural populations, it may represent a useful target for
future research into genetic control of the leaf microbiome. Previous research has shown that
microbiome control is often polygenic, with many contributing loci of small effect [28-30].
Uncovering only a single causal locus in this study may be a product of the relatively low sam-
ple size; there are more loci associated with microbiome community structure that did not
meet the GWAS cutoff, but may contribute to a polygenic architecture for this trait.

Pathogens and hyperparasites are important in succession

We used several methods to identify important taxa in the phyllosphere community. In several
other recent studies, genetic effects on microbiomes appear to be targeted toward particular
microbes, with the effects permeating through the community through ecological effects
[28,63,64]. We used “core” microbiome analysis to identify OTUs that show high occupancy
(presence across multiple samples within a time point [16]). We found that core taxa over-
lapped well with important taxa identified by MTV-LMMs and trajectory analysis. We can
therefore be confident that this group of taxa is influential in the switchgrass phyllosphere (Fig
5). Within this group, we identified several as pathogens, including Alternaria, Mycosphaerella,
Microdochium, and Taphrina. It is challenging to assign functional guilds to symbiotic fungi,
since their benefit or detriment to the host may depend strongly on phenology, abiotic condi-
tions, and ecological interactions [65]. For example, many endophytic fungi are commensal
for most of the season, then shift to breaking down plant tissue as the host begins senescence
[66]. Others may be weakly pathogenic, but may improve overall host fitness by enhancing
nutrient uptake or preventing infection by more effective pathogens [23,67].

Yeasts and yeast-like fungi were also well represented in phyllosphere samples. Yeasts were
historically thought to be dominant in the phyllosphere [68], but this may have been an artifact
of methods used. Yeasts are more easily culturable than filamentous fungi, and are therefore
overrepresented in studies using cultures to measure fungal diversity. The exact relationship
between yeasts and plant hosts is not totally clear, but they are typically thought to be mostly
commensal symbionts, feeding on small amounts of sugars on the leaf surface [69].

At the focal site, Tremellomycete yeasts and Dothideomycetes dominated the core micro-
biome and covaried negatively through time. This may be explained by different spatial
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distributions across samples; Tremellomyctes dominate some samples and Dothideomycetes
other samples, but they rarely coexist. Priority effects, wherein early-arriving taxa gain advan-
tage over late-arriving taxa, may therefore play a role in governing colonization in these taxa.
Certain Tremellomycete yeasts have been shown to be potential biocontrol agents against
pathogens, e.g., Papiliotrema spp. [70], and others have been shown to be “hub” taxa or nega-
tively connected with leaf pathogens, e.g., Dioszegia spp. [63], both genera with high abun-
dance in our focal site dataset.

One unexpected finding of our taxon-specific analysis was that 2 mycoparasites were identi-
fied as important taxa, Epicoccum and Sphaerellopsis. Epicoccum is an ascomycete genus com-
prising several species with noted antifungal properties [71,72]. The species we identified in
this study, Epicoccum dendrobii, is being investigated as a biocontrol agent of the pathogenic
anthracnose fungus Colletotrichum gloeosporoides [73]. Similarly, Sphaerellopsis filum has been
observed infecting multiple species of Puccinia rusts [74,75] and has been shown specifically to
reduce switchgrass rust infection [76]. Another surprising finding was that switchgrass rust
was not a core species, despite the fact that its disease symptoms are nearly omnipresent each
year in the sites we studied [32]. Fungi in the Pucciniaceae family have an ITS sequence that
differs substantially from general fungal primers used in this study, which we suspect resulted
in reduced amplification of Puccinia rusts. We confirmed this suspicion by additionally
sequencing the LSU for our confirmatory analysis; using ITS failed to identify any Puccinia
rusts in these samples, but LSU identified 10 OTUs as Puccinia present in 18 of 20 samples.
There were more than double the Puccinia OTU counts in individuals with the major allele at
the focal outlier locus, but a large outlier obscures a reliable statistical pattern. The ubiquity of
the Sphaerellopsis hyperparasite is a further indication that Puccinia may be more prevalent
than our sequencing data show, a speculation that is supported by the fact that Sphaerellopsis
was identified by indicator species analysis as clearly overrepresented in leaves with rust infec-
tion. The other OTU most closely associated with disease symptoms is OTU_4, Microdochium.
While we could find little evidence of known associations between Puccinia and Microdochium
pathogens in published studies, this result suggests that they may have a synergistic effect on
host disease.

Bacterial microbiomes may be just as important to leaf function as fungi [16], although eco-
logical patterns may differ in some important ways. We used fungi in this study because they
contain more known switchgrass pathogens and may be documented more clearly within leaf
tissue without conflict by chloroplast DNA. However, interplay between microbial groups is
an essential component to microbiome ecology. Interactions between fungi, bacteria, viruses,
microfauna can all mediate impact on hosts. Bacteria [77] and viruses [78] have documented
impacts on the functioning of host-dependent fungi in complex and fascinating multilevel
interactions. Beyond individual interactions, functional microbiomes in soils require both
diverse fungi and bacterial communities, so influence between these groups is impossible to
connect to just one single microbe [79].

Conclusions

Switchgrass leaf fungal communities are highly diverse, and are influenced by both host and
environmental factors. Succession occurs each season as communities are assembled through
stochastic, environmental, and host-determined processes. Pathogenic fungi play a critical role
in the switchgrass leaf phyllosphere community, determining both the trajectory of microbial
community development and acting as central nodes in community networks. Host immune
genes such as receptor-like kinases control pathogens directly, and the prevalent mycoparasites
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that prey on them indirectly. The plant genes that control pathogens may therefore provide a
principal means by which plants influence changes in their fungal microbiome.

Materials and methods
Plant material

We collected switchgrass leaves from a diversity panel established for a separate study [31]. In
brief, researchers planted arrays of 732 genotypes of switchgrass clonally replicated at over 15
sites in the USA and Mexico. These genotypes were collected from across the USA, grown in
controlled conditions, then clonally split before replanting at all sites. Since 2018, they have
been growing in 1.3 m spaced grids with minimal interference for weed control [31]. Research-
ers used Illumina HiSeq X10 and Illumina NovoSeq6000 paired-end sequencing (2 x 150bp) at
HudsonAlpha Institute for Biotechnology (Huntsville, Alabama, USA) and the Joint Genome
Institute (Walnut Creek, California, USA) to sequence the genome of each individual.
Sequence information for these samples is available on the NCBI SRA: Bioproject
PRJNA622568. Lovell and colleagues [31] called 33.8 million SNPs with minor allele frequency
(MAF) greater than 0.5%, we used a subset of 10.2 million, which had less than 10% missing
data and a MAF greater than 5%.

We used 2 sampling strategies to assess temporal and geographic variation (S3 Fig and S3
Table). For temporal variation, we sampled leaf tissue from 106 genotypes from a diversity
panel of switchgrass grown at the KBS, Michigan field site at 5 time points during the 2019
growing season. To assess geographic variation, we collected 8 randomly chosen genotypes
representative of switchgrass genetic populations that were replicated in 4 sites that span the
geographic range of temperate switchgrass populations KBS, Michigan (42.419, —85.371);
Columbia, Missouri (38.896, —92.217); Austin, Texas (30.383, —97.729); and Kingsville, Texas
(27.549, —97.881). At each site, we sampled the same 8 genotypes at 3 time points (n = 96; S3
Fig). Given that climate varies greatly over this latitudinal range, we standardized collection by
phenology rather than date, focusing on switchgrass emergence, flowering, and senescence.
Switchgrass genetic variation segregates into 3 main subpopulations that differ greatly in mor-
phology and phenology [31], so we compared fungal community responses over these popula-
tions. At all sites, we collected roughly equal numbers of genetic subpopulations (S3 Fig and S3
Table).

For each plant at each time point, we collected 3 leaves. We haphazardly sampled leaves
from the middle of the canopy; that is, leaves that were neither close to the base nor the flag
leaf. To minimize external contamination, we sterilized gloves between plants, and collected
directly into sterile 50mL tubes (UHP tubes, Fisher Scientific, Waltham, Massachusetts, USA).
Since we expected that the fungal community would be impacted by the dominant fungal
pathogen, leaf rust, we collected 3 leaves with visible rust symptoms as well as 3 symptomless
from the same plant when possible (n = 35), all of which were used in downstream analyses.
We stored tubes on dry ice in the field and while being shipped, then at —80 °C until extrac-
tion. For each day of sampling, we also collected a negative control, one tube opened to the
ambient air for at least 10s. Samples were shipped overnight on dry ice to Michigan State Uni-
versity (MSU) for processing.

Amplicon sequencing

We targeted the endophytic (inside the leaf) and epiphytic (on the leaf surface) fungi. To pre-
pare leaves for DNA extraction, we used 4mm biopsy punches (Integra, Princeton, New Jersey,
USA) to produce approximately 21 leaf discs pooled across the 3 collected leaves. We sterilized
the biopsy punch tool between samples by soaking it overnight in DNAaway (Thermo Fisher
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Scientific, Waltham, Massachusetts, USA), then washing in DI water. We punched across the
leaf blade to fully represent the spatial diversity in leaves. We homogenized leaf tissue by grind-
ing with 2 sterile 3.175 mm stainless steel ball bearings. We placed sealed sterile 1.5 ml tubes
with bearings and leaf discs into liquid nitrogen for 10s, then homogenized in a Mini-G bead
beater (SPEX sample prep, Metuchen, New Jersey, USA) for 60 s at 1,500 rpm.

To extract DNA, we used QTAGEN Plant Maxi kits, following the manufacturer’s
instructions (QIAGEN, Hilden, Germany). This method yields large amounts of plant
DNA in addition to fungal, so we used primers for the fungal ITS rDNA region. We per-
formed library preparation for ITS using the ITS1f (5'-CTTGGTCATTTAGAGGAAGT
AA-3")and ITS4 (5'-TCCTCCGCTTATTGATATGC-3') primers. We used a 3-step ampli-
fication process to amplify the target region, add adaptors, and add barcodes for multi-
plexing as previously reported by Benucci and colleagues [80,81] PCR amplification steps
and reagents are included in the supplement (S4 Table). We normalized DNA concentra-
tions using SequalPrep normalization kits (Thermo Fisher Scientific), concentrated librar-
ies using Amicon Ultra 0.5 mL 50K centrifugal filters (EMD Millipore, Burlington,
Massachusetts, USA), and removed primer-dimers with Ampure magnetic beads (Beck-
man Coulter, Brea, California, USA). We randomized samples across plates, then pooled
them into 3 libraries for sequencing. We used 4 levels of negative controls to check for
contamination at different steps: field controls that were exposed to air at each sampling
point, DNA extraction controls, library preparation controls, and a synthetic mock com-
munity [82], resulting in a total of 672 samples that included 59 controls. The synthetic
mock community contained 12 ITS taxa described in Palmer and colleagues ([82]). We
recovered all species present in this community through sequencing.

We sequenced DNA using Illumina MiSeq 300bp paired-end v3 600 cycles kit in the MSU
genomics core facility. Sequencing yielded 84.7 M total reads and high-quality data across
samples. Across 3 multiplexed libraries, 74.9% of reads had quality scores above 30 (Phred),
with an average of 110 K reads per sample (ranging from 110 reads in negative controls to 199
K reads in samples). After quality filtering, 47.8 M reads remained. We used a 97% clustering
threshold for identifying OTUs (Operational Taxonomic Units), resulting in 7,963 OTUs
across 672 samples.

RNA sequencing

Vegetatively propagated plants from 4 genotypes were grown in 3 sites (KBS, Michigan; Aus-
tin, Texas; and Columbia, Missouri). Two genotypes, AP13 and WBC, fit in the Gulf popula-
tion group, and are generally resistant to leaf fungal pathogens [32,46]. The other 2 are more
closely related to the Midwest population and are more susceptible to leaf pathogens [32,46].
Leaf tissue was harvested and immediately flash frozen in liquid nitrogen and stored at —80°C
until further processing was done. Each harvest involved at least 3 independent biological rep-
licates (individual plants). Plants received no supplemental manipulations, so transcript counts
represent constitutive expression. High-quality RNA was extracted using standard Trizol-
reagent based extraction [83]. RNA-Seq libraries were prepared using Illumina’s TruSeq
Stranded mRNA HT sample prep kit utilizing poly-A selection of mRNA. Sequencing was per-
formed on the Illumina HiSeq 2500 sequencer using HiSeq TruSeq SBS sequencing kit.
Paired-end RNA-Seq 150-bp reads were quality trimmed (Q > 25) and reads shorter than

50 bp after trimming were discarded. High-quality sequences (404.4 M reads) were aligned to
P. virgatum v5.1 reference genome using GSNAP v.2019-06-10 [84] and counts of reads
uniquely mapped to annotated genes (371.8 M reads) were obtained using HTSeq v.0.11.2
[85]. Raw transcript counts are included in S5 Table.

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001681 August 11, 2022 16/28


https://doi.org/10.1371/journal.pbio.3001681

PLOS BIOLOGY

Host control of leaf fungal ecology

Bioinformatics

We analyzed amplicon sequences on the MSU HPCC (High-Performance Computing Center)
with giime v1.9.1 [86], fastqc v0.11.7 [87], cutadapt v2.9 [88], CONSTAX2 [89], and usearch
v11.0.667 [90]. We demultiplexed sequencing reads using split_libraries_fastq.py in giimel,
then checked for sequencing errors with fastgc. We removed barcodes with cutadapt and fil-
tered fastqs with USEARCH using the -fastq_filter option with arguments: 1 expected error
(-fastq_maxee 1.0), truncation length of 200 (-fastq_trunclen 200), and no unidentified bases
(-fastq_maxns 0) [91]. We clustered 97% OTUs with the UPARSE algorithm [92] through the
-cluster_otus option, with singletons discarded (-minsize 2). We assigned taxonomy to OTUs
using CONSTAX?2 [37], which improves OTU identifications using a consensus algorithm
between RDP [93], SINTAX [94], and BLAST classifications [37].

Statistical analyses

We performed downstream analyses in R v4.0.3 [95] using the packages decontam [96], vegan
[97], phyloseq [98], vegclust [99], and metagenomeseq [100]. We used decontam to remove con-
taminants by pruning OTUs that were overrepresented in negative controls, then normalized
read depth with functions in the metagenomeseq package. Of 7,963 OTUs we clustered, 162
were identified as contaminants and removed from analyses (identifiable contaminants
removed are shown in S6 Table). All contaminants showed low abundance and were evenly
spread across negative controls, indicating that fungal contamination was minimal in this
study.

Successional dynamics

We visualized community structure using NMDS, which represents the multivariate structure
of a community in reduced dimensions (Shepard plot in S1 Fig). NMDS is classically used for
dimensionality-reduction in ecological research since it has few assumptions about the under-
lying data structure, and contains all variance within a limited set of axes, rather than distrib-
uted across eigenvectors as in PCoA [101]. We first used a Hellinger transformation to reduce
the impact of extreme data points across samples using the decostand function, then performed
NMDS with metaMDS, both in the vegan package. We also used permutational analysis of var-
iance to assay the relative importance of various factors in structuring the fungal community
implemented through the adonis2 function in vegan. To test the PERMANOVA assumption of
multivariate homogeneity of group dispersion (variance from centroids), we used the betadis-
per function in the vegan package. Samples at the first sampling time point (DOY 158) had
greater dispersion than other time points, so we repeated our analyses with this time point
removed. Since the PERMANOVA still showed a strong effect of DOY (p < 0.001), we con-
cluded that the significance of this result is not due to heterogeneity of dispersion. To test the
community impact of disease symptoms, we performed a separate PERMANOVA test on indi-
viduals for which we were able to collect both infected and uninfected leaves. We modeled leaf
infection as a block with each individual plant by including infection status as strata in the ado-
nis function in vegan.

To test the importance of historical contingency in temporal community changes, we used
aMTV-LMM [41]. The MTV-LMM assumes that temporal changes are a time-homogenous
high-order Markov process and fits a sequential linear mixed model to predict the abundance
of taxa at particular time points [41]. For each taxon, we calculated “time explainability,” a
metric of the degree to which variation in later time points is explained by variation in earlier
points [41]. We fit linear mixed models for each OTU present across multiple time points and
used a Bonferroni-corrected o to identify taxa that exhibit significant temporal contingency.
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In addition, we examined individual and subpopulation-level succession using trajectory
analysis [34]. Trajectory analysis transforms multivariate community changes to two-dimen-
sional trajectories, for which parameters of individual community changes can be compared.
We calculated mean trajectories for communities in each subpopulation, then used ANOVA
to test for trajectory differences across subpopulations. Additionally, we split OTUs between
genotypes that showed rust infection symptoms, and those that were symptomless through the
whole season, and tested for trajectory differences. We then used a permutational method to
discover OTUs that substantially impact succession. We computationally removed each OTU
from our dataset, recalculated mean population trajectories, then compared to the original tra-
jectories. We then used the trajectoryDistances function in the vegclust package to calculate the
degree to which removing each OTU altered the overall community trajectory [99].

Conceptualization of ecological communities as trajectories has a long history in ecology
[102], but explicit modeling of trajectory parameters has been challenging until relatively
recently [34,103,104]. This approach utilizes statistical methods that are typically applied to
movement in geometric space [105] to compare movement by a community in multidimen-
sional space [34]. While trajectory analysis has not been applied to changes in microbial com-
munities to our knowledge, other researchers have used the method to understand succession
in Amazon forest communities after land-use change [106], and Iberian forests after fires
[107]. We visualized these results using PCoA, which allowed us to estimate variance assigned
to each axis and to show that our results are robust to mode of dimensionality reduction.

Genetic associations

To specifically measure the overall microbiome variation explained by genetic structure, we
examined the covariation of genetic distance and fungal community distance using Mantel
tests. We calculated genetic distance as the number of pairwise SNP differences between each
sample (Nei’s distance, 7). We used the switchgrass GWAS SNP dataset [35], which features
10.2 million high-confidence SNPs with MAF > 0.05, and calculated distance with the dist.gen-
pop function in adegenet [108]. For microbiome community differences, we used Hellinger-
transformed Bray-Curtis distances calculated with the decostand function in vegan. We per-
formed Mantel tests with 999 permutations using the mantel function in vegan for each sam-
pling time point at the focal site (KBS). We also confirmed that there was no impact of spatial
position within the field by fitting a mixed model for community structure with sampling date
as a fixed effect, and field position and genetic kinship as random effects. Using the mmer
function in the R package sommer, likelihood ratio tests indicated that models including kin-
ship had improved fit (p < 0.001), but fit was not impacted by including a spatial term

(p =0.899 [109]). By including a kinship term, we were able to estimate microbiome pseudo-
heritability across all dates (same formula as above), and for each sampling date individually
using the vpredict function in sommer [109].

To identify specific genetic loci associated with microbiome community structure, we
examined GWAs between SNPs and community structure, represented as the second axis
from our NMDS analysis (described above). We did not use the first axis, since that clearly
clustered with sampling date (Fig 1). We performed GWA using the switchgrassGWAS [31]
package and the same SNPs as we used in Mantel tests. To correct for population structure, we
included the first 10 principal components of a singular value decomposition (SVD) of pair-
wise genetic distance as a covariate in the linear models. The first 3 SVD axes explain 35.5%,
29.2%, and 9.03% of the variance of the decomposition. The switchgrassGWAS package imple-
ments linear regression tests for each SNP using the big_univLinReg function in bigstatsR,
which rapidly applies statistical tests across filebacked big matrices using memory mapping
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[110]. We calculated both a 5% FDR threshold, as well as a Bonferroni-corrected p-value
threshold to distinguish outlier SNPs.

To verify outlier SNPs, we examined expression-level differences of adjacent genes across
divergent genotypes with RNA sequencing data from a separate study (prepublication access
through the Department of Energy Joint Genome Institute). We tested for normalized expres-
sion differences across switchgrass genotypes using likelihood ratio tests in DESeq2 [111]. We
tested for expression differences across genotypes separately and additionally examined the
influence of site using a combined test for genotype X site interaction.

To confirm the variation at the outlier GWAS locus, we repeated leaf collection and ampli-
con sequencing in a new set of genotypes with differing alleles at the Chr02N_57831909 locus
in 2021. We collected 20 plants at 2 time points (June 22 and July 27) at KBS, then extracted
DNA and sequenced ITS libraries according to the steps above. In addition, we targeted the
fungal LSU using the primer pair LROR (5 ACCCGCTGAACTTAAGC 3') and LR3 (5
CCGTGTTTCAAGACGGG 3') to determine if the patterns hold for a different DNA marker
region as well, and exclude primer choice biases. We followed the same bioinformatic steps as
previously used for ITS, and assessed the impact of alternate alleles on the microbiome using
PERMANOVA via the adonis2 function in vegan®’.

Important taxa

To identify OTUs that are important in structuring the fungal community, we used several
complementary methods. In addition to identifying taxa important in temporal dynamics as
described above, we also identified “core” taxa [16]. We examined core community taxa using
custom scripts [16,112]. Core taxa are defined as those with relatively high occupancy and
abundance across all samples and represent those taxa most likely to have a close symbiosis
with the host [113]. To calculate the core, we ranked OTUs by frequency, then selected all the
OTUs up to the last OTU that adds a 2% increase in beta diversity (Bray—Curtis similarity)
between factors (subpopulations and time points) [113]. For the overall core group, we used
the intersection between the core across subpopulations and the core across time. Within this
core group, we used network analysis implemented in SpiecEasi [114] and igraph [115] to
build covariance networks over time. Nodes in covariance networks can be assigned to 4 possi-
ble groups based on the ratio of their within-module (Zi) and between-module connectivity
(Pi) [116]. Those with high Zi and Pi are widely connected “network hubs,” those with low Zi
and Pi are disconnected “peripherals.” Nodes with high Pi and low Zi are “connectors,”
whereas those with high Zi and low Pi are “module hubs” [116]. To statistically assess similar-
ity across networks we adopted a bootstrap-permutation based network comparison method
as implemented in the R package mina. This approach repeatedly permutes OTUs within a
network to evaluate the likelihood of similarity to a second network. In this study, we assessed
the degree to which networks at different time points resembled the previous time.

We used indicator species analysis to identify taxa associated with fungal rust disease symp-
toms. Indicator species analysis identifies particular taxa that are overrepresented based on a
factor, and thus represent a useful indicator for that factor [117]. By comparing species present
on infected versus uninfected leaves, we could isolate both OTUs associated with disease
symptoms and those overrepresented in symptomless leaves.

We further identified an a priori list of taxa that we expected to play important ecological
roles in the phyllosphere. These included pathogens that we have previously identified in these
plots, including Puccinia spp. [32], Bipolaris spp., Tilletia maclaganii [118], and Colletotrichum
spp., and taxa with roles in herbivore prevention, including Claviceps spp. [43], Beauvaria
spp., and Metarhizium spp. [119].
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Supporting information

S1 Fig. Shepard stress plot for NMDS of KBS site. Data underlying this figure can be found
in S1 Data. KBS, Kellogg Biological Station; NMDS, nonmetric multidimensional scaling.
(PDF)

S2 Fig. Original collection locations for samples. Latitude and longitude are available in S3
Table. The base map uses points from the US Census Bureau, implemented in the maps R
package (https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-
file.html). Data underlying this figure can be found in S3 Table.

(PDF)

$3 Fig. Sampling scheme. Each icon represents one sample taken. We sampled 106 genotypes
at 5 time points at the focal site in Hickory Corners, Michigan, and 8 genotypes at the 3 other
sites. We sampled roughly equal numbers of each subpopulation throughout. Sites are shown
from northern (KBS, Michigan) to southern (Kingsville, Texas). KBS, Kellogg Biological Sta-
tion.

(PDF)

S$4 Fig. NMDS plot of the subsetted data used in GWAS analysis. Shapes represent genetic
subpopulation. Data underlying this figure can be found in S1 Data. GWAS, genome-wide
association study; NMDS, nonmetric multidimensional scaling.

(PDF)

S5 Fig. Manhattan plots for additional time points. A. DOY158; B. DOY212; C. DOY233; D.
DOY286. Data underlying this figure can be found in S4 Data.
(PDF)

S6 Fig. Quantile-quantile plot for microbiome GWAS results showing an excess of
observed low