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ABSTRACT

This study is aimed at exploring the optimal ELISA standard curve fitting process for reducing measurement
uncertainty. Using an ELISA kit for measuring cyanobacterial toxin (microcystin), we show that uncertainty
associated with the estimated microcystin concentrations can be reduced by defining the standard curve as a
four-parameter logistic function on the natural log concentration scale, instead of the current approach of
defining the curve on the concentration scale. The model comparison method is outlined in this paper, allowing it
to be transferable to test different statistical models for other ELISA test Kkits.
© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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Method details

The Enzyme-Linked Immunosorbent Assay (ELISA) is a biochemical technique for detecting the
presence of a substance (usually, an antigen or protein) in a water sample [5]. The basic principle of
ELISA is the use of an enzyme-linked antibody attached to a solid surface to attract the antigen of
interest. Once the antigen in the water sample and the antibody are bound, a color change can be
detected and used to quantify the concentration of the substance. ELISA is widely used in immunology
and other medical settings. The use of ELISA for monitoring cyanobacterial toxins (microcystins or MC)
was discussed by Chu et al. [1]. ELISA can be used to detect all known microcystin congeners and to
quantify total microcystin concentration [3]. With the advent of commercial microtiter plate kit for
microcystins [13], ELISA has quickly become a commonly used method for quantifying cyanobacterial
toxins associated with harmful algal blooms (HABs). As such, this paper will focus on the use of ELISA
for measuring MC, but the methods presented are applicable for other ELISA test kits.

Because MC are known to cause damage to the nervous systems and liver [4] at high
concentrations, the World Health Organization proposed a provisional limit of 1 pg/L in drinking
water [16]. Additionally, the US Environmental Protection Agency recommends the upper limit of the
10-day mean MC concentration be 0.3 pg/L for pre-school age children and 1.6 j.g/L for the rest of the
population [14]. The effects of MC concentrations on the public were felt by the city of Toledo, Ohio,
USA, between August 2nd and 4th, 2014 when MC concentration from one tap water sample was
shown to be much higher than 1 pg/L, prompting the city to issue a “Do Not Drink,” advisory, affecting
nearly half a million residents. The MC concentration of this sample was measured by Toledo Collins
Park Water Treatment Plant using an ELISA test kit. Although thresholds for acceptable exposure to MC
are precisely defined in the advisory, ELISA-measured MC concentrations are unfortunately highly
variable [10]. In recognition of the high variability, many quality control procedures related to lab
operations were developed (e.g., Ohio EPA [6]). The statistical side of ELISA (the mathematical form of
the standard curve, curve fitting method, and concentration estimation method) is not affected by
these quality control measures intended to reduce operational uncertainty; Qian et al. [ 10] showed the
estimation uncertainty due to statistical reasons is considerable. As such, this is where we aim to apply
new methods to reduce the statistical model uncertainty associated with ELISA test kits. This paper
presents an experimental method for comparing alternative mathematical forms of the standard
curve, with an emphasis on evaluating the estimation uncertainty.

Experimental design for comparing alternative models

A general approach for comparing alternative models is to compare models’ predictions to the
same testing data with known values. We can fit alternative models to the same training dataset and
apply them to a testing dataset. The model with the highest predictive accuracy is the preferred model.
To compare the predictive uncertainty of alternative standard curve models, we used an ELISA kit from
Abraxis, Inc. (kit #PN5200110H, lot #16F0230), which comes with five non-zero concentration
solutions (0.15, 0.4, 1, 2, and 5 pg/L) and a quality control solution (0.75 pg/L). We diluted these
solutions by the following factors: 1, 1.5, 2, 2.5, 3, 3.5, and 4, each with two replicates, resulting in 84
non-zero concentration solutions. We used six replicates of zero concentration solutions and the
remaining six of the 96 wells of the ELISA kit were filled with a dilution sequence of a water sample
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with an unknown MC concentration (two replicates each with dilution factors 1, 2, and 3). When the
process is completed, we have a dataset with 96 observations. In total, the dataset includes the 96
measured optical density (OD), coupled with 90 known MC concentrations, and 6 unknown MC
concentrations. The 90 observations with known MC concentrations can be divided into training and
testing subsets for fitting alternative standard curves. The measured optical densities of the original
standard solutions were used to develop the standard curve based on Eq. (1). Because Eq. (2) cannot be
fit with a zero concentration, the standard curve based on Eq. (2) was fit by replacing the zero-
concentration solution with the data from the solution with a concentration of 0.05 jg/L. This
concentration value was selected based on a comparison of a series of diluted standard solutions (with
concentration values 0.1, 0.075, 0.06, 0.05, 0.043, and 0.0375 pg/L). In the natural log-scale, the
concentration of this added standard solution (log(0.05) =—3) is not too far to the left of, nor too close
to, the smallest none zero standard solution concentration (0.15 and log(0.15)=—1.9) to have a
potential leverage effect on the standard curve.

Alternative standard curve models

The typical standard curve used in an ELISA kit for measuring microcystin is the four-parameter
logistic function (FPL, Eq. (1)), as recommended by the US Environmental Protection Agency [15].

o1 — 0Oy
Vi =04+ BN (M
1 (&)
where y; is the ith measured optical density (OD) or absorbance, x; is MC concentration,and oy, . .., 04

are model parameters to be estimated. The parameters «; and o4 define the high and low bounds
of OD respectively, a3 is the MC concentration value at which OD is at the middle of the range
((a1 + 24)/2), and «, defines the shape of the curve.

This model is widely used in fitting bioassay data (common in many different types of ELISA test
kits) [11]. Because of its flexibility, the model is well studied and a number of curve-fitting methods
have been programmed in the commonly used statistical software R [12]. The FPLis a generalization of
the familiar (two-parameter) logistic function used in the logistic regression (where the upper and
lower bounds of the curve are ;=1 and a4 =0), defining a more flexible sigmoid curve for non-
fractional response variables. In the application of the suggested methods, we are comparing two
variations of the sigmoid curve model with the difference between the two models being that one is
defined in the log-concentration scale and the other is in the original concentration scale. While the
curve produced by the MC ELISA kit is graphed in the log-concentration scale, the actual model curve is
derived using the standard concentration scale [8]. This was determined by comparing the model
coefficients produced by the ELISA kit software for the water samples tested by Toledo Collins Park
Water Treatment Plant between August 2nd and 4th, 2014 to the coefficients produced by modeling
the same raw data using the standard concentration scale FPL model in the software R [2,8,12]. This
standard curve model form is included in the City of Toledo's preliminary summary of the Toledo
water crisis [2].

When the sigmoid function is defined on the log-concentration scale, we can replace x in Eq. (1)
with z=1og(x) and re-express the model as

B-A

Vi=A+———=
1+ e

(2)
where A, B, Xmiq, and scal are model parameters to be estimated. The lower and upper bounds of the
curve are defined by A and B, respectively; x4 is the log MC concentration at which OD is in the
middle of its range ((A + B)/2); while parameter scal define the curve's shape. Model (2) is defined on
the real line (— oo, o), while model (1) is defined in the positive half of the real line (0, o) (Fig. 1). The
coefficients A and B of model (2) defines the range of the sigmoid curve (when log concentrations are
at —oo and oo, respectively).

When defined in concentration scale, coefficients «v; and o4 of model (1) are the limits of the curve
between the concentration of 0 and co; the resulting curve may be a sigmoid curve truncated at 0
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Fig.1. Both models (1) and (2) define a sigmoid curve. Model (1) is defined in concentration scale (limited to positive values) (a)
and the curve may be truncated at 0. The location parameter («3) determines, in large part, what fraction of the sigmoid curve
will be used to fit the data. Model (2) is defined in log concentration scale (b) and can capture the entire sigmoid curve. The
shape of the curve is mostly controlled by the shape parameter scal. The larger the shape parameter, the flatter the curve
becomes.

(Fig. 1a). In natural log scale, the standard solution MC concentrations (from the Abraxis kit) range
from about —2.3 to 1.6 (0.1-5 w/L). The curves in Fig. 1 (solid lines) are drawn using coefficient values
close to the values from many of our tests conducted in the past. In the log concentration scale, the
standard solution concentrations are located in the middle (and approximately linear) portion of the
curve (Fig. 1b). When fitting in the concentration scale (Fig. 1a), we typically use only the part of the
curve associated with a rapid slope change. This difference is masked when the fitted curve of model
(1) is presented graphically on log concentrations, as recommended by the Abraxis manual.

Steps for statistical analysis

The software provided with the ELISA kit from Abraxis fits model (1). For this study, we use the
same data from an ELISA experiment to fit both models (1) and (2) and compared their predictive
uncertainty. We used the nonlinear regression method described in Section 6.1.3 of Qian [8] (nonlinear
least squares methods implemented in R function n1s using self-starter functions specifically written
for the two models) for estimating parameters of both models and the nonlinear model predictive
uncertainty simulation algorithm (Qian [8], Chapter 9) to evaluate both models’ predictive
uncertainty. The Abraxis ELISA manual did not provide details of the model-fitting method. Qian
[8] fit model in Eq. (1) in R using data from the Toledo water crisis report [2]. The R estimated model
coefficients are identical to the ones reported. Consequently, we assume that the same nonlinear least
squares method implemented in R function n1s was used in Abraxis kit. The comparison of the two
models is achieved in two steps to understand (1) how well the model fits the data, and (2) how well
the curve predicts MC concentrations.

To examine how well the model fits the data, our first step is to perform goodness-of-fit evaluations
by looking at graphical nonlinear model diagnostic tools [8]. The goodness-of-fit is evaluated based on
the curve fit to all available data points (n =90 for model (1) and n = 84 for model (2)). Typically, the
standard curve is fit with n = 12 (two replicates of 6 different MC concentrations). Qian [8] showed this
sample size to be too small to obtain a conclusive comparison, which prompted us to include more
standard solutions by using different dilutions of the solutions provided. Using all available data, we
hope to provide a clear answer to the question of which model fits the data better. We use residuals
(the difference between observed OD and model predicted ODs) plots to measure the goodness-of-fit
of each model considered. Specifically, we examine (1) if the residual distribution is roughly normal
with a mean around O, (2) if the residual standard deviation is a constant, and (3) the residual sum of
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squares. The first two criteria were designed to ensure that the models are consistent with two
important assumptions of a regression model, namely, residuals are normally distributed and their
variance is constant.

To evaluate how well each curve predicts MC concentrations, we use cross-validation techniques to
compare the predictive concentrations to the known concentrations. This is done by using a subset of
the data (the original standard solutions) (n=12) and their measured OD values to fit the curve; the
fitted curve is then used to predict the MC concentrations for the rest of the solutions with known MC
concentrations. We then compare the known concentrations to the concentrations that were
predicted by the fitted curve. In statistical terms, the uncertainty is the out-of-sample predictive
uncertainty. As discussed in Qian et al. [10], the predictive uncertainty is related to the sample size
used for developing the standard curve. As a result, we evaluate the out-of-sample predictive
uncertainty based on the standard curves fit to 12 data points. Using the Monte Carlo simulation
algorithm of Qian [8] (Chapter 9), we draw random values of model coefficients from their joint
posterior distribution. Each set of random samples represent a possible standard curve that is
consistent with the data used to fit the model. These potential standard curves are used to calculate
the MC concentration of a water sample with an observed OD value. After repeating this process
10,000 times, we have 10,000 estimated MC concentrations for each observed OD value. These random
samples of MC concentrations represent the likely MC concentrations for the observed OD value,
summarizing the predictive uncertainty of the estimated MC concentration. They are used to construct
the 95% and 50% credible intervals (the interval covers the middle 95% and 50% of the MC random
samples). These intervals are measures of predictive uncertainty, similar to the commonly used
confidence intervals. We present the 95% credible interval of the statistics here.

Method comparison

We use the training dataset and the testing dataset to compare the alternative models’ goodness-
of-fit and their predictive accuracy respectively. Both models seem to fit the data well (Fig. 2). Without
log transformation (model (1)), the MC concentrations have a more rapid change in slope (Fig. 2a),
especially near the low end of the MC concentration range. With MC concentrations log-transformed,
model (2) is more linear. However, residuals from both models behave as we expected: they are nearly
normal, with a nearly constant variance, and a mean of 0. Detailed diagnostic graphs along with
computer code are available in the supplementary material posted at GitHub. The residual sum of
squares for model (1) is 0.89, while the same for model (2) is 0.81. These two values correspond to
residual standard errors of 0.1032 on 84 degrees of freedom (Eq. (1)) and 0.1012 on 78 degrees of

0.5

o 1 2 3 4 5 3 =2 1 0 1
MC concentrations natural log MC concentrations

Fig. 2. Two forms of the four parameter logistic models are fit to the same dataset: (a) FPL model is fit to MC concentrations and
(b) FPL model is fit to log MC concentrations. Both models fit the data well.
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freedom (Eq. (2)). In other words, both models fit the data well. Using model's goodness-of-fit
statistics, we are unable to distinguish the two models.

To compare the predictive uncertainty of the two models, we used the ratio of the mean width of
the 95% intervals of model (2) to the mean width of the 95% interval of model (1). This ratio is 0.68,
suggesting that model (2) is superior. When predicting concentrations between 0.1 and 2 pg/L
(covering the US EPA's drinking water criteria), this ratio is reduced to 0.54. This means that model (2)
reduces the predictive uncertainty by 46 percent in the range of concern. In our study, the 95% credible
interval of the mean predictive sum of squares (sum of squared differences between predicted and
actual concentrations) is (4.7, 13) for model (1) and is (4.6, 7) for model (2). In the simulations, model
(1) produced many extremely high or low values of MC concentrations resulting in a very high average
of these sum of squares (4 x 10%®) (the same average for model (2) is 5.4) suggesting that model (1) can
be highly unstable.

Both models are used in the literature for fitting bioassay data. The typical approach of model
evaluation is based on a model's goodness-of-fit to the data, often by using summary statistics derived
from model residuals such as the R? value, the coefficient of determination (although the R? value is
often not used in nonlinear regression). Our results showed that a model's goodness-of-fit statistics do
not necessarily reflect a model's predictive characteristics. For ELISA, the standard curve's predictive
uncertainty is the relevant metric we should use because the measured MC concentration of a water
sample is, in statistical terms, a prediction of the standard curve. Likewise, goodness-of-fit statistics are
not effective for comparing competing models because each candidate model is separately and
optimally fit the data, and there may be multiple models that can explain the data equally well. As a
result, these models may not be distinguishable based on models’ fit alone [7,9]. The comparison of
ELISA standard curves is further obscured by the small sample size used in a typical ELISA test setting
[8]. Our analysis showed that model (2) has a smaller predictive uncertainty, measured by the width of
the model's predictive 95% intervals, as well as the predictive sum of squares. In our experiment, the
four-parameter logistic curve fitted to the log MC concentrations is approximately linear in the MC
concentration range of concern. As a result, the curve-fitting process is relatively robust. In contrast,
when the curve is fit to MC concentrations, the resulting curve has the largest “curvature” (slope
change) in the concentration range of concern (numerically less stable). Furthermore, the largest slope
occurs at the low end of the concentration range, resulting in standard solutions with very low
concentrations having disproportionally large leverage on the fitted model. This result suggests that
the ELISA kit software for measuring MC should be redesigned to fit model (2) and one additional
standard solution (e.g., with concentration 0.05 p.g/L) should be provided.
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Fig. 3. Predictive uncertainties of the two models are displayed by the predictive 95% (thin lines) and 50% (thick lines) intervals.
The white dots are medians of the estimated MC concentration distributions. The model fit to MC concentrations has visibly
wider 95% intervals (a) than the model fit to log MC concentrations has (b). The predicted intervals are plotted on a logarithm
scale for better visual.
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Fig. 4. Predictive uncertainties estimated for standard curves fit with different number of standard solutions are comparable.
Only the predictive intervals of the data points used for fitting the standard curve are shown. Panel (a) is the model fit with seven
different MC concentration standard solutions (replacing the 0 concentration solution by 0.05 pg/L solution and adding one
with concentration 0.1 wg/L, shown in gray); panel (b) shows the model with six additional solutions (gray) at the low end of the
MC concentration range; panel (c) shows the model fit with six additional solutions (gray) scattered through out the MC
concentration range.

Figs. 3 and 4 appear to show large predictive uncertainty when predicting low concentrations
(<0.1 pg/L). This is because the predictive intervals are presented on the natural log scale for better
visual comparison. These wide predictive intervals become very narrow (and practically
inconsequential) when presented in the concentration scale.

Our results suggest that ELISA can be highly uncertain for measuring microcystin concentrations.
Reporting only one (expected) value gives a wrong impression of accuracy even with model (2).
Instead, a measure of uncertainty (e.g., the probability of the measured concentration exceeding a
health criterion) should be used when the result is used for making decisions relating to public safety.
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