organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-(4-Chloro-3-fluorophenyl)-2-[(3phenylisoguinolin-1-yl)sulfanyl]ethanone

P. Manivel,^a Venkatesha R. Hathwar,^b T. Maiyalagan,^a N. Burcu Arslan^c and F. Nawaz Khan^a*

^aChemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, Tamil Nadu, India, ^bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and ^cOndokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139-Samsun, Turkey Correspondence e-mail: nawaz_f@yahoo.co.in

Received 5 January 2009; accepted 13 January 2009

Key indicators: single-crystal X-ray study; T = 290 K; mean σ (C–C) = 0.004 Å; R factor = 0.056; wR factor = 0.128; data-to-parameter ratio = 14.2.

In the title compound, C23H15ClFNOS, the isoquinoline system and the 4-chloro-3-fluorophenyl ring are aligned at $80.4 (1)^{\circ}$. The dihedral angle between the isoquinoline system and the pendant (unsubstituted) phenyl ring is $19.91 (1)^{\circ}$.

Related literature

For related structures, see: Hathwar et al. (2008); Manivel et al. (2009a,b).

Experimental

Crystal data

C23H15CIFNOS	$V = 3864.3 (5) \text{ Å}^3$
$M_r = 407.87$	Z = 8
Orthorhombic, Pbca	Mo $K\alpha$ radiation
a = 16.9008 (11) Å	$\mu = 0.33 \text{ mm}^{-1}$
b = 9.8036 (7) Å	T = 290 (2) K
c = 23.3226 (16) Å	$0.24 \times 0.18 \times 0.11 \text{ mm}$

Data collection

Bruker SMART CCD area-detector	27428 measured reflections
diffractometer	3595 independent reflections
Absorption correction: multi-scan	2424 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.063$
$T_{\min} = 0.925, T_{\max} = 0.965$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.056$ 253 parameters $wR(F^2) = 0.128$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.32 \text{ e} \text{ Å}^-$ S = 1.04 $\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$ 3595 reflections

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2003).

We thank the Department of Science and Technology, India, for use of the CCD facility set up under the IRHPA-DST program at the IISc. We thank Prof T. N. Guru Row, IISc, Bangalore, for useful crystallographic discussions. FNK thanks the DST for Fast Track Proposal funding.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2534).

References

- Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hathwar, V. R., Prabakaran, K., Subashini, R., Manivel, P. & Khan, F. N. (2008). Acta Cryst. E64, o2295.
- Manivel, P., Hathwar, V. R., Nithya, P., Prabakaran, K. & Khan, F. N. (2009a). Acta Cryst. E65, 0137-138.
- Manivel, P., Hathwar, V. R., Nithya, P., Subashini, R. & Nawaz Khan, F. (2009b). Acta Cryst. E65, o254.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Watkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

supplementary materials

Acta Cryst. (2009). E65, o334 [doi:10.1107/S1600536809001573]

1-(4-Chloro-3-fluorophenyl)-2-[(3-phenylisoquinolin-1-yl)sulfanyl]ethanone

P. Manivel, V. R. Hathwar, T. Maiyalagan, N. B. Arslan and F. Nawaz Khan

Comment

In compound (I), the S atom also located in the plane. The F atom deviates by 0.014 A from mean plane of phenyl ring containing F and Cl atoms. In this ring F– C and Cl—C bond distances are 1.348 (4) A, 1.727 (3) A, respectively. The orientation of isoquinoline ring system with respect to the another phenyl ring is given by the torsion angles for N1—C2—C10—C15 and C3—C2—C10—C11 are respectively -160.1 (2)°, -163.1 (3)° similarly for C16—S1—C1—N1 and C16—S1—C1—C8 are respectively -0.8 (2)° and 179.56 (19)° (Table 1).

Experimental

3-Phenylisoquinoline-1-thiol and 2-bromo-1-(3-fluoro-4-chlorophenyl)ethanone were mixed in the ratio 1:1.05 equivalents with ethanol in a round bottom flask. Then it was heated under nitrogen atmosphere on an oil bath at 323 K. After 2 h, the products were filtered and dissolved in chloroform. Further, it was washed with water, dried and concentrated. The single-crystal for X-ray structue anlaysis was obtained from ether solution by slow evaporation.

Refinement

All the H atoms in (I) were positioned geometrically and refined using a riding model with C—H bond lenghts of 0.93 Å and 0.97 Å for aromatic and for methylene H atoms respectively and $U_{iso}(H) = 1.2U_{ed}(C)$ for all carbon bound H atoms.

Figures

Fig. 1. ORTEP diagram of the asymmetric unit of (I) with 50% probability displacement ellipsoids.

Fig. 2. The crystal packing diagram of (I). The dotted lines indicate intermolecular C—H···O hydrogen bonds. All H atoms have been omitted for clarity.

1-(4-Chloro-3-fluorophenyl)-2-[(3-phenylisoquinolin-1-yl)sulfanyl]ethanone

Crystal data C₂₃H₁₅ClFNOS

 $F_{000} = 1680$

$M_r = 407.87$	$D_{\rm x} = 1.402 \ {\rm Mg \ m}^{-3}$
Orthorhombic, Pbca	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 3595 reflections
<i>a</i> = 16.9008 (11) Å	$\theta = 1.8 - 25.5^{\circ}$
<i>b</i> = 9.8036 (7) Å	$\mu = 0.33 \text{ mm}^{-1}$
c = 23.3226 (16) Å	T = 290 (2) K
V = 3864.3 (5) Å ³	Block, colourless
Z = 8	$0.24\times0.18\times0.11~mm$

Data collection

Bruker SMART CCD area-detector diffractometer	3595 independent reflections
Radiation source: fine-focus sealed tube	2424 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.063$
T = 293(2) K	$\theta_{\text{max}} = 25.5^{\circ}$
φ and ω scans	$\theta_{\min} = 1.8^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -18 \rightarrow 20$
$T_{\min} = 0.925, T_{\max} = 0.965$	$k = -11 \rightarrow 11$
27428 measured reflections	$l = -28 \rightarrow 28$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.056$	H-atom parameters constrained
$wR(F^2) = 0.128$	$w = 1/[\sigma^2(F_o^2) + (0.0566P)^2 + 1.1665P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\rm max} = 0.001$
3595 reflections	$\Delta \rho_{max} = 0.32 \text{ e} \text{ Å}^{-3}$
253 parameters	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

x y z $U_{\rm iso}^{*}/U_{\rm eq}$

01	0.07142 (12)	0.8183 (2)	0.28005 (9)	0.0633 (6)
F1	0.09785 (13)	0.8393 (2)	0.06905 (9)	0.1057 (7)
S1	0.03138 (4)	0.61721 (7)	0.37120 (3)	0.0495 (2)
C11	-0.02952 (8)	0.70329 (14)	0.00961 (4)	0.1221 (5)
N1	0.12270 (12)	0.4853 (2)	0.29715 (9)	0.0399 (5)
C1	0.11497 (15)	0.5201 (2)	0.35092 (11)	0.0393 (6)
C2	0.18572 (14)	0.4054 (2)	0.28104 (11)	0.0405 (6)
C3	0.24276 (16)	0.3684 (3)	0.31906 (11)	0.0474 (7)
Н3	0.2861	0.3180	0.3066	0.057*
C4	0.29398 (18)	0.3701 (3)	0.41884 (13)	0.0593 (8)
H4	0.3384	0.3205	0.4079	0.071*
C5	0.2845 (2)	0.4076 (3)	0.47468 (14)	0.0688 (9)
Н5	0.3225	0.3827	0.5016	0.083*
C6	0.2188 (2)	0.4828 (3)	0.49197 (13)	0.0643 (9)
H6	0.2135	0.5085	0.5302	0.077*
C7	0.16226 (18)	0.5189 (3)	0.45299 (12)	0.0538 (7)
H7	0.1180	0.5676	0.4650	0.065*
C8	0.17027 (16)	0.4832 (2)	0.39492 (11)	0.0422 (6)
С9	0.23657 (16)	0.4063 (3)	0.37753 (11)	0.0451 (6)
C10	0.18550 (14)	0.3638 (2)	0.21970 (11)	0.0419 (6)
C11	0.13897 (17)	0.4309 (3)	0.18011 (12)	0.0515 (7)
H11	0.1085	0.5046	0.1921	0.062*
C12	0.13641 (19)	0.3920 (3)	0.12340 (12)	0.0597 (8)
H12	0.1046	0.4392	0.0976	0.072*
C13	0.18110 (19)	0.2828 (3)	0.10499 (13)	0.0641 (9)
H13	0.1805	0.2569	0.0666	0.077*
C14	0.22641 (19)	0.2130 (4)	0.14375 (14)	0.0715 (10)
H14	0.2556	0.1379	0.1317	0.086*
C15	0.22938 (17)	0.2524 (3)	0.20044 (13)	0.0598 (8)
H15	0.2609	0.2042	0.2261	0.072*
C16	-0.01524 (15)	0.6351 (3)	0.30300 (11)	0.0439 (6)
H16A	-0.0177	0.5461	0.2849	0.053*
H16B	-0.0692	0.6659	0.3089	0.053*
C17	0.02538 (15)	0.7327 (2)	0.26264 (12)	0.0426 (6)
C18	0.00791 (15)	0.7226 (2)	0.20013 (12)	0.0422 (6)
C19	0.05916 (17)	0.7874 (3)	0.16253 (13)	0.0520 (7)
H19	0.1020	0.8366	0.1766	0.062*
C20	0.0465 (2)	0.7788 (3)	0.10523 (15)	0.0647 (9)
C21	-0.0164 (2)	0.7098 (4)	0.08298 (14)	0.0679 (9)
C22	-0.0680 (2)	0.6464 (3)	0.11953 (15)	0.0714 (9)
H22	-0.1116	0.6000	0.1049	0.086*
C23	-0.05585 (18)	0.6510 (3)	0.17826 (13)	0.0572 (8)
H23	-0.0904	0.6062	0.2029	0.069*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0674 (14)	0.0532 (12)	0.0694 (14)	-0.0142 (11)	-0.0162 (11)	-0.0004 (10)

supplementary materials

F1	0.1066 (17)	0.1363 (19)	0.0742 (14)	-0.0033 (15)	0.0267 (12)	0.0272 (13)
S1	0.0554 (5)	0.0517 (4)	0.0412 (4)	0.0142 (3)	0.0010 (3)	-0.0073 (3)
Cl1	0.1660 (12)	0.1504 (11)	0.0500 (6)	0.0166 (9)	-0.0195 (6)	0.0006 (6)
N1	0.0408 (13)	0.0394 (12)	0.0396 (12)	0.0018 (10)	0.0016 (10)	-0.0030 (9)
C1	0.0454 (16)	0.0322 (13)	0.0404 (15)	-0.0012 (11)	0.0021 (12)	-0.0003 (11)
C2	0.0372 (15)	0.0380 (14)	0.0462 (15)	-0.0010 (11)	0.0047 (12)	-0.0020 (12)
C3	0.0381 (15)	0.0473 (15)	0.0570 (17)	0.0062 (12)	0.0002 (14)	-0.0042 (14)
C4	0.0579 (19)	0.0559 (18)	0.064 (2)	0.0096 (15)	-0.0138 (16)	0.0034 (16)
C5	0.081 (2)	0.068 (2)	0.058 (2)	0.0080 (19)	-0.0261 (18)	0.0111 (17)
C6	0.090 (2)	0.0590 (19)	0.0443 (17)	0.0110 (18)	-0.0115 (17)	0.0026 (14)
C7	0.070 (2)	0.0462 (16)	0.0448 (17)	0.0078 (15)	-0.0052 (14)	0.0015 (13)
C8	0.0501 (16)	0.0346 (13)	0.0419 (15)	-0.0011 (12)	-0.0037 (12)	0.0025 (11)
C9	0.0481 (16)	0.0368 (14)	0.0505 (16)	-0.0013 (12)	-0.0068 (13)	0.0021 (12)
C10	0.0368 (15)	0.0425 (14)	0.0464 (16)	-0.0034 (12)	0.0067 (12)	-0.0055 (12)
C11	0.0665 (19)	0.0400 (15)	0.0479 (17)	0.0057 (14)	0.0020 (15)	-0.0024 (13)
C12	0.077 (2)	0.0564 (17)	0.0457 (17)	0.0053 (16)	-0.0019 (15)	0.0004 (14)
C13	0.065 (2)	0.081 (2)	0.0468 (18)	0.0032 (18)	0.0075 (16)	-0.0157 (16)
C14	0.058 (2)	0.091 (3)	0.065 (2)	0.0256 (19)	0.0001 (17)	-0.0299 (19)
C15	0.0466 (18)	0.074 (2)	0.0585 (19)	0.0217 (16)	-0.0017 (14)	-0.0164 (16)
C16	0.0429 (16)	0.0415 (15)	0.0472 (16)	0.0076 (12)	0.0010 (12)	-0.0031 (12)
C17	0.0383 (15)	0.0353 (14)	0.0543 (17)	0.0055 (12)	-0.0039 (13)	-0.0023 (12)
C18	0.0410 (15)	0.0341 (13)	0.0514 (17)	0.0041 (12)	-0.0020 (13)	0.0016 (12)
C19	0.0485 (17)	0.0474 (17)	0.060 (2)	0.0057 (13)	0.0024 (14)	0.0034 (14)
C20	0.069 (2)	0.069 (2)	0.056 (2)	0.0130 (18)	0.0129 (18)	0.0134 (16)
C21	0.087 (3)	0.072 (2)	0.0453 (18)	0.018 (2)	-0.0032 (18)	0.0037 (16)
C22	0.081 (2)	0.070 (2)	0.064 (2)	-0.0032 (18)	-0.0258 (19)	-0.0049 (17)
C23	0.0612 (19)	0.0512 (17)	0.059 (2)	-0.0033 (14)	-0.0071 (16)	0.0041 (14)

Geometric parameters (Å, °)

O1—C17	1.215 (3)	C10-C15	1.395 (3)
F1—C20	1.348 (4)	C11—C12	1.377 (4)
S1—C1	1.768 (3)	C11—H11	0.9300
S1—C16	1.784 (3)	C12—C13	1.378 (4)
Cl1—C21	1.727 (3)	C12—H12	0.9300
N1—C1	1.306 (3)	C13—C14	1.368 (4)
N1—C2	1.375 (3)	С13—Н13	0.9300
C1—C8	1.434 (3)	C14—C15	1.378 (4)
C2—C3	1.359 (3)	C14—H14	0.9300
C2—C10	1.487 (3)	C15—H15	0.9300
C3—C9	1.417 (3)	C16—C17	1.508 (4)
С3—Н3	0.9300	C16—H16A	0.9700
C4—C5	1.363 (4)	C16—H16B	0.9700
C4—C9	1.413 (4)	C17—C18	1.491 (4)
C4—H4	0.9300	C18—C23	1.383 (4)
C5—C6	1.392 (4)	C18—C19	1.387 (4)
С5—Н5	0.9300	C19—C20	1.356 (4)
C6—C7	1.366 (4)	С19—Н19	0.9300
С6—Н6	0.9300	C20—C21	1.363 (5)

С7—С8	1.405 (4)	C21—C22	1.369 (5)
С7—Н7	0.9300	C22—C23	1.386 (4)
C8—C9	1.410 (3)	C22—H22	0.9300
C10—C11	1.380 (4)	С23—Н23	0.9300
C1—S1—C16	99.63 (12)	C13—C12—H12	120.1
C1—N1—C2	119.3 (2)	C14—C13—C12	119.3 (3)
N1—C1—C8	123.8 (2)	C14—C13—H13	120.3
N1—C1—S1	118.51 (19)	C12—C13—H13	120.3
C8—C1—S1	117.71 (19)	C13—C14—C15	120.9 (3)
C3—C2—N1	121.5 (2)	C13—C14—H14	119.5
C3—C2—C10	123.8 (2)	C15—C14—H14	119.5
N1—C2—C10	114.7 (2)	C14—C15—C10	120.6 (3)
C2—C3—C9	120.4 (2)	C14—C15—H15	119.7
С2—С3—Н3	119.8	С10—С15—Н15	119.7
С9—С3—Н3	119.8	C17—C16—S1	114.70 (19)
C5-C4-C9	120.2 (3)	C17—C16—H16A	108.6
C5—C4—H4	119.9	S1—C16—H16A	108.6
C9—C4—H4	119.9	C17—C16—H16B	108.6
C4—C5—C6	120 9 (3)	S1—C16—H16B	108.6
C4—C5—H5	119.6	H16A—C16—H16B	107.6
С6—С5—Н5	119.6	01-C17-C18	1200(2)
C7 - C6 - C5	120.2 (3)	01 - C17 - C16	120.0(2) 121.5(3)
C7—C6—H6	119.9	C_{18} C_{17} C_{16} C_{16}	121.5(3)
C5-C6-H6	119.9	C^{23} C^{18} C^{19}	110.0(2) 1191(3)
C6-C7-C8	120.6 (3)	C_{23} C_{18} C_{17}	119.1(3) 123.3(3)
C6-C7-H7	119.7	$C_{19} - C_{18} - C_{17}$	123.3(3)
C8-C7-H7	119.7	$C_{10} - C_{19} - C_{18}$	117.7(2) 1197(3)
C7 - C8 - C9	119.7	$C_{20} - C_{19} - H_{19}$	120.1
C_{7}^{-} C_{8}^{-} C_{1}^{1}	119.2(2) 124.3(2)	$C_{18} - C_{19} - H_{19}$	120.1
$C_{1}^{0} = C_{2}^{0} = C_{1}^{0}$	124.5(2)	$E1_{}C20_{}C19_{$	120.1
$C_{8}^{8} - C_{9}^{9} - C_{4}^{0}$	110.3(2) 118.9(3)	F1 - C20 - C21	119.2(3)
$C_{8}^{8} - C_{9}^{9} - C_{3}^{3}$	118.7(3)	$C_{10} = C_{20} = C_{21}$	110.0(3)
$C_{4} - C_{9} - C_{3}$	110.4(2) 122.7(3)	C_{20} C_{21} C_{22}	122.0(3)
$C_{11} - C_{10} - C_{15}$	122.7(5) 117.4(2)	$C_{20} = C_{21} = C_{22}$	119.0(3)
$C_{11} = C_{10} = C_{13}$	117.4(2) 120.9(2)	$C_{20} = C_{21} = C_{11}$	119.7(3)
$C_{11} = C_{10} = C_{2}$	120.9(2) 121.6(2)	$C_{22} = C_{21} = C_{11}$	121.2(3)
$C_{12} = C_{11} = C_{10}$	121.0(2) 121.9(3)	C21_C22_C25	120.4 (5)
C12_C11_H11	110.0	C23_C22_H22	119.8
$C_{12} = C_{11} = H_{11}$	119.0	$C_{23} - C_{22} - M_{22}$	119.8 (3)
C_{10} C_{12} C_{13}	119.0	$C_{18} = C_{23} = C_{22}$	119.8 (3)
$C_{11} = C_{12} = C_{13}$	119.8 (5)	$C_{10} - C_{23} - H_{23}$	120.1
	2.0.(1)		1.1.(4)
$C_2 = N_1 = C_1 = C_8$	2.0 (4)		-1.1 (4)
C2 - N1 - C1 - S1	-1/7.53(17)	$C_2 - C_{10} - C_{11} - C_{12}$	-178.4(3)
C10-S1-C1-NI	-0.8(2)	C10-C11-C12-C13	0.2 (4)
C10 - S1 - C1 - C8	1/9.56 (19)	C11 - C12 - C13 - C14	1.2 (5)
C1 - N1 - C2 - C3	-4.0 (4)	C12—C13—C14—C15	-1.6(5)
C1-N1-C2-C10	175.8 (2)	C13—C14—C15—C10	0.6 (5)
N1—C2—C3—C9	3.1 (4)	C11—C10—C15—C14	0.7 (4)

supplementary materials

C10—C2—C3—C9	-176.7 (2)	C2-C10-C15-C14	178.0 (3)
C9—C4—C5—C6	-0.5 (5)	C1—S1—C16—C17	-73.20 (19)
C4—C5—C6—C7	0.7 (5)	S1-C16-C17-O1	-19.3 (3)
C5—C6—C7—C8	-1.2 (4)	S1-C16-C17-C18	160.73 (18)
C6—C7—C8—C9	1.6 (4)	O1-C17-C18-C23	-164.7 (3)
C6—C7—C8—C1	-178.2 (3)	C16—C17—C18—C23	15.2 (4)
N1—C1—C8—C7	-179.4 (2)	O1-C17-C18-C19	16.0 (4)
S1—C1—C8—C7	0.1 (3)	C16-C17-C18-C19	-164.1 (2)
N1—C1—C8—C9	0.7 (4)	C23—C18—C19—C20	-0.6 (4)
S1—C1—C8—C9	-179.71 (18)	C17—C18—C19—C20	178.7 (2)
C7—C8—C9—C4	-1.5 (4)	C18—C19—C20—F1	-178.3 (2)
C1—C8—C9—C4	178.4 (2)	C18—C19—C20—C21	1.2 (5)
С7—С8—С9—С3	178.5 (2)	F1-C20-C21-C22	179.0 (3)
C1—C8—C9—C3	-1.6 (3)	C19—C20—C21—C22	-0.5 (5)
C5—C4—C9—C8	0.9 (4)	F1-C20-C21-Cl1	-0.8 (4)
С5—С4—С9—С3	-179.1 (3)	C19—C20—C21—Cl1	179.7 (2)
C2—C3—C9—C8	-0.2 (4)	C20—C21—C22—C23	-0.8 (5)
C2—C3—C9—C4	179.8 (3)	Cl1—C21—C22—C23	179.0 (2)
C3—C2—C10—C11	-163.1 (3)	C19—C18—C23—C22	-0.7 (4)
N1-C2-C10-C11	17.1 (3)	C17—C18—C23—C22	-180.0 (3)
C3—C2—C10—C15	19.7 (4)	C21—C22—C23—C18	1.4 (5)
N1-C2-C10-C15	-160.1 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
С7—Н7…S1	0.93	2.68	3.076 (3)	107
C11—H11…N1	0.93	2.47	2.795 (4)	101

Fig. 1

Fig. 2

