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Abstract

Background: NF-Y is a transcription factor that recognizes with high specificity and affinity the widespread CCAAT box
promoter element. It is formed by three subunits: NF-YA and the NF-YB/NF-YC- heterodimer containing histone fold
domains (HFDs). We previously identified a large NF-Y gene family in Arabidopsis thaliana, composed of 29 members, and
characterized their expression patterns in various plant tissues.

Methods: We used yeast Two-hybrids assays (Y2H), pull-down and Electrophoretic Mobility Shift Assay (EMSA) in vitro
experiments with recombinant proteins to dissect AtNF-YB/AtNF-YC interactions and DNA-binding with different AtNF-YAs.

Results: Consistent with robust conservation within HFDs, we show that heterodimerization is possible among all histone-
like subunits, including the divergent and related LEC1/AtNF-YB9 and L1L/AtNF-YB6 required for embryo development.
DNA-binding to a consensus CCAAT box was investigated with specific AtNF-YB/AtNF-YC combinations and observed with
some, but not all AtNF-YA subunits.

Conclusions: Our results highlight (i) the conserved heterodimerization capacity of AtNF-Y histone-like subunits, and (ii) the
different affinities of AtNF-YAs for the CCAAT sequence. Because of the general expansion of NF-Y genes in plants, these
results most likely apply to other species.
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Introduction

The CCAAT box is one of the most ubiquitous promoter

elements, being present in many, if not most of eukaryotic

promoters [1]. Typically, it is found between 260 and 2100 base-

pairs from the transcriptional start site. The functional importance

of the evolutionarily conserved consensus pentanucleotide has

been widely established in several experimental systems. Twenty

years of biochemical and genetic analyses have clarified that NF-Y

[HAP2/3/5 in yeast] is a trimeric protein complex composed of

NF-YA [HAP2], NF-YB [HAP3] and NF-YC [HAP5]. All

subunits are required for DNA-binding and conserved throughout

evolution [2]. NF-YB/NF-YC belong to the class of Histone Fold

Domain [HFD] proteins, forming a tight dimer, structurally

similar to H2A/H2B, with DNA-binding interaction modules [3].

Heterodimerization results in the formation of a surface for NF-

YA association, allowing the resulting trimer to bind DNA with

high specificity and affinity. The fungi HAP complex activates

transcription through an additional subunit, HAP4, containing an

acidic activation domain [4,5], unlike the mammalian NF-YA and

NF-YC subunits which display large domains rich in Glutamines

with transcriptional activation potential [6,7]. In plants, NF-Y also

consists of three subunits and we and others have identified and

classified them in Arabidopsis [8–10], and other species [11–15]. In

general, plants have large families of genes, differentially expressed

in various tissues: typically, 4–6 members are abundant and

ubiquitous, while the others are restricted to certain tissues or

developmental stages.

Genetic experiments were initially described for LEAFY

COTYLEDON 1 (LEC1, AtNF-YB9) which has a role in embryo

maturation and specification of cotyledon identity, with a unique

pattern of expression confined to embryos ([16–18], reviewed in

[19]). A LEC1 related member, L1L/AtNF-YB6, was shown to be

able to partially complement the lec1 defect [20], and chimeric

constructs demonstrated that the HFD domain is necessary and

sufficient for LEC1 function in embryos [17]. The LEC1

homologues have similar roles in carrot [21,22] and Theobroma

cacao [23]. Genetic analysis of AtNF-YA5 mutants indicate that it

is involved in both ABA and blue light responses, together with

LEC1 [24], and in drought resistance [25], similarly to AtNF-YB1

and YB2 and maize ZmNF-YB2 [26,27]. AtNF-YB2 and AtNF-
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YB3 are important for flowering [28–31], and MtHAP2-1

regulates symbiotic nodules in Medicago truncatula [32].

The growing wealth of genetic data is poorly matched by

biochemical advancements. The presence of 29 bona fide NF-Y

genes in the Arabidopsis genome could potentially result in the

formation of .900 alternative heterotrimeric combinations with

different DNA-binding capabilities: the most obvious questions are

whether there is specificity in interactions and whether all

combinations are capable to bind to the CCAAT box. DNA-

binding has been scored with carrot LEC1, one cNF-YB and two

cNF-YCs [33], with OsHAP3A (NF-YB), six OsHAP5s (NF-YC)

and one OsHAP2 [13], and AtNF-YB2 and AtNF-YB3 coupled to

yeast HAP2 and HAP3 subunits [30]. A recent systematic study

conducted on Arabidopsis NF-Y subunits using Y2H assays reached

the following conclusions [34]: (i) the HFD subunits do not

homodimerize, (ii) they heterodimerize among them, with a

notable degree of specificity, and (iii) AtNF-YAs can only bind to

HFD dimers, and not to single subunits. The last point was

expected, given the wealth of previous biochemical and genetic

work. To clarify the stunning complexity of this system, we

undertook Y2H assays, in vitro pull-down and Electrophoresis

Mobility Shift Assay (EMSAs), reporting the interaction map and

DNA-binding activity of 24 members of the Arabidopsis NF-Y gene

family.

Results

Yeast Two-Hybrids assays
Since NF-YB and NF-YC are known to form a tight

heterodimer, whose interaction generates an optimal surface for

NF-YA association, we used Y2H assays to systematically dissect

the ability of each member of the AtNF-YB and AtNF-YC family

to interact with each other. The bait and prey vectors contained

the GAL4 DNA-binding domain (DBD) and GAL4 activation

domain (AD), respectively. For each pair of AtNF-YB/AtNF-YC

constructs, the Yeast Two-Hybrid interactions were tested in both

configurations, to minimize the possibility of false positive and

negative results. For both NF-Y gene families, we used the full

length cDNAs corresponding to all AtNF-YB and AtNF-YC genes

previously classified [9]. Three readouts were considered: His, Ade

and LacZ, each driven by a different promoter under the control

of the GAL4 responsive elements. Figure 1A shows the results of

the different combinations with AtNF-YCs fused to the GAL4

DBD, and AtNF-YBs to GAL4 AD. On the other hand, Figure 1B

shows the result obtained with AtNF-YCs fused to the GAL4

activation domain and AtNF-YBs to GAL4 DBD. Note that, in

both cases, 3-AT was added to the yeast medium to minimize the

growth due to self-activation. A first result is that the vast majority

of the NF-YB and NF-YC family members can interact with each

other in this in vivo assay. The only exception to this general

observation is LEC1/AtNF-YB9, which does not interact signif-

icantly with any of the AtNF-YCs, in both configurations (Fig. 1),

except for a suboptimal interaction with AtNF-YC3 and only with

the AD configuration (Fig. 1A). A weaker interaction can be

observed between specific pairs, like AtNF-YB2/AtNF-YC6 and

AtNF-YB3/AtNF-YC7, in both configurations. Other pairs with

suboptimal affinity are AtNF-YB2/AtNF-YC2, AtNF-YB3/AtNF-

YC2, AtNF-YB3/AtNF-YC6, AtNF-YB4/AtNF-YC7 and AtNF-

YC3/AtNF-YB10 (Fig. 1B). To further confirm these interactions

and better quantify their strength, liquid Y2H Assays were

performed by measuring b-GAL activity under conditions of

exponential growth. For the liquid assay, we used the AtNF-YB

(DBD) and AtNF-YC (AD) configurations shown in Figure 1B.

The results of these experiments are shown in Figure 2. As

previously determined by in plate assays, the liquid assay

confirmed that LEC1/AtNF-YB9 (DBD) does not significantly

interact above background levels with any AtNF-YC subunits. The

liquid assay confirmed the weak interactions detected by the in

plate assay. Furthermore, it was possible to detect a couple of

additional weak interactions between AtNF-YB7/AtNF-YC6 and

AtNF-YB10/AtNF-YC6. On the other hand, AtNF-YB1, AtNF-

YB5 and AtNF-YB6, and to a lesser degree AtNF-YB2, showed

robust interactions with all AtNF-YC family members. Overall,

this set of experiments indicate that the vast majority of the HFD

combinations heterodimerize, with few very specific exceptions.

In vitro analysis
The negativity of LEC1/AtNF-YB9, unable to interact with any

AtNF-YC, and the positivity of L1L/NF-YB6, which binds to all

partners, are not expected. To substantiate the Y2H assays, we

produced and purified recombinant proteins, as well as in vitro

produced proteins by transcription and translation [TnT] of

different subunits (Fig. S1). We chose AtNF-YB2 and AtNF-YA6

because they are rather ‘‘conventional’’ structure-wise when

compared to the mammalian homologues. AtNF-YC were mixed

with an excess of His-tagged recombinant AtNF-YB2 and loaded

on NTA-Nickel columns. Figure 3 shows the results of such

experiments. As expected, control columns did not retain any

AtNF-YC subunit in the bound fractions in the absence of AtNF-

YB2 (Fig. 3A and 3B, lanes 5). On the other hand, all AtNF-YCs

were bound, with varying degrees of efficiency, in the presence of

AtNF-YB2 (Fig. 3A and 3B, lanes 3), or L1L/AtNF-YB6 (Data not

shown). While this assay is not quantitative, it does confirm that

the two AtNF-YBs are able to retain on the column all AtNF-YCs,

consistent with the results obtained by the Y2H assay. In the same

assay, AtNF-YA6 was also retained with different AtNF-YC

combinations when His-tagged AtNF-YB2 was added (Fig. 3B),

indicating that interactions are observed in the presence of the

three subunits.

Having shown that most HFD subunits are able to interact both

in vivo and in vitro, the next relevant question concerns the affinity

of combinations for the CCAAT box. To answer this question,

recombinant proteins were produced by TnT and used in EMSAs

with a consensus, high affinity NF-Y oligonucleotide [1]. In

Figure 4, several members of the Arabidopsis subunits were first

assayed in the presence of the mouse NF-YA/NF-YC heterodi-

mer. As negative controls we used the mouse dimeric combina-

tions alone (Fig. 4A lane 2, Fig. 4B lane 1 and Fig. 4C lane 4). In

vitro transcribed and translated Luciferase was added to the same

mouse dimers as an additional negative control (Fig. 4A, lane 1).

Recombinant mouse NF-YA alone was also used as negative

control (Fig. 4C, lane 2). Positive controls were the mouse

recombinant NF-Y trimer (Fig. 4C, lane 1), and single mouse NF-

Y subunits added to the corresponding mouse dimeric combina-

tions: NF-YB to NF-YA/NF-YC (Fig. 4A, lane 9), NF-YC to NF-

YA/NF-YB (Fig. 4B, lane 11) and NF-YA to NF-YB/NF-YC

(Fig. 4C, lane 11). Surprisingly, none of the AtNF-YBs added to

the mouse NF-YA/NF-YC led to the formation of a complex with

an electrophoretic activity different from the negative controls

(Fig. 4A). In the case of the AtNF-YCs, instead, all subunits

generated a discrete band with mouse NF-YA/NF-YB, with

mobility somewhat similar to that of mouse NF-Y: the bands were

weak for AtNF-YC3, AtNF-YC7 and AtNF-YC8, but quite robust

for the other six AtNF-YCs tested. For AtNF-YAs, AtNF-YA2 and

AtNF-YA4 were negative, whereas AtNF-YA3, AtNF-YA6, AtNF-

YA8 and AtNF-YA9 were all capable of generating bands with

mobilities similar to mouse NF-Y. These results indicate that the

majority of the AtNF-YA and AtNF-YC members behave as

NF-Y Subunits in Arabidopsis thaliana
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canonical NF-Ys, as they associate with mouse subunits and bind

to the CCAAT box.

The negativity of the AtNF-YBs in the TnT-EMSA assays

(Fig. 4A) was troubling: therefore, we decided to investigate

whether this was an artefact due to the use of mouse recombinant

NF-YA and NF-YC subunits and/or to the TnT system used.

First, we selected two AtNF-YBs -AtNF-YB2 and L1L/AtNF-

YB6- which are proficient in interactions with all AtNF-YCs

according to the Y2H assay. We produced and purified single His-

tagged AtNF-YB2 and AtNF-YB6 recombinant proteins in E. coli,

together with two AtNF-YC subunits, namely AtNF-YC3 and

AtNF-YC7 (Fig. S1). The choice of these members were driven by

two types of considerations, the first being expression patterns, the

second relatedness to mouse subunits: AtNF-YB2 and AtNF-YC3

are the most ubiquitously expressed and less ‘‘variant’’, whereas

L1L/AtNF-YB6 and AtNF-YC7 are strictly tissue-specific and the

most deviant. The HFD proteins were found in inclusion bodies,

as expected, denatured and efficiently renatured when mixed

together [35,36]. In one set of experiments, to the Arabidopsis NF-

YB/NF-YC dimers we added recombinant AtNF-YA6, one of the

AtNF-YAs positive in the EMSAs with mouse subunits (Fig. 5A).

The Arabidopsis NF-YB/NF-YC dimers were also added to

recombinant mouse NF-YA (Fig. 5A). AtNF-YA6 is able to

generate NF-Y-like bands when AtNF-YC3 dimerized with either

AtNF-YB2 or AtNF-YB6; the AtNF-YC7 combinations, on the

other hand, yielded either no band or a smeary pattern. The same

was essentially observed with mouse NF-YA (Fig. 5A), except that

the AtNF-YB6/AtNF-YC3 combination was more efficient in

binding, paralleling the efficiency of the mouse NF-Y trimer. The

difference in mobilities of At-NF-YA6 and mouse NF-YA

complexes are visible and most likely due to the different

molecular mass of these two NF-YA proteins (308 and 347

residues, respectively). Again, the AtNF-YC7 combinations gave

no band or a smear, indicating that heterotrimers with this subunit

are very inefficient in CCAAT-binding. We decided to further

dissect the DNA-binding activity of this heterodimer in the

presence of other AtNF-YA family members: Figure 5B shows that

an NF-Y complex was obtained with AtNF-YA3, AtNF-YA6,

AtNF-YA8 and AtNF-YA9. Taken together, the results of Figure 5

are consistent with the set of experiments previously performed by

Figure 1. AtNF-YB-AtNF-YC interactions by colony yeast two hybrids assays. A.The indicated AtNF-YCs were fused to the Activation
Domain (AD) and tested with AtNF-YB fused to the DNA-binding domain of GAL4. B. Same as A, except that the reverse experiment was tested,
namely the AtNF-YBs fused to the Activation Domain were matched to the AtNF-YCs fused to the DNA Binding Domain. ++ refers to robust growth
on the selective medium, + weak growth, and 2 no growth.
doi:10.1371/journal.pone.0042902.g001

NF-Y Subunits in Arabidopsis thaliana

PLOS ONE | www.plosone.org 3 August 2012 | Volume 7 | Issue 8 | e42902



using mouse recombinant subunits (Fig. 4). These data indicate

that AtNF-YA2 and AtNF-YA4 are either incapable to associate to

AtNF-YB6/AtNF-YC3 -and mouse HFD dimers- or to bind to

DNA.

L1L/AtNF-YB6 and LEC1/AtNF-YB9 belong to the same

clade and are genetically linked. Having shown that L1L/AtNF-

YB6 is capable to heterotrimerize and bind to CCAAT, we

wondered whether the lack of heterodimerization of LEC1/AtNF-

YB9 was due to some artefacts of the Y2H system. We decided to

use an E. coli coexpression system in which the HFDs of either

protein was coexpressed with the HFD of AtNF-YC3: Figure 6A

shows that both heterodimers are produced and purified from

soluble bacterial extracts. The copurification of (untagged) AtNF-

YC3 with the His-tagged AtNF-YBs is a clear sign of hetero-

dimerization. Surprisingly, when we expressed LEC1/AtNF-YB9

alone, rather than being confined to inclusion bodies, the protein

was very efficiently produced in a soluble form, which is very

unusual for HFD proteins. Next, we performed EMSAs with a

CCAAT oligonucleotide, using the two heterodimers and mouse

NF-YA: Figure 6B shows that both gave shifted bands, with

mobilities similar to NF-Y. The affinities were lower with respect

to the mouse NF-YB/NF-YC used as positive control, but similar

among them. Note that in this particular experiments, we used the

minimal heterotrimerization/DNA binding domain constructs

consisting of the evolutionarily conserved regions of each subunit

[3], with a 31 bp Cy5-labelled probe in Agarose-EMSA, which

resulted in faster DNA-protein complexes. AtNF-YB9 alone did

not show any DNA binding. Taken together, these data prove that

LEC1/AtNF-YB9 can heterodimerize, trimerize with NF-YA and

bind to CCAAT as efficiently as its closest relative, L1L/AtNF-

YB6.

Discussion

One of the most pressing questions in biology is to understand

the interactions of transcription factors among each other and with

their natural DNA targets. As they have often evolved in complex

families, whose members share some common features and

diverge in others, the intricacies of the role of each member needs

to be clarified. This is particularly challenging in plants, where

genes encoding TFs have expanded to amazing numbers. One

such example is NF-Y, the heteromeric CCAAT-binding protein,

whose subunits are encoded by single copy genes in most

eukaryotes, including mammals [2], while in Arabidopsis and other

plants each is represented by large families. We began a systematic

investigation of the interactions among 24 AtNF-Y subunits, by

using Y2H in vivo and in vitro assays. Some of our data, notably

those on LEC1/AtNF-YB9, indicate that negative results of Y2H

assays should be confirmed by independent biochemical means,

before interactions can be ruled out.

Dimerization
By and large, the Arabidopsis NF-Y HFD subunits -AtNF-YBs

and AtNF-YCs- are able to heterodimerize, whether by Y2H

assays or by in vitro interactions. These results are not surprising,

based on considerations made on the crystallographic structure of

the mouse NF-YB/NF-YC dimer [3], and of similar HFD dimers,

including H2A/H2B [35]. These analyses have revealed that the

a2 helix of the HFD is the core of the dimerization surface, thanks

Figure 2. AtNF-YB-AtNF-YC interactions by liquid yeast two
hybrids assays. Yeast two hybrids assays in liquid cultures using the

AtNF-YB (DBD) and AtNF-YC (AD) configuration are depicted. b-
Galactosidase Units were measured as detailed in Materials and
Methods. The experiments were repeated three times and the standard
deviations are indicated.
doi:10.1371/journal.pone.0042902.g002

NF-Y Subunits in Arabidopsis thaliana
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primarily to hydrophobic contacts. Another region of importance

is the a1 helix, stabilized by hydrophobic interactions that are

stacked against a conserved tryptophan at position 85 of a2 helix

of NF-YC. Essentially all AtNF-YBs and AtNF-YCs have

hydrophobic residues at appropriate positions, thus the widespread

heterodimerizations we observed came to modest surprise. With

respect to the Y2H experiments reported by Hackenberg et al.

[34], as well as previous data [13,31], we note the following

differences.

(i) Some clear preferences for heterodimer formation between

specific AtNF-YBs and AtNF-YCs were observed in the

present and in the Hackerberg studies: only AtNF-YC6

and AtNF-YC7 show a marked preference for selected

AtNF-YB subunits, in our study; all AtNF-YCs, except

AtNF-YC3 and AtNF-YC9, have clear preferences in the

Hackenberg data. On the AtNF-YBs side, AtNF-YB2,

AtNF-YB3, AtNF-YB4, AtNF-YB7 and AtNF-YB10 show

reduced affinity for one, or sometimes two AtNF-YCs: the

same applies in the reported study. Even with our

knowledge of the structure, it is quite difficult to rationalize

these preferences, which seems quantitative more than

qualitative.

(ii) In the Hackenberg study, AtNF-YB11, B12, B13 and

AtNF-YC10, 11, 13 are very selective, with a tendence to

heterodimerize among them: the likeliest explanation is

that these are not true NF-Y subunits, but rather resemble

to other H2A/H2B-likes [KT, CT, RM, in preparation]: it

should be remembered, in fact, that the TBP/TATA-

binding NC2a/NC2b and the chromatin remodeling and

DNA-Polymerase e subunits Chrac15/Dpb3/Dpb4 share

extended conservation and have highly similar structures

Figure 3. AtNF-Y Subunits interactions in vitro. A. The indicated labelled, TnT produced NF-YCs were assayed in affinity assays with
recombinant AtNF-YB2 containing an His-tag. Load (L), flow-.through (FT) and bound (B) fractions of NTA Nickel columns, with (Lanes 2 and 3) and
without (Lanes 4 and 5) His-AtNF-YB2 were run on SDS-PAGE gels and labelled proteins were revealed by autoradiography. B. Same as A, except that
labelled, TnT produced AtNF-YA6 was added to the load fraction.
doi:10.1371/journal.pone.0042902.g003

NF-Y Subunits in Arabidopsis thaliana
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[2,37,39]. We have previously reported that mammalian

NF-YB/NF-YC do not cross heterodimerize with NC2

subunits [38], and there are structural reasons for this [3].

(iii) Kumimoto et al. have shown that AtNF-YB2 and B3

interact strongly with AtNF-YC3, C4 and C9 in Y2H and

in genetic terms [31], which is in line with our data, but not

with the Hackerberg study, in which they lack AtNF-YC4

binding. In rice, the homologue of AtNF-YB2 (OsHAP3A)

interacts in Y2H with all OsHAP5s, including the

homologue of AtNF-YC4, except for homologues of

AtNF-YC2 and C3 [13].

(iv) AtNF-YC5, AtNF-YC7 and AtNF-YC8, which belongs to

a common clade and are the most tissue-restricted

members of the AtNF-YC [8], were negative for AtNF-

YB heterodimerization in the Hackenberg et al., study, the

former in both AD and DB combinations, the latters in

one. In our data, these AtNF-YCs were generally positive

for all AtNF-YBs, except AtNF-YC7, negative with AtNF-

YB3 and AtNF-YB4.

Figure 4. EMSAs of AtNF-Y subunits with mouse NF-Y. A.Electrophoretic Mobility Shift Assay of the indicated AtNF-YB with recombinant
mouse NF-YA and NF-YC using a labeled CCAAT-containing oligonucleotide. B. Same as A, except that At NF-YCs were used with recombinant mouse
NF-YA and NF-YB. C. Same as A, except that AtNF-YA were used with recombinant mouse NF-YB and NF-YC. The migration of the mouse NF-Y
complex is indicated.
doi:10.1371/journal.pone.0042902.g004

NF-Y Subunits in Arabidopsis thaliana
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(v) LEC1/AtNF-YB9 showed a dual behaviour in our hands:

no interactions with AtNF-YCs in the Y2H assays, yet

efficient heterodimerization with AtNF-YC3 by co-expres-

sion of the two proteins in E. coli. In the Hackenberg study,

LEC1/AtNF-YB9 was positive with most AtNF-YCs;

moreover, the carrot homologue of LEC1 was able to

bind DNA in vitro with two NF-YC homologues [33]. Thus,

in this specific case, our Y2H was clearly misleading.

All in all, different Y2H data show some discrepancies, most

likely due to technicalities in the expression vectors, yeast

productions or activation assays. We also have to bear in mind

that yeast possesses endogenous HAPs (as well as NC2 and Dpb3/

4), indeed shown to interact with some of the plant members [30],

thus possibly influencing the results of such assays. Our

experiments with LEC1/AtNF-YB9 illustrates the dangers of

relying only on this assay in the case of negative results.

We are intrigued by the unusual capacity of LEC1/AtNF-YB9

to form homodimers and remain soluble in bacteria: to the best of

our knowledge, this is unique among HFDs, which are normally

found as inactive, precipitated proteins in inclusion bodies, when

not overexpressed with the appropriate partner [36]. This brings

up the question of whether LEC1 homodimers are formed in

plants. We found that they do not bind DNA, most likely because

of lack of interactions with NF-YA, which absolutely requires NF-

YC. It is possible that there is regulation of homo- to heterodimer

formation: for example, post-translational modifications (PTMs),

not performed in bacteria, could be required to render the HFD

prone to heterodimerization: these are histone-like proteins, and

histones are crucially controlled by a wealth of PTMs, and we have

recently obtained evidence that mouse NF-YB is modified a-la

H2B (RM, in preparation).

LEC1/AtNF-YB9 and L1L/AtNF-YB6 are capable to effi-

ciently heterodimerize with AtNF-YC3, trimerize and bind to

DNA, and the latter also with all AtNF-YC partners in Y2H

assays. These data fits with genetic experiments, which established

that L1L complements the LEC1 mutants, and in domain

swapping experiments with other AtNF-YBs, the B domain

-corresponding to the HFD [40]- is required for complementation.

In addition to the AtNF-YC and AtNF-YA partners, LEC1 and

L1L could exert their roles through interacting proteins, such as

MADS box OsMADS6 and OsMADS18 [41], Pirin1, an iron-

containing member of the cupin superfamily involved in a

pathway leading to an ABA-mediated delay in seed germination

[24]. Additional proteins interacting with AtNF-Ys are bZIP67,

interacting with AtNF-YC2 in the regulation of CRUCIFERIN C

[CRC] and SUCROSE SYNTHASE2 [SUS2] in Arabidopsis proto-

plasts [21], and, most importantly, CONSTANS and CON-

STANS-like proteins in Arabidopsis and tomato [42,43] involved in

determining the proper flowering timing with specific members of

AtNF-YBs and AtNF-YCs [31,44].

DNA-binding
The formation of NF-Y heterotrimers was tested with selected

AtNF-YB/AtNF-YC HFD dimers. While the HFD dimer

contributes substantially to DNA-binding, mostly through a1

helices, L1 and L2 loops, the subunit that confers the sequence-

specificity is NF-YA. On the HFD side, the heterotrimerization

surface relies in selected residues in the a2 helix of NF-YB and in

the aC helix of NF-YC. The E90 and E98 of mouse NF-YB,

important for NF-YA binding [45], are conserved in all AtNF-YBs

[8–10,34]. The aC helix of AtNF-YC, on the other hand, shows

differences in at least three members: AtNF-YC5 possesses an R at

position 109 of mouse NF-YC, instead of an hydrophobic residue;

AtNF-YC8 has two Aspartates at position 111 and 112, instead of

hydrophobics, together with Isoleucine at position 113, instead of

the helix capping Proline [3]; finally, AtNF-YC7 has a four

aminoacids addition in the a3 helix, which extends it for an

additional turn, hence displacing the LC domain and aC helix

Figure 5. EMSAs of At NF-Y subunits. Electrophoretic Mobility Shift Assay of the indicated AtNF-Y subunits with a labelled CCAAT-containing
oligonucleotide.
doi:10.1371/journal.pone.0042902.g005
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from their natural positions. Not coincidentally, these three

members were not proficient in DNA-binding in our assays.

Although the interaction with AtNF-YA6 appears to be visible

with recombinant proteins, it remains to be seen whether other

residues directly contacting DNA in L1 and L2 loops (N86 in

AtNF-YC5 and G113 in AtNF-YC7, instead of a conserved

Lysine) might explain the decrease in DNA affinity of this group of

AtNF-YCs.

It was initially troubling to obtain negative results in EMSAs

with the TnT-produced AtNF-YBs, but this was most likely due to

technical problems of the translation extract, possibly inhibiting

trimerization, or production of inactive AtNF-YBs in the absence

of coexpression of AtNF-YCs: in fact, recombinant AtNF-YBs

produced from E. coli, including the divergent LEC1/AtNF-YB9

and L1L/AtNF-YB6, were positive in DNA-binding. Interestingly,

mutation of an Aspartate at position 55 of LEC1 is sufficient to

abrogate LEC1 function in vivo [17]. D55 is located at the

beginning of the a2 Helix, in a region that lies on the surface of the

dimer: most other Arabidopsis and mammalian NF-YBs have a

Lysine, conserved in H2B, and predicted to be involved in protein-

DNA interactions [3]. L1L/AtNF-YB6 also has an Aspartate at

this position, which might be considered as a ‘‘signature’’ for this

subfamily: the change might decrease affinity for DNA, but an

important result in our study is that it certainly does not abolish it:

in essence, no AtNF-YB is ‘‘deviant’’ enough to have lost the

DNA-binding capacity.

On the NF-YA side, the evolutionarily conserved domain is

responsible for trimerization and CCAAT-binding. Protein-

Figure 6. E. coli co-expression of LEC1/AtNF-YB9 with AtNF-YC3 allows functional heterodimerization, heterotrimerization and
CCAAT-binding. A. Purification of soluble LEC1/AtNF-YB9 or L1L/AtNF-YB6 HFD heterodimers by co-expression with AtNF-YC3. Nickel-affinity
purification elution profiles obtained from soluble fractions of 6His-LEC1/AtNF-YB9 or 6His-L1L/AtNF-YB6 with AtNF-YC3. Equal volumes of indicated
elution fractions (E) in 100 mM Imidazole of LEC1/AtNF-YB9 or L1L/AtNF-YB6 with AtNF-YC3 were analysed by SDS-PAGE and Coomassie staining. E2,
were dialysed and used in Agarose gel non-radioactive EMSAs shown in (B). B. Fluorescence agarose gel EMSAs of trimer reconstitution with mouse
NF-YA. 59-Cy5 labeled CCAAT oligonucleotide probe was incubated with increasing amounts of the indicated 6His-tagged HFD dimers isolated by Ni-
affinity purification, or mouse 6His-NF-YB/NF-YC as positive control, in the presence, or absence, of purified mouse NF-YA. Purified (untagged) mouse
NF-Y trimer was used as a reference for NF-Y complex migration.
doi:10.1371/journal.pone.0042902.g006
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protein interaction assays and EMSAs indicate that the majority of

AtNF-YAs are able to interact with AtNF-YB2/AtNF-YC3 and

L1L/AtNF-YB6/AtNF-YC3. Indeed, they are quite proficient in

association to the mouse NF-YB/NF-YC dimer. In particular, the

AtNF-YA6 shows robust CCAAT binding, which strongly suggests

that AtNF-YA5, not tested here, behaves similarly: the two belong

to a common clade, and the DNA-binding subdomain is absolutely

conserved. AtNF-YA5 is so far the only AtNF-YA for which

genetic experiments were reported: mutation causes drought stress

and overexpression drought resistance [25]; our data suggest that

the mechanisms are related to prototypical CCAAT-binding.

Only AtNF-YA2 and AtNF-YA4 were negative, suggesting that

they are either incapable to trimerize or bind DNA. Note that

AtNF-YA7 and AtNF-YA10 not tested here might behave

similarly, since the residues required for subunits interactions

and DNA-binding are identical to AtNF-YA4 and AtNF-YA2,

respectively. Several papers described two separate 20 aminoacid

stretches as required for subunits interactions and DNA-binding

[46–48]. Detailed mutagenesis of the mouse and yeast subunits

pinpointed several aminoacids necessary for the two functions. In

the subunits interaction domain, no dramatic changes are

observed, and indeed important residues are conserved in AtNF-

YA2 and AtNF-YA4, with the notable exception of R273 (mouse),

which is G147 in AtNF-YA2 and G137 in AtNF-YA4: potentially,

this could affect trimerization, since an R to G mutation in yeast

HAP2 does decrease the efficiency of HFD association significantly

[46]. We note, however, that in none of the other AtNF-YAs, nor

in most other plant NF-YA genes, there is an Arginine at this

position: in proficient members of the family tested here, an

Alanine is present. Most importantly, AtNF-YA2 and AtNF-YA4

were previously tested for heterotrimerization, and indeed showed

efficient association with HFDs [34]: in all likelyhood, therefore,

they have decreased DNA-binding affinity, despite an overall

conservation of key DNA-binding residues. Can we take these data

as an indication that some of the AtNF-YAs have lost the capacity

to bind DNA? If it is indeed so, what might be their function? The

most obvious answer is that if they do bind NF-YB/NF-YC

dimmer, they might act as Dominant Negative in terms of

CCAAT binding: indeed, introduction of mutations in the DNA-

binding subdomain of mouse NF-YA transforms it into a DN

protein ([1] and References therein).

The alternative, more appealing possibility to explain these

results is that trimers with these subunits have subtly changed

sequence-specificity. Residues that are variant in these genes, such

as C176 in AtNF-YA4 -a Serine in the other AtNF-YAs- and

H178 in AtNF-YA2 -a Glutamate in the other AtNF-YAs- or the

longer linker of AtNF-YA2 might account for this. Bioinformatic

analysis performed in our lab on human genome-wide data has

established that the NF-Y consensus, even in mammals, can,

moderately, deviate from a perfect pentanucleotide CCAAT,

provided that additional flanking nucleotides are present [2]:

indeed, some 30% of NF-Y bound in vivo in human cells show a

deviation of one nucleotide of the core CCAAT sequence. It seems

reasonable therefore to postulate that subclasses of AtNF-YAs

might bind variant versions of the CCAAT box: this hypothesis

can be tested more thoroughly by the biochemical assays we set up

with recombinant proteins, as we have started to do here. Even so,

rationalization and full understanding of the molecular details of

the enormous combinatorial possibilities of plant NF-Ys will have

to ultimately await crystallization of NF-Y/CCAAT complexes.

Materials and Methods

Yeast strains and plasmid construction
The cDNAs corresponding to each AtNF-Y subunit used in the

Yeast-Two Hybrid assay, were amplified from Arabidopsis cDNA

libraries using gene specific primers containing the attB1 and attB2

sequences for homologous recombination and subsequently cloned

into pDONOR201 vector (Life Technology). AtNF-YB and AtNF-C

coding sequences in pDONOR201 were subsequently cloned in

the GAL4 Gateway vector system: pDEST32 for DNA binding

domain fusions (pDBD) and pDEST22 for activation domain

fusions (pAD). The pDEST32 and pDEST22 vectors were

transformed into Saccharomyces cerevisiae strain PJ69-4A (trp1-901

leu2-3, 112 ura3-52 his3-200 gal4D gal80D LYS2::GAL1-HIS3

GAL2-ADE2 met2::GAL7-lacZ) [49]. Yeast Two-Hybrid assay

was performed as described below.

Yeast Two-Hybrid (Y2H) analysis
Haploid Yeast a and A were transformed respectively with pBD

and pAD vector constructs using the lithium acetate method [47]

and selected on Yeast Synthetic Dropout [YSD] medium lacking

Leu and Trp, respectively. Yeast carrying pBD vectors were tested

for autoactivation on selective medium with 5-bromo-4-chloro-3-

indolyl-b-D-galactopyranoside (X-Gal), on medium lacking histi-

dine and supplemented with different concentrations of 3-

aminotriazole (0, 3, 5, 10, 25 and 50 mM) and on medium

lacking adenine. Mating type a and A were mated and diploids

selected on YSD medium lacking Leu and Trp.

Two-hybrid interactions were assayed on selective YSD

medium lacking Leu, Trp, and Ade or His supplemented with

50 mM 3-aminotriazole. Selection was performed at 28uC for 4

days.

Liquid Two-Hybrid Assay
Semi-quantitative assay for comparing the strength of AtNF-YB

and AtNF-YC subunits interactions was performed by liquid LacZ

assay. For the liquid assay, we used the AtNF-YB (DBD) and

AtNF-YC (AD) configuration.

Yeast was inoculated in selective medium and grown for 8–9 h,

then centrifuged at 4500 rpm for 5 min. Pelletted cells were

resuspended in 5 ml of selective medium and grown O/N at 28uC.

Cells were centrifuged at 4500 rpm for 5 min and the pellet was

resuspended in 0.5 ml of cold water, centrifuged again for 30 sec

at 14000 rpm. Pellet was resuspended in 250 ml of pre-cooled

Breaking Buffer (100 mM Tris-HCl pH 8.0, 10% Glycerol, 1 mM

Dithiothreitol, protease inhibitors) and frozen in liquid nitrogen.

Unfrozen samples were subjected to 10 cycles of vortex/ice with

glass beads, centrifuged at 14000 rpm for 10 min and supernatant

has been recovered. Then 20 ml of protein extract were transferred

to a 1.5 ml centrifuge tube and added with 800 ml of Z-Buffer 16
(60 mM NaH2PO4, 40 mM Na2HPO4 anhydrous, 10 mM KCl,

1 mM Mg2SO4, 50 mM b-Mercaptoethanol) and 200 ml ortho-

Nitrophenyl-b-galactoside (ONPG) 4 mg/ml. The tube was

incubated at 37uC until the solution became yellow, for a

maximum of 45 min and the reaction was stopped adding

400 ml of 1.5 M Na2CO3. The samples were centrifuged for

30 sec at 13000 rpm and the optical density at 420 nm (OD420)

was determined. Activity in Miller Units was calculated according

to the formula (OD420 *1.4)/(0.0045*C*V*t) where C = concen-

tration of protein extract (mg/ml); V = volume of protein extract

(ml); t = time (min). Activity of AtNF-YB GAL4-DBD with GAL4-

AD fused with no AtNF-YC subunit has been used as control.
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Production of recombinant AtNF-YB and generation of
35S-Labeled AtNF-YC

To examine the in vitro interaction between AtNF-YB and

AtNF-YC subunits, His-tagged AtNF-YBs and 35S labelled AtNF-

YC were produced and used for pull-down experiments.

Chemically competent E. coli BL21 cells were transformed by

thermal shock with 100 ng of pET32A or pET32B, in which

AtNF-YB coding sequences were cloned. Transformed cells were

inoculated in LB broth (5 ml) with ampicillin (100 ng/ml) at 37uC
for 16 h. An aliquot (3 ml) of this culture was inoculated in 200 ml

of the same medium and let grow until an OD600 of 0.6 was

reached. The expression of each protein was induced with IPTG

(1 mM) for 3 h.

Cells were harvested by centrifugation at 6000 rpm for 10 min

at 4uC and suspended in Sonication Buffer (300 mM KCl, 20 m

M Tris-HCl pH 7.8, 0.05% NP40, 1 mM EDTA, 1 mM PMSF,

5 mM b-Mercaptoethanol) containing a cocktail of Protease

inhibitors (12.5 mg/ml leupeptin, 5 mg/ml trypsin inhibitor,

5 mg/ml pepstatin, 10 mg/ml chymostatin). The cells were then

thoroughly disrupted with a sonicator (10 cycles, 20 sec each). The

samples were centrifuged at 23000 rpm at 4uC for 90 min to

separate supernatant (SN) from inclusion bodies (IB). The SN and

IB (Resuspended in 100 mM KCl, 20 mM Tris-HCl pH 7.8,

5 mM b-Mercaptoethanol, 1 mM PMSF, 6 M GnCl) were loaded

onto Nichel-Agarose columns (Sigma). After thoroughly washing

with Washing Buffer (20 mM Tris-HCl pH 7.8 10% glycerol,

300/1000/100 mM KCl), the proteins bound to the columns were

eluted in Elution Buffer (2 mM Tris-HCl pH 7.8, 10% glycerol,

100 mM KCl, 1 mM PMSF, 5 mM b-Mercaptoethanol, 300 mM

Imidazol). Finally, eluted fractions from SN and IB were subjected

to dialysis to remove Imidazol.

AtNF-YC subunits, cloned in pCR4TOPO (Invitrogen), were

synthesized and 35S-labeled by coupled transcription and transla-

tion in 25 ml of nuclease-treated rabbit reticulocyte lysate (TnT,

Promega).

His pull-down assay
His-tagged AtNF-YB recombinant proteins (500 ng) and 10 ml

of AtNF-YCs produced by TnT were incubated together at 37uC
for 30 min in 100 ml of NDB100 (20% glycerol, 100 mM KCl,

20 mM Tris-HCl pH 7.8, 0.5 mM EDTA, 5 mM b-Mercapto-

ethanol). After incubation, recombinant proteins were loaded onto

a Nichel-Agarose column (Sigma), incubated for 3 h at 4uC, and

then centrifuged at 4000 rpm for 1 min at 4uC to recover the

‘‘flow through’’ (FT). After washing 3 times, they were eluted

(‘‘bound’’, B) with 30 ml of Elution Buffer (NDB100 containing

5 mM b-Mercaptoethanol, 0.25 M imidazole, PIC 16). As

negative controls, aliquots (10 ml) of the same AtNF-YC subunits

producted by TnT were incubated with the Nichel-Agarose

column. We did not observe any aspecifically bound AtNF-YC

subunits in the negative controls performed in the absence of His-

tagged AtNF-YBs. One third of FT and B samples were subjected

to SDS-PAGE, transferred to a nitrocellulose membrane

(150 mA/gel, 1.5 h), and analyzed by Western blotting using

anti-His antibodies; the remaining two thirds of each sample were

analysed by autoradiography to detect AtNF-YC subunits.

HFD heterodimer Protein expression and purification
The 6His-AtNF-YB/AtNF-YC soluble HFD dimers were

purified exploiting the T7-driven co-expression system described

in [3,50]. AtNF-YC3 (AA 55–148) (corresponding to the HFD

region of mouse NF-YC AA 27–120) was subcloned in the

pmncYC vector; LEC1/AtNF-YB9 (AA 56–148) or L1L/AtNF-

YB6 (AA 26–118) subunits (corresponding to mouse NF-YB HDF

AA 49–141) were subcloned in pET15b, resulting in 6His-N-

terminal fusions. 6His-LEC1/AtNF-YB9, or 6His-L1L/AtNF-

YB6, was expressed in E. coli BL21(DE3) together with, or not,

AtNF-YC3, and purified by Ni-chelate affinity chromatography

(HisSelect, SIGMA-Aldrich), as described in [3], in buffer A

(10 mM Tris pH 8.0, 400 mM NaCl, 2 mM MgCl2, 5 mM

imidazole), and eluted by subsequent additions of 1 bed volume of

buffer B containing 100 mM Imidazole. Indicated 6His-HFD

protein purification eluates were dialysed against buffer B (10 mM

Tris pH 8.0, 400 mM NaCl, 2 mM DTT) containing 10%

glycerol, and used in Fluorescensce Agarose gel EMSAs. The

soluble NF-Y heterotrimeric subunit complex and 6His-NF-YA

were produced as described in [50], and purified by Ni-chelate

affinity chromatography (HisSelect, SIGMA-Aldrich) in buffer A,

followed by thrombin cleavage of the NF-YA C-terminal His-tag,

and gel filtration (GF) chromatography (HiLoad Superdex75,

Amersham Pharmacia) in buffer B. GF fractions corresponding to

the NF-Y heterotrimer, or the NF-YA isolated subunit, were

collected, and used in Fluorescensce Agarose gel EMSAs, after

addition of 10% glycerol for storage.

Electrophoretic Mobility Shift Assays
For electrophoretic mobility shift assays 32P labelled fragments

210000 CPMs- are incubated in NF-Y Buffer (20 mM Hepes

pH 7.9, 50 mM NaCl, 5% Glycerol, 5 mM MgCl2, 5 mM b-ME)

with the recombinant proteins (1–5 ng), in a total volume of 10 ml;

after incubation for 159 at 20uC, we added 2 ml of 16NF-Y buffer

containing Bromophenol Blue and samples loaded on a 4.5%

Polyacrylamide in 0.56 TBE. Gels were dried and exposed. For

Fluorescence Agarose Gel EMSAs of Figure 6, heterotrimer

formation and CCAAT-box DNA-binding of the 6His-AtNF-YB/

AtNF-YC soluble dimers was assessed with Cy5-labeled oligos, by

addition of GF purified mouse NF-YA (AA 233–303). Equal

protein amounts of Ni-purified 6His-AtNF-YB/NF-YC HFD

dimers (3, 6, or 9 ng/ul) were mixed in 15 ml reactions with the

59-labeled 31 bp oligo probe derived from human HSP70

promoter CCAAT box sequence (Cy5-CTTCTGAGCCAAT-

CACCGAGCTCGATGAGGC) in DNA binding mix (20 nM ds

oligo, 20 mM Tris pH 7.5, 50 mM NaCl, 0.5 mM EDTA, 5 mM

MgCl2, 2.5 mM DTT, 0.1 mg/ml BSA, 5% glycerol), in the

presence of 40 nM NF-YA, where indicated. Ni-purified mouse

6His-NF-YB/NF-YC (1, 3, 6 ng), or GF purified NF-Y trimer

(60 nM) were used a positive controls. After 30 min incubation at

23uC, binding reactions were loaded on a 2.5% agarose gel and

separated by electrophoresis in 0.56 TBE. Fluorescence gel

images were obtained with a Typhoon 8610 Variable Mode

Imager (Molecular Dynamics).

Supporting Information

Figure S1 TnT and recombinant proteins production.
A. AtNF-YA, AtNF-YB and AtNF-YC subunits were synthesized

and 35S-labeled by coupled transcription and translation in

nuclease-treated rabbit reticulocyte lysate (TnT, Promega). B.
His-tagged AtNF-YA6, AtNF-YB2 and AtNF-YB6, AtNF-YC3

and AtNF-YC7 have been produced in E. Coli and purified by

Nichel-Agarose columns (Sigma). Load (L), flow-through (FT),

wash (W) and eluted (E) fractions of NTA Nickel columns are

shown.

(TIF)
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