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Abstract: Recycled aggregate concrete (RAC) contributes to mitigating the depletion of natural
aggregates, alleviating the carbon footprint of concrete construction, and averting the landfilling
of colossal amounts of construction and demolition waste. However, complexities in the mixture
optimization of RAC due to the variability of recycled aggregates and lack of accuracy in estimating
its compressive strength require novel and sophisticated techniques. This paper aims at developing
state-of-the-art machine learning models to predict the RAC compressive strength and optimize its
mixture design. Results show that the developed models including Gaussian processes, deep learning,
and gradient boosting regression achieved robust predictive performance, with the gradient boosting
regression trees yielding highest prediction accuracy. Furthermore, a particle swarm optimization
coupled with gradient boosting regression trees model was developed to optimize the mixture design
of RAC for various compressive strength classes. The hybrid model achieved cost-saving RAC
mixture designs with lower environmental footprint for different target compressive strength classes.
The model could be further harvested to achieve sustainable concrete with optimal recycled aggregate
content, least cost, and least environmental footprint.

Keywords: recycled aggregate concrete; machine learning; model; Gaussian process; deep learning;
gradient boosting; regression trees; gated recurrent unit

1. Introduction

Portland cement concrete is the most widely used construction material and the most consumed
industrial product in the world. However, the more frequent local shortages of natural aggregates
(NA) and the enormous environmental footprint caused by its extraction are global concerns regarding
the production of Portland cement concrete. The global annual consumption of NA is estimated at 8 to
12 billion tons [1–3].

Moreover, there has been a growing worldwide shortage of available landfilling sites to dispose
of construction and demolition waste (CDW). In Canada, it is estimated that 9 million tons of CDW are
produced every year. Despite the vast country, its biggest cities are encountering stern CDW disposal
challenges [4]. Likewise, several reports are forecasting that landfills in Hong Kong will be overfilled
in about eight years [2]. The use of recycled aggregate (RA) offers a potential solution to overcome the
drawbacks of concrete production. Among the most promising advantages of RA are reductions in
CO2 emissions and beneficiation of CDW in applications with added value. About 75% of construction
waste, including concrete and masonry, can be reused in concrete production [5].

However, the inclusion of RA in concrete has been reported to reduce the compressive strength [6].
Several researchers have explored the influential factors on recycled aggregate concrete (RAC)
compressive strength [7–10]. The moisture content of RA, replacement level of NA, and the
water-to-cement (w/c) ratio were found as the parameters with the highest effect on RAC compressive
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strength [10]. The higher absorption capacity of RA compared to that of NA, along with the relatively
weaker interfacial bond between RA and the cementitious matrix are major explanations for such a
behavior [9,11,12].

Although there have been multiple studies on the mechanical properties of RAC, more research
needs to be devoted to investigating the effects of various parameters on RAC compressive strength,
including the variability of RA, the effect of old cement mortar attached to the RA surface, and the
crushing process of RA [7,13]. Considering the fundamental knowledge gaps in the mechanical,
durability, and structural performance of RAC, its application has generally been limited to road bases
and non-structural concrete [6,8]. Hence, it is of paramount importance to conduct comprehensive
experimental studies on RAC, develop pertinent standards and guidelines, and deploy advanced
practical frameworks to promote its wider utilization.

The lack of understanding of RAC has resulted in developing new modeling techniques, such as
machine learning (ML) algorithms, to predict its mechanical properties. A major advantage of ML
methods is that they can capture the underlying mechanisms, despite the lack of information regarding
specific parameters. Data driven ML techniques have proven to be successful in the prediction of
RAC mechanical properties including the modulus of elasticity and compressive strength [11,14–16].
Nevertheless, most research studies employed small datasets, which compromises the training
of such models and the ability to generalize their predictions to new data unseen to the model.
Thus, creating reliable and more comprehensive data has been regarded as a key research need,
and several studies aimed at deploying larger datasets for better generalization and robustness of the
RAC-ML models.

ML techniques have also been employed for mixture design and optimization. Concrete mixture
design is the process of selecting the appropriate quantitative proportions of concrete ingredients [17].
From a computational point of view, mixture optimization is the process of minimizing a prior defined
objective function [18]. A common practice in concrete mixture optimization procedures is to consider
the concrete production cost function as the objective function [19–21]. Moreover, the current stringent
mechanical requirements for concrete should be met in the optimization process. Hence, in this
study, the particle swarm optimization (PSO) algorithm was used to execute the mixture optimization.
Subsequently, to assure that the compressive strength was met, the best performing ML model was
used to predict the compressive strength of the RAC.

Accordingly, the present study aims at creating a large and comprehensive experimental dataset
from the available studies in the open literature to develop powerful state-of-the-art ML models to
predict the compressive strength of RAC. For this purpose, a dataset consisting of 1134 experimental
examples of RAC mixture designs with 10 attributes was developed. Moreover, three different novel ML
models were developed, and their performance was compared. Gaussian processes (GP), deep learning
(DL) and gradient boosting regression trees (GBRT) techniques were employed for the first time to
model the compressive strength of RAC. Eventually, an optimization of the RAC mixture design was
performed by coupling PSO with the best proposed ML model to develop a hybrid powerful model for
optimizing RAC mixture composition for different target ranges of compressive strength at 28 days.
The superior accuracy of the proposed models should assist various stakeholders in optimal use of
recycled concrete in diverse construction applications.

1.1. Related Work

Other studies have employed ML to predict the compressive strength of RAC. For instance,
Khademi et al. [15] used three different approaches to model the compressive strength of RAC:
artificial neural network (ANN), adaptive neuro-fuzzy inference systems (ANFIS), and multiple linear
regression. They used 14 different input parameters, including the dosage of concrete ingredients
and non-dimensional parameters such as the water-to-cement ratio and aggregate-to-cement ratio.
It was concluded that multiple linear regression might be inaccurate to determine the compressive
strength of RAC due to the highly non-linear relationships between the concrete ingredients and its
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strength. However, both ANN and ANFIS models proved to be powerful in modeling the compressive
strength of RAC, with a coefficient of determination of 0.9185 and 0.9075 for ANN and ANFIS,
respectively. Furthermore, Khademi et al. [15] performed a sensitivity analysis in which they concluded
that the inclusion of more input features resulted in higher model predictive accuracy. Likewise,
Naderpour et al. [1] developed an ANN model to predict the compressive strength of RAC with a
coefficient of determination of 0.829 for the testing dataset. They also performed a sensitivity analysis
via the weights of the input features. Accordingly, it was found that the water absorption of aggregates
and the water-to-total materials mass ratio had the highest importance. In another study, Deng et al. [16]
built a convolutional neural network to predict the compressive strength of RAC. Experimental work
was carried out along with the development of the deep learning model. The authors compared
the convolutional neural network with a support vector machine and a back propagation neural
network concluding that the convolutional neural network has superior capability to predict the
compressive strength of RAC. They used the relative error percentage to measure the performance
of the models, and thus the error for the convolutional neural network, back propagation neural
network and support vector machine was 3.65%, 6.63%, and 4.35%, respectively. Deshpande et al. [11]
compared three different techniques: ANN, model tree, and non-linear regression. They studied the
influence of adding non-dimensional parameters as input features. To accomplish such analysis, they
created 10 different models for each algorithm and added a different non-dimensional input feature
to the parameters corresponding to the ingredients content. The accuracy of the ANN model was
at least 2% higher than that of the other techniques, even when the non-dimensional parameters
were considered. Using a larger dataset, Gholampour et al. [22] predicted the compressive strength
and other mechanical properties of RAC employing three types of algorithms including multivariate
adaptive regression splines, M5 model tree, and least squares support vector regression. They created
two different models for each algorithm corresponding to the cube and cylinder compressive strengths,
respectively. For these models, results on 332 cube-specimens and 318 cylinder-specimens were
collected from the open literature. It was found that least squares support vector regression achieved
higher performance than the remaining models, with at least 12.6% better mean absolute percentage
error. Duan et al. [2] proposed using the characteristics of the recycled aggregate as input parameters,
including the saturated surface dry mass, water absorption, and volume fraction of coarse aggregate.
They concluded that the inclusion of these features had a positive effect on model accuracy. Moreover,
Topcu and Saridemir [6] found that ANN had better predictive accuracy than of the RAC compressive
and splitting tensile strengths than fuzzy logic. The ANN model demonstrated to be a powerful tool
to determine the mechanical properties of RAC, achieving a coefficient of determination of 0.9984
and 0.9979 for the prediction of compressive strength and splitting tensile strength, respectively.
Dantas et al. [23] gathered the largest dataset and used ANN to develop an equation to describe the
compressive strength of RAC. Their model included 17 input features, from which, the ratio of recycled
concrete, absorption rate of fine recycled aggregate, content of dry aggregate, and finesses modulus of
aggregates were the parameters with highest effect on the compressive strength of RAC. The reported
accuracy for the training and testing sets were 0.928, and 0.971, respectively.

In summary, Khademi et al. [15], Naderpour et al. [1], Deng et al. [16], Deshpande et al. [11],
Gholampour et al. [22], Duan et al. [2], Topcu and Saridemir [6], and Dantas et al. [23] used 257, 139,
74, 257, 650, 168, 210, and 1178 data points, respectively, to predict the compressive strength of RAC.
In addition to the quality and size of existing datasets, the advent of new and more powerful ML
algorithms has stimulated researchers to explore the ability of state-of-the-art methods to enhance
the accuracy and robustness of predictive models. Among various ML techniques to predict the
compressive strength of RAC, artificial neural networks (ANNs) and fuzzy logic have been the most
widely applied methods (Table 1).
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Table 1. Studies on using ML techniques for prediction of RAC compressive strength.

Machine Learning Technique No. of Samples Ref.

Artificial neural networks, adaptive neuro-fuzzy inference system and multiple linear regression 257 [15]
Artificial neural networks 168 [2]

Artificial neural networks, model tree and non-linear regression model 257 [11]
Artificial neural networks and fuzzy logic 210 [6]

Convolutional neural networks 74 [16]
Artificial neural networks 139 [1]
Artificial neural networks 1178 [23]

Multivariate adaptive regression splines, M5 model tree and least support vector regression 650 [22]

1.2. Research Significance

As elaborated on above, there have been various studies on the application of traditional ML
techniques to predict the compressive strength of RAC. The present study aims at creating a large and
more comprehensive dataset and deploy it with state-of-the-art ML techniques that have not yet been
explored for RAC in the open literature. The models presented herein are executed using the Python
programming language. Therefore, to utilize these models, the user can simply apply the development
steps along with hyperparameters reported in this study. Furthermore, the compressive strength
predictive tools developed in this study are further complemented with optimization of the mixture
proportions using a coupled PSO-GBRT model. The proposed mixture proportions can be used as a
reference guideline for designing eco-friendlier and more economical RAC mixtures in practice.

2. Machine Learning Basis

ML refers to a computer’s capacity of analyzing data and learning complex patterns within
the data without being rigorously programmed [24]. Depending on the nature of the data,
ML algorithms are categorized into supervised learning, unsupervised learning, and reinforcement
learning [25]. Supervised learning aims at capturing underlying patterns in the data with known
outputs. Depending on the type of the output, it can be further categorized as classification for discrete
outputs, and regression for continuous outputs. Unsupervised learning, on the other hand, is associated
with the data with unknown outputs and thus, clusters the data by finding relationships within the
observations [26]. The third type of machine learning, reinforcement learning, bridges the gap between
supervised and unsupervised learning since it clusters similar data given the correct answers [27].
Three powerful ML models were developed herein to forecast the compressive strength of RAC:
GP, recurrent neural networks (RNNs), and GBRT. The three algorithms have different approaches
for data analysis. Whilst GBRT is an ensemble of decision trees, GP uses the Gaussian distribution,
and finally, RNNs are an advanced type of neural networks. The diverse nature of these algorithms is
considered to explore the robustness of ML algorithms. The fundamentals of GP, RNNs, and GBRT are
discussed below.

2.1. Gaussian Processes

GP are stochastic processes that generalize the Gaussian probability distribution [28]. In contrast
to single- or multi-variable probability distribution in which a scalar or a vector is mapped, a process
describes the properties of functions [29]. Therefore, a GP is defined as a probability distribution
of functions, P(f), where P(f) has a Gaussian distribution [30]. GPs are parametrized with mean
and covariance by analogy with Gaussian distribution, whereas mean and covariance for GP are
functions [31]. The purpose of training a supervised learning algorithm using the available training
dataset is to develop a model capable of predicting the output for unseen input data. There are two
common approaches to determine the appropriate function that fits a set of data with promising
accuracy [29]. In the first approach, the model is generated by considering only certain types of
functions, e.g., exponential functions [29]. However, the prediction accuracy of such models strongly
depends on the performance of the given functions. Conversely, the second approach considers
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pre-assigned probabilities of several types of functions such that higher probability is assigned to those
that are more likely to predict with higher accuracy [32]. The complexity of the first approach is limited
to the selected functions. By contrast, the second approach is computationally more costly since there
is an infinite number of possible functions to consider [29]. GPs are based on the second approach.
The probabilistic formulation of GPs gives rise to a phenomenon called computational tractability in
which the properties of functions are inferred even when some of the functions are ignored [33].

2.2. Recurrent Neural Networks

DL models are multiple-level computational algorithms able to learn complex underlying
structures within a database [34]. DL models have proven successful in diverse applications such as
image recognition, language understanding, and deoxyribonucleic acid (DNA) biological processes
prediction [34]. However, applications of recent DL algorithms in civil engineering, including
convolutional neural networks (CNNs) and RNNs have been more common in structural health
monitoring and crack detection owing to the large data sets available in these fields [35,36]. CNNs and
RNNs are among the most popular DL algorithms. In the present study, a novel type of RNN is
deployed to predict the compressive strength of RAC.

RNN is a class of neural networks with an internal loop that allows the algorithm to keep
memories from past information, commonly referred to as hidden state [37,38]. In RNNs, the output of
a certain step, t, is used as input for the next step, t+1, emphasizing that every single step is based on
the previous one, a process referred to as long-term dependencies; see Figure 1 [37]. Simple RNNs
have a limitation regarding the contribution of earlier steps to the later ones, known as vanishing
gradients [37]. Two main variants of layers have been proposed for RNN to overcome vanishing
gradients: long-short-term memory (LSTM) and gated recurrent unit (GRU) [38]. The main difference
of these RNN algorithms is the inclusion of gates for computing data. For example, LSTM layers
incorporate a third gate, named the forget gate, in addition to the input and output gates in the
simple RNN [37]. The forget gate maintains information and includes it in a non-consecutive step [38].
Conversely, GRU layers have only two types of gates: reset gate and update gate. In the reset gate,
the previous information is combined with the most recent information, whereas in the update gate,
it is decided how much information is to be passed to the following step. Figure 2 displays the
structure of the first GRU layer used in this study [37]. Like LSTMs, GRUs are not affected by vanishing
gradients. Nonetheless, GRU is considered a more efficient algorithm due to its simpler structure and
formulation [27]. The formulation of GRU is summarized in the following:

rt = σ(Wr xt + Ur ht−1) (1)

zt = σ(Wz xt + Uz ht−1) (2)

ht = ReLu(Wh xt + Uh (rt × ht−1)) (3)

ht = (1− zt) × ht−1 + zt × ht (4)

where and rt are the reset and update gate, respectively, ht is the candidate output, and ht is the
corresponding output of the cell for the time step t. Accordingly, Wr, Wz, Wh, Ur, Uz, and Uh are the
weight matrices that operate the input vector xt and the previous state ht−1, and ReLU is the rectified
linear unit activation function [39,40].
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2.3. Gradient Boosting Decision Trees

GBRT algorithm integrates multiple weak learners using a boosting approach in which additional
trees are appended in sequence without model parameters being changed. The objective of the
gradient boosting is to find the function F (X) that minimizes the loss functionL(F (X),Y) (e.g., mean
squared error or mean absolute error) using a given dataset,

{
(x1, y1), (x2, y2), . . . , (xN, yN)

}
[41,42].

The predictions of the GBRT model, yt for a given input data can be expressed as:

yt = Fm(Xt) =
M∑

m=1
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N∑

t=1

L(yt,γ) (6)
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Fm(X) = Fm−1(X) + γm
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approaches the best function using the weighting of weak learner models, 𝒽(𝑥௧), which is the basic 
decision tree fit by the input variables and the negative gradient of the last model’s loss function. 
GBRT develops the model in a greedy manner considering a constant initial function 𝐹(𝑋) as 
follows [41–44]: 

m(x) is the mth regression tree and γm is its weighting coefficient, also called learning rate.
In a GBRT model, the number of trees, the learning rate, and the max depth of the tree are amongst
the most essential hyperparameters that noticeably affect the predictive performance of the model.
Larger number of trees increases the prediction accuracy of the model; however, excessive trees
could result in an over-fitted model with lack of generalization for new unseen data. On the other
hand, the learning rate controls the contribution of each tree to the predictions, while the max depth
indicates the complexity of each tree. Immoderate values of such hyperparameters could bring
about either over-fitted or erroneous models [41–44]. Other parameters of the GBRT model, such as
subsample, maximum number of features, etc., also have noticeable effects on the model output and
should be considered. Hence, tuning the GBRT hyperparameters is essential to propound robust and
reliable performance.

3. Dataset Creation and Model Development

3.1. Data Collection and Preprocessing

The experimental data used in this study was collected from 55 peer-reviewed publications
(Table 2). The collected data consists of 1134 RAC mixture design examples, with nine input features
and one output. Statistical characteristics of the dataset are given in Table 3. Figure 3 illustrates the
Pearson correlation coefficient between different attributes of the dataset. The Pearson correlation
coefficient is an indicator of linear dependencies within two random variables; i.e., a coefficient of
correlation close to one within two variables indicates that an increase in one of those variables will result
in a proportional increment of the other [45]. Accordingly, the w/c ratio and superplasticizer dosage
were the features with the highest correlation to the compressive strength. Conversely, aggregates
(sand, natural gravel and RCA) did not have significant linear correlation to the compressive strength.
Furthermore, since gravel is an ingredient replaced by recycled coarse aggregate (RCA), there was a
high correlation between these two features.

Table 2. Sources of experimental data used in this study.

Authors No. of Samples Ref. Authors No. of Samples Ref.

M. C. Limbachiya et al. 12 [46] S. Manzi et al. 10 [47]
A. Ajdukiewicz and A. Kliszczewicz 117 [48] A. B. Ajdukiewicz & A. T. Kliszczewicz 16 [49]

J. M. V. Gómez-Soberón 15 [50] Y.-N. Sheen et al. 27 [51]
Y. H. Lin et al. 24 [52] C. Thomas et al. 72 [53]

C. S. Poon et al. 36 [9] V. A. Ulloa et al. 18 [54]
D. Matias et al. 9 [55] W. Z. Taffese 10 [56]

M. Etxeberria et al. 4 [57] G. Andreu and E. Miren 30 [58]
M. Etxeberria et al. 12 [59] M. G. Beltrán et al. 9 [60]

S. C. Kou et al. 40 [61] M. G. Beltrán et al. 8 [62]
C. S. Poon et al. 8 [63] Ö. Çakır and Ö. Ö. Sofyanlı 27 [64]

K. Rahal 70 [65] J. A. Carneiro et al. 2 [66]
R. Sato et al. 11 [67] H. Dilbas et al. 12 [68]

M. Casuccio et al. 9 [69] Z. H. Duan and C. S. Poon 26 [8]
S. C. Kou et al. 24 [70] P. Folino and H. Xargay 4 [71]

K.-H. Yang et al. 42 [72] F. López Gayarre et al. 14 [73]
A. Domingo-Cabo et al. 8 [74] C. Medina et al. 16 [75]

V. Corinaldesi 10 [76] D. Pedro et al. 18 [7]
R. Kumutha and K. Vijai 12 [77] M. Pepe et al. 15 [78]

M. Malešev et al. 9 [79] G. Wardeh et al. 16 [80]
G. F. Belén et al. 16 [81] Y. Haitao and T. Shizhu 20 [82]
G. Fathifazl et al. 6 [83] V. W. Y. Tam et al. 24 [84]

M. Chakradhara Rao et al. 16 [85] A. S. Abdel-Hay 4 [86]
R. Somna 18 [87] C. Zheng et al. 36 [88]

A. Abd Elhakam et al. 30 [89] M. C. S. Nepomuceno et al. 15 [90]
A. Barbudo et al. 36 [91] N. Mohammed et al. 12 [92]

L. Butler et al. 8 [93] C. Thomas et al. 23 [94]
S. Ismail and M. Ramli 12 [95]

K. H. Younis and K. Pilakoutas 18 [96]
K. Kim et al. 18 [97]
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Table 3. Statistical characteristics of the dataset.

Input Feature Units Min. Max. Mean Standard Deviation

Water-to-cement ratio - 0.24 1.02 0.49 0.12
Cement content kg/m3 210.00 650.00 387.60 71.36

Sand content kg/m3 419.52 1010.00 691.71 131.65
Recycled aggregate content kg/m3 0.00 1358.00 527.83 444.75

Gavel content kg/m3 0.00 1524.00 542.94 470.19
Superplasticizer kg/m3 0.00 45.00 2.63 4.53

Silica fume content kg/m3 0.00 50.00 3.47 11.60
Age Days 2.00 365.00 44.57 70.69

Specimen type Type 1.00 5.00 2.79 1.15

Output Units Min. Max. Mean Standard Deviation

Compressive strength MPa 4.30 108.51 43.57 17.72
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Feature normalization is commonly applied prior to modeling. Although normalization is
not required for all ML algorithms, it has been proven to improve the model performance [27].
Linear transformation and statistical standardization are among the most popular normalization
techniques [98]. In the linear transformation, values are ranged within the domain of [0, 1], whereas in
the statistical standardization, the mean and the standard deviation values of the data are set equal to 0
and 1, respectively [98]. In this study, statistical standardization was used prior to GP, GBRT and RNNs
modeling. The data was then randomly divided into training and testing sets using 70% (793 samples)
for training and the remaining (341 samples) for model testing.

A common practice to assess the performance of ML models is to divide the entire dataset into
three different subsets: training, validation and testing. Whilst the learning process is accomplished
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with the training set, the validation set is used to track the performance of the model, while the testing
set serves to assess the extrapolation capabilities of the model by performing it over unseen samples that
are not known to the model [27]. However, the partition of data into three subsets leads to a reduction
of the training samples, which consequently can result in an insufficiently trained model [27]. Thus,
cross-validation is a common technique to prevent the over reduction of the training set, especially
for small datasets. There are several techniques to perform cross-validation, most of which consist
in leaving out random data to validate the model [99]. In this study, K-fold cross-validation was
used. K-fold cross-validation is a resampling method that splits the data into k number of subsets and
keeps one subset for validation, while the other k − 1 subsets are used for training [100]. The 5-fold
cross-validation employed for hyperparameter selection in this study is schematically depicted in
Figure 4.

Materials 2020, 13, x FOR PEER REVIEW 9 of 25 

 

Feature normalization is commonly applied prior to modeling. Although normalization is not 
required for all ML algorithms, it has been proven to improve the model performance [27]. Linear 
transformation and statistical standardization are among the most popular normalization techniques 
[98]. In the linear transformation, values are ranged within the domain of [0,1], whereas in the 
statistical standardization, the mean and the standard deviation values of the data are set equal to 0 
and 1, respectively [98]. In this study, statistical standardization was used prior to GP and recurrent 
neural networks (RNNs) modeling. The data was then randomly divided into training and testing 
sets using 70% (793 samples) for training and the remaining (341 samples) for model testing. 

A common practice to assess the performance of ML models is to divide the entire dataset into 
three different subsets: training, validation and testing. Whilst the learning process is accomplished 
with the training set, the validation set is used to track the performance of the model, while the testing 
set serves to assess the extrapolation capabilities of the model by performing it over unseen samples 
that are not known to the model [27]. However, the partition of data into three subsets leads to a 
reduction of the training samples, which consequently can result in an insufficiently trained model 
[27]. Thus, cross-validation is a common technique to prevent the over reduction of the training set, 
especially for small datasets. There are several techniques to perform cross-validation, most of which 
consist in leaving out random data to validate the model [99]. In this study, K-fold cross-validation 
was used. K-fold cross-validation is a resampling method that splits the data into k number of subsets 
and keeps one subset for validation, while the other 𝑘 − 1 subsets are used for training [100]. The 5-
fold cross-validation employed for hyperparameter selection in this study is schematically depicted 
in Figure 4. 

 

Figure 4. 5-fold cross validation for hyperparameter tuning. 

3.2. Hyperparameter Tuning 

Hyperparameter tuning is a crucial step in developing robust ML models. Tuning of ML model 
mitigates over-fitting and thus, enhances the versatility of the model to unseen data [101]. The 
selection of optimum hyperparameters is also a determinant factor in increasing the model accuracy 
[102]. Aiming to avoid manual tuning, there have been different approaches proposed to automize 
the selection of hyperparameters, such as grid search and random search hyperparameter 
optimization [103]. These approaches are distinct from each other by the domain of the potential 
values considered in the search attempt. Whilst grid search explores all possible values in a pre-
defined domain for hyperparameters, random search algorithms select the different hyperparameter 
values in a random manner for a specific number of iterations [103]. A randomized search procedure 
with 5-fold cross-validation was used herein for exploring possible values of hyperparameters using 
the Scikit-learn package in python [104]. 
  

Figure 4. 5-fold cross validation for hyperparameter tuning.

3.2. Hyperparameter Tuning

Hyperparameter tuning is a crucial step in developing robust ML models. Tuning of ML
model mitigates over-fitting and thus, enhances the versatility of the model to unseen data [101].
The selection of optimum hyperparameters is also a determinant factor in increasing the model
accuracy [102]. Aiming to avoid manual tuning, there have been different approaches proposed to
automize the selection of hyperparameters, such as grid search and random search hyperparameter
optimization [103]. These approaches are distinct from each other by the domain of the potential values
considered in the search attempt. Whilst grid search explores all possible values in a pre-defined
domain for hyperparameters, random search algorithms select the different hyperparameter values
in a random manner for a specific number of iterations [103]. A randomized search procedure with
5-fold cross-validation was used herein for exploring possible values of hyperparameters using the
Scikit-learn package in Python [104].

3.3. Model Development

3.3.1. GP Model

GP is a non-parametric model [29] and thus, the selection of hyperparameters is less challenging,
especially compared to DL models. The hyperparameters of GP models are those required for the
kernel function. Therefore, the kernel function, also known as the covariance function, is key to
creating robust GP models [29]. In this study, a linear combination of several default kernel functions
was implemented as defined in Equation (8). This kernel function includes the periodic kernel,
matern kernel, and dot-product kernel. It is worth mentioning that all available kernels, such as the
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periodic kernel, the rational quadratic kernel, white kernel, matern kernel, and dot-product kernel,
were tested for tuning the GP model.

k
(
xi, xj

)
= σ2

0 + xi·xj + 22
∗ exp

−
2 sin2

π d(xi,xj)
p


l21


+ 1

Γ(ν)2ν−1

( √
2ν
l2

d
(
xi, xj

))ν
Kν

( √
2ν
l2

d
(
xi, xj

)) (8)

According to the former equation, parameters associated with the considered kernels were
tuned as the hyperparametrs of the GP model, including the length scale 1 (l1) and periodicity (p)
corresponding to the periodic kernel; ν and length scale 2 (l2) corresponding to the matern kernel;
and σ0 of the dot-product kernel. The optimizing of hyperparameters was carried out using 5-fold
cross-validation (CV) as described earlier. The tuned values of the hyperparameters are listed in Table 4.
Scikit-learn library in Python was employed for tuning and executing the GP model [104].

Table 4. Hyperparameters for Gaussian processes model.

Hyperparameter Assigned Value

Length scale 1, l1 0.6
Periodicity, p 16.0

Sigma naught, σ0 1.9
Length scale 2, l2 1

Nu, ν 0.5

3.3.2. RNN Model

The developed architecture of the RNN model consists of 3-GRU layers and 1 dense layer with 239,
238, 217, and 1 hidden neuron, respectively. In the first layer, ReLU activation function and sigmoid
recurrent activation function were utilized (Figure 2). In the second layer, the activation function and
recurrent activation function were the sigmoid and ReLU, respectively. In the third layer, the scaled
exponential linear unit (SELU) and softsign were used as activation and recurrent activation functions,
respectively. For the dense layer, only the softplus activation function was used. Moreover, the kernel
initializer and recurrent initializer were tuned for GRU layers. The kernel initializer was fixed as
random uniform for the first and second layers, whereas a constant initializer was used for the third
layer. The recurrent initializer was set as constant for the first layer, and zero recurrent initializer
for the second and third layers. Mean squared error (MSE) was used as the model loss function,
whereas the Adam optimization algorithm was employed as the model optimizer, with a learning
rate of 0.0002. Ultimately, the number of epochs and batch size were set to 360 and 11, respectively.
According to Whang and Matsukawa [105], the performance of GRU models was improved when batch
normalization was applied. Batch normalization mitigates the so-called internal covariate shift [105].
Internal covariate shift is a frequent problem in the training step of deep neural networks in which the
distribution of inputs at each layer is changed and thus, finer tuning for models along with smaller
learning rates are required [106]. Hence, batch normalization was implemented in the developed RNN
model because it improves the performance of GRU networks [105]. Momentum and epsilon are the
parameters associated with batch normalization. The optimum momentum and epsilon were found to
be 0.95 and 0.0001, respectively. Table 5 summarizes the tuned hyperparameters of the RNN model.
The hyperparameter selection for the DL models was performed using a randomized search approach
along with 5-fold CV. Keras API and Scikit-learn packages in Python were utilized for building and
tuning the RNN model [104,107].
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Table 5. Hyperparameters for deep learning model.

Layer Units Activation
Function

Recurrent
Activation Function

Kernel
Initializer

Recurrent
Initializer

Gated recurrent unit 239 ReLU Sigmoid Random Uniform Constant
Gated recurrent unit 238 Sigmoid ReLU Random Uniform Zeros
Gated recurrent unit 217 SELU Softsign Constant Zeros

Dense 1 Softplus - - -

3.3.3. GBRT Model

GBRT has multiple hyperparameters that need tuning prior to model training. In the current study,
a randomized search procedure alongside 5-fold CV was used to obtain optimum hyperparameters
of the GBRT model. Generally, n_estimators and learning_rate, which indicate the number of the
weak learners in the model and the weighting of each estimator, respectively, are the most influential
hyperparameters of the GBRT model that are essential to be tuned. Additionally, max_depth,
max_features, and subsample can greatly affect the prediction performance of the GBRT model [108].
Table 6 presents the tuned values of the seven hyperparameters considered. The mean absolute error
(MAE) was monitored as the statistical error to achieve optimum hyperparameters yielding highest
accuracy while mitigating over-fitting. The Scikit-learn package was implemented to perform GBRT
modeling and tuning [104].

Table 6. Hyperparameters for the GBRT model.

Hyperparameter Number of
Estimators

Learning
Rate

Min Samples
Split

Min Samples
Leaf

Max
Depth

Max
Features Subsample

Value 315 0.44 33 17 5 7 0.98

3.4. RAC Mixture Optimization

This section presents the framework adopted for optimizing the mixture design of RAC using
the ML model with best predictive performance. The objective of the optimization is to propose the
most economic mixture proportions of RAC considering different classes of compressive strength.
The PSO algorithm, which is a metaheuristic method that mimics the social interactions of birds or
insects (particles) in the search of an optimal solution, was adopted [109]. The particles modify their
position in every iteration based on the individual velocity vector of each particle, which in turn is
dependent on both the best-found particle and swarm positions [110]. The PSO minimizes an objective
function while limiting the domain of the solution. According to the optimization procedure proposed
by Yeh [19], the function that is to be optimized herein is the cost to produce a batch of RAC as defined
in Equation (9). The considered unit costs, which are averages of values retrieved from multiple
material suppliers across Canada, are presented in Table 7. These values can easily be replaced by
costs corresponding to other locations. The unit cost of RCA was considered equal to that of NA as
recommended in ref. [111].

P = C1 I1 + C2 I2 + · · ·+ Ci Ii (9)

were Ci represents the unit cost of the ith ingredient of the mixture and Ii is the ith ingredient dosage in
kg/m3. To limit the domain of the solution, two bounder vectors were defined: upper limit and lower
limit. The bounder vectors (Table 8) were strategically defined based on a real experiment from the
dataset with certain compressive strength to draw meaningful comparison and thus, better validate
the performance of the algorithm. In other words, for sand, cement, and water, the upper and lower
bounder limits were defined in average 20% up and down the values given for the base mixture.
To promote the use of recycled aggregate, the assigned values to the lower and upper bounder
vectors were kept high, and the corresponding values for gravel were maintained low. Also, due to
the high cost of superplasticizer, the assigned values for the bounder vectors were kept as low as
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possible. The 28-day compressive strength of a standard 15 × 30 cm cylinder specimen was considered
for the sake of comparison. The results of the optimized mixture proportions are given in Table 9.
The optimized mixture was subsequently tested using the GBRT (being the best predictive model in
this study) and compared to the real concrete sample extracted from the dataset to ensure the required
compressive strength criteria, as shown in Table 10.

Table 7. Unit price of ingredients of concrete mixtures.

Ingredient Units Currency Unit Price

Water $/kg Canadian dollar 0.004
Cement $/kg Canadian dollar 0.43

Sand $/kg Canadian dollar 0.28
Recycled coarse aggregate $/kg Canadian dollar 0.20

Gavel $/kg Canadian dollar 0.20
Superplasticizer $/kg Canadian dollar 71.07

Silica fume $/kg Canadian dollar 2.85

Table 8. Bounder vectors for mixture optimization.

Input Feature Unit
25 MPa 30 MPa 35 MPa 40 MPa

Upper
Limit

Lower
Limit

Upper
Limit

Lower
Limit

Upper
Limit

Lower
Limit

Upper
Limit

Lower
Limit

Water kg/m3 350 200 350 190 230 160 230 160
Cement kg/m3 424 290 424 292 424 323 424 280

Sand kg/m3 942 650 942 650 942 720 942 750
RCA a kg/m3 1080 700 1080 750 1080 550 900 750
Gavel kg/m3 511 50 511 50 511 100 750 220
SP b kg/m3 0 0 0 0 0 0 2 0.9
Age Days 28 28 28 28 28 28 28 28

Specimen Type 1 1 1 1 1 1 1 1
a recycled coarse aggregate, b superplasticizer.

Table 9. Optimized mixtures.

Optimized Mix
Water Cement Sand RCA a Gravel SP b Age ST c

(kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) Days Type

25 MPa 246.46 296.62 701.67 711.90 155.23 0.00 28 1
30 MPa 239.56 298.52 701.67 760.33 155.23 0.00 28 1
35 MPa 181.68 327.99 759.29 566.60 193.82 0.00 28 1
40 MPa 178.83 310.45 767.23 768.92 313.78 1.23 28 1

a recycled coarse aggregate, b superplasticizer, c specimen type.

Table 10. Comparison of optimized mixture with base mixture.

Input Feature Units
25 MPa 30 MPa 35 MPa 40 MPa

Base Opt. Base Opt. Base Opt. Base Opt.

Water kg/m3 234.10 246.46 190.00 239.56 175.00 181.68 187.00 178.83
Cement kg/m3 390.16 296.62 380.00 298.52 350.00 327.99 311.00 310.45

Sand kg/m3 702.30 701.67 637.00 701.67 730.00 759.29 840.00 767.23
RCA a kg/m3 1053.45 711.90 1123.00 760.33 989.00 566.60 0.00 768.92
Gravel kg/m3 0.00 155.23 0.00 155.23 0.00 193.82 935.00 313.78

SP b kg/m3 0.00 0.00 0.00 0.00 1.68 0.00 1.56 1.23
Age Days 28 28 28 28 28 28 28 28
ST c Type 1 1 1 1 1 1 1 1
F’c MPa 25.3 25.5 30.1 29.6 36.0 35.5 40.0 39.9

Price CAD 577.21 499.44 568.49 510.02 673.94 507.12 668.66 654.35
a recycled coarse aggregate; b superplasticizer; d specimen type.
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4. Results, Discussion, and Recommendations

This section presents the results of ML modeling of RAC. The three different models outlined
earlier were implemented and their prediction performance is discussed herein. Purposefully, the root
mean squared error (RMSE), mean absolute error (MAE), and coefficient of determination R2 were used
for assessing the performance of each model. Moreover, the best acquired ML model was employed
to perform RAC mixture design optimization for different ranges of 28-day compressive strength.
The optimization results along with mixture proportion recommendations are discussed below.

4.1. Prediction Performance of ML Models

GP, GRU, and GBRT models were trained using 793 data examples and tested with the remaining
341 data. The final tuned models were executed over five different seed numbers of data split to assess
the robustness of the models trained with randomized split of the data for training and the testing
sets. The predictive performance of the GP model for the five random seed numbers is summarized in
Table 11. The model predicted the output with average RMSE, MAE and R2 of 7.087 MPa, 4.911 MPa,
and 0.844, respectively for the test dataset. However, the model performace was greatly superior for
the training dataset with average RMSE, MAE and R2 of 0.735, 0.138, and 0.998, respectively. This trend
can be further observed in the residual plot of the GP model shown in Figure 5. The residualts for the
training data were less than 10 MPa, while they were as high as 40 MPa for some data points in the
testing set. The actual versus predicted output of the GP model is illustrated in Figure 6.

The GRU model attained better performance compared to that of the GP model (see Table 12).
The difference between the GRU statistical errors of train and test data were less than that of the GP
model. The RMSE, MAE, and R2 values for the test dataset were 6.502 MPa, 4.364 MPa, and 0.868,
respectively, while the corresponding values were 3.183 MPa, 2.285 MPa, and 0.968, respectively, for the
train dataset. This demonstrates more robust predictive performance along with higher accuracy
compared to the GP model. The residuals of the predictions varied in a narrower range compared to
that in the GP model, as depicted in Figure 7. The residuals for both testing and training datasets had
similar normal distribution, indicating more robust predictive performance. Figure 8 shows the actual
versus predicted compressive strength of the test data for the GRU model.

Table 11. Measured performance of Gaussian process model.

Random Seed and Global Performance Set RMSE b MAE c R2

RS a = 59
Test 7.468 5.157 0.827
Train 0.556 0.111 0.999

RS a = 1718
Test 7.589 5.197 0.834
Train 0.789 0.144 0.998

RS a = 1009
Test 6.582 4.762 0.854
Train 0.595 0.103 0.999

RS a = 3097
Test 7.492 4.875 0.841
Train 0.680 0.135 0.998

RS a = 7
Test 6.305 4.566 0.862
Train 1.055 0.197 0.997

Average Test 7.087 4.911 0.844
Train 0.735 0.138 0.998

Standard Deviation
Test 0.597 0.267 0.014
Train 0.200 0.037 0.001

a random seed; b root mean squared error; c mean absolute error.
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Table 12. Measured performance of deep learning model.

Random Seed and Global Performance Set RMSE b MAE c R2

RS a = 59
Test 7.298 4.663 0.835
Train 3.064 2.16 0.97

RS a = 1718
Test 6.927 4.567 0.861
Train 3.140 2.274 0.968

RS a = 1009
Test 5.778 4.106 0.888
Train 3.172 2.316 0.969

RS a = 3097
Test 6.589 4.312 0.877
Train 3.144 2.251 0.967

RS a = 7
Test 5.918 4.172 0.878
Train 3.394 2.422 0.965

Average Test 6.502 4.364 0.868
Train 3.183 2.285 0.968

Standard Deviation
Test 0.649 0.243 0.021
Train 0.125 0.096 0.002

a random seed; b root mean squared error; c mean absolute error.
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The GBRT model scored superior predictive execution, as indicated in Table 13, with lowest RMSE
and MAE values for the test dataset, along with the highest coefficient of determination compared
to that of the GP and GRU models. RMSE and MAE were 5.074 and 3.396 MPa, respectively for the
GBRT model. Figure 9 depicts the residuals of the predicted compressive strength for the training and
testing datasets of the GBRT model. It can be observed that the model captured the trend in the data
and demonstrated powerful performance on both the train and test datasets. The model achieved R2

value of 0.997 and 0.925 for training and testing data, respectively. Furthermore, less scatter of the
GBRT predicted values of the test dataset was accomplished compared to the GRU and GP models.
The actual versus GBRT predicted compressive strength of the test data is displayed in Figure 10.
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Table 13. Measured performance of GBRT model.

Random Seed and Global Performance Set RMSE b MAE c R2

RS a = 59
Test 5.124 3.354 0.918
Train 1.102 0.743 0.996

RS a = 1718
Test 5.359 3.698 0.917
Train 1.008 0.710 0.996

RS a = 1009
Test 4.640 3.196 0.927
Train 0.965 0.683 0.997

RS a = 3097
Test 5.168 3.335 0.924
Train 0.970 0.704 0.996

RS a = 7
Test 5.087 3.398 0.911
Train 1.052 0.748 0.996

Mean
Test 5.076 3.396 0.919
Train 1.019 0.718 0.996

Standard Deviation
Test 0.236 0.165 0.005
Train 0.051 0.024 0.0003

a random seed; b root mean squared error; c mean absolute error.Materials 2020, 13, x FOR PEER REVIEW 17 of 25 
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4.2. Comparison of Model Performance

Based on the results discussed above, all developed ML models could predict the compressive
strength of RAC with reasonable accuracy. However, the GRU and GBRT models demonstrated higher
generalization capacity since their prediction errors for training and testing datasets were highly
analogous, in contrast to the GP model. The prediction accuracy for the training dataset in the GP
model was very high, while it was quite low for the testing dataset. Thus, the GP model suffers from
over-fitting and lack of generalization to new unseen data. Although DL models are recognized to
be more accurate on large datasets, the finely tuned GRU model, despite the relatively small dataset,
reached outstanding prediction performance with high generalization capacity.

Figure 11 illustrates the Taylor diagram of the GP, GRU and GBRT models using the RMSE,
Pearson correlation and standard deviation of the predictions. The Taylor diagram suggests that
the GBRT model had superior performance in terms of RMSE, whereas the GRU model provided
predictions of the output with a highly correlated standard deviation to the actual observations. It is
worth mentioning that the GBRT model required considerably shorter execution time for training
compared to the GRU model. This comparison was performed using the same computer without
mounting or connecting it to a hosted GPU. Ultimately, it was concluded that the GBRT model had the
best performance and will be considered for the mixture optimization process.
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4.3. Comparison with Previous Studies

A prime goal in ML is to create models that can accurately predict the output for new unseen data
never presented to the model, i.e., achieving models that can generalize [38]. ML models generalize a
phenomenon through learning the underlying principles within the training data. Hence, they are
capable of generalizing when predicting sensible outputs from inputs different than those of the
training dataset [27]. Testing the model on a high number of unseen data samples is the rational way to
determine whether the model is generalizing or not, thus the importance of having large datasets [27].
The models proposed in the present study have demonstrated better generalization capability than
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those in former studies. A major reason for this superior performance is that the test dataset used in this
study has more data samples than the entire datasets used in developing previous models, including
Khademi et al. [15], Duan et al. [2], Deshpande et al. [11], Topçu and M. Saridemir [6], Deng et al. [16],
and Naderpour et al. [1] (see Table 14). It is important to mention that the Deng et al. [16] model was
not included in Table 14 because they neither reported the coefficient of determination nor the root
mean squared error. However, they reported the relative error percentage, which corresponded to 6.63,
4.35, and 3.65 for the back propagation neural network, support vector machine, and convolutional
neural network, respectively.

Table 14. Comparison of statistical measurements with previous studies.

Machine Learning Technique R2 RMSE No. of Samples Ref.

Multiple linear regression 0.609 9.975
257 [15]Artificial neural networks 0.919 4.446

Adaptive neuro-fuzzy inference system 0.908 5.045

Artificial neural networks 0.995 3.6804 168 [2]

Artificial neural networks 0.903 -
257 [11]Model tree 0.757 -

Non-linear regression model 0.740 -

Artificial neural networks 0.998 2.395
210 [6]

Fuzzy logic 0.996 3.866

Artificial neural networks 0.688 - 139 [1]

Artificial neural networks 0.971 - 1178 [23]

Multivariate adaptive regression splines - 8.750
650 [22]M5 model tree - 8.250

Least support vector regression - 7.550

Gradient Boosting a 0.919 5.076
1134 -

Deep Learning a 0.868 6.502
a model of the present study.

Table 14 shows the coefficient of determination and the root mean squared error of models in
previous studies that predicted the compressive strength of RAC. It can be observed that models in the
present study achieved better accuracy than that of Gholampour et al. [22] and Deshpande et al. [11]
who used relatively large data samples. As expected, studies that reported smaller databases reached
higher accuracy. For instance, Duan et al. [2] and Khademi et al. [15] used 168 and 257 samples,
respectively. The reported accuracy was 0.995 for Duan et al. [2] and 0.919 for Khademi et al. [15],
both studies using ANNs. This indicates that although higher number of samples might result in
a better generalized model, the accuracy can decrease, and thus accuracy metrics alone may not be
enough to assess predictive models. The ability to generalize predictions beyond a limited dataset is a
more important feature. Also, several models which used smaller data sets than that in the present
study, including Khademi et al. [15], Duan et al. [2], Deshpande et al. [11], Topçu and Saridemir [6],
Deng et al. [16], and Naderpour et al. [1], have compromised generalization capability. Furthermore,
in the case of Gholampour et al. [22], the authors decided to split the available data and create two
different models to predict the compressive strength of those samples corresponding to cylindrical
specimens and those corresponding to cube specimens. Conversely, the present study considered the
specimen type as an input feature, resulting in higher accuracy. Generally, the present study along with
Dantas et al. [23] used the highest number of data. However, Dantas et al. [23] reported a coefficient
of determination higher for the testing set than that for the training set, 0.971 and 0.928, respectively.
This is a sign that their model was not sufficiently trained, as suggested by Gulli and Pal [37].
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4.4. RAC Mixture Proportioning and Optimization

A PSO was coupled with the GBRT model to optimize the mixture design and predict the
compressive strength of RAC, such that the most economic mixture proportion is obtained for a given
compressive strength class. The optimization was performed considering the unit costs of materials
presented in Table 7. Not only does the optimization process reduce the higher unit cost ingredients,
but it also reduces cement in the mixture, providing both economic benefit and sustainable mixture
designs with less CO2 emission. High upper limit of RCA was considered in the optimization to
ensure maximum replacement of RCA as presented in Table 8. Although using higher portions of RCA
may contradict with compressive strength requirements, the optimization was carried out to maintain
highest possible recycle aggregate content along with the desired compressive strength class.

Table 9 presents the optimized mixture designs of RAC for different compressive strength classes as
obtained by the PSO model. The mixture proportions were then used to predict the compressive strength
using the GBRT model. Silica fume was not considered in the optimization process, and thus was set
to zero when predicting the compressive strength with the GBRT model. Ultimately, considerable
reduction of cost in all cases, especially for the lower compressive strength range, was achieved as
outlined in Table 10. For instance, there was 25% reduction in the cost of the RAC mixture without
affecting its compressive strength when the target compressive strength was 35 MPa. The optimization
process demonstrated the outstanding capability of the PSO-GBRT model in capturing complex
relationships within the data to select the best mixture proportions, while maintaining a similar
water-to-cement ratio to that of the base mixture. This can be observed for instance when considering
the 25 and 30 MPa compressive strength classes in which high water-to-cement ratio was proposed
with high RCA content with high water absorption capacity, as observed in experimental studies [9].

5. Conclusions

The present study explores deploying state-of-the-art machine learning models to predict the
compressive strength of RAC and optimize its mixture design. For this purpose, one of the largest
existing experimental datasets, including 1134 mixture design examples and featuring 10 attributes
was built from studies in the open literature. Three advanced machine learning models, including
Gaussian processes (GP), deep learning (DL), and gradient boosting regression trees (GBRT) were
tuned, trained, and tested using the dataset. To guarantee that the developed models were able to
generalize the compressive strength of RAC, K-fold cross-validation was used during the tuning
process. The results show that the three models successfully captured the underlying principles
contributing to the compressive strength of RAC. Furthermore, the diverse nature of the algorithms
used herein proves the robustness of ML algorithms for data analysis despite the complexity within the
dataset. The comparison of the models’ performance revealed that the GBRT and DL (recurrent neural
network) models had superior predictive performance compared to the GP model in terms of different
statistical metrics and performance indicators. Accordingly, the obtained coefficient of determination
of the testing set for GBRT, DL, and GP was 0.919, 0.868, and 0.844, respectively. Furthermore, the GBRT
model was coupled with PSO to create a hybrid model for optimizing the mixture design of RAC with
various compressive strength classes. Accordingly, the GBRT-PSO hybrid model successfully proposed
economic mixture designs that fulfill the compressive strength requirement, reduce cost, and mitigate
the environmental footprint of concrete production. To further the high potential of the developed ML
models, it is proposed to integrate supplementary cementitious materials, such as fly ash and blast
furnace slag in the dataset, and to extend the models to also capture durability requirements of RAC in
future work.
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