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Brain functional connectivity has been shown to change over time during resting state
fMRI experiments. Close examination of temporal changes have revealed a small set of
whole-brain connectivity patterns called dynamic states. Dynamic functional network
connectivity (dFNC) studies have demonstrated that it is possible to replicate the
dynamic states across several resting state experiments. However, estimation of states
and their temporal dynamicity still suffers from noisy and imperfect estimations. In
regular dFNC implementations, states are estimated by comparing connectivity patterns
through the data without considering time, in other words only zero order changes
are examined. In this work we propose a method that includes first order variations
of dFNC in the searching scheme of dynamic connectivity patterns. Our approach,
referred to as temporal variation of functional network connectivity (tvFNC), estimates
the derivative of dFNC, and then searches for reoccurring patterns of concurrent dFNC
states and their derivatives. The tvFNC method is first validated using a simulated
dataset and then applied to a resting-state fMRI sample including healthy controls (HC)
and schizophrenia (SZ) patients and compared to the standard dFNC approach. Our
dynamic approach reveals extra patterns in the connectivity derivatives complementing
the already reported state patterns. State derivatives consist of additional information
about increment and decrement of connectivity among brain networks not observed
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by the original dFNC method. The tvFNC shows more sensitivity than regular dFNC by
uncovering additional FNC differences between the HC and SZ groups in each state.
In summary, the tvFNC method provides a new and enhanced approach to examine
time-varying functional connectivity.

Keywords: functional network connectivity, group independent component analysis, windowed correlation,
derivatives, resting state fMRI

INTRODUCTION

Connectivity studies have uncovered a complex functional
organization of brain connectome thanks to the use of functional
magnetic resonance imaging (fMRI) (Fox et al., 2005; Power
et al., 2011). The existence of disease-related abnormalities
in the human connectome brings progress toward the use of
fMRI acquisition in the clinical setting (Fox et al., 2010). As
with any biological system, the brain connectome does not
function in a static manner. Researchers have recognized the
importance of developing techniques to characterize dynamic
features embedded in the connectome dynamics (Hutchison
et al., 2013; Saggar et al., 2018). Although one of the most
basic measures of dynamicity is the derivative, this feature is
underexplored in the context of functional connectivity. This
limitation is related to the fact that functional connectivity
is linked to the phase between neuronal activations (Yaesoubi
et al., 2015). Study of the phase dynamics is more difficult to
characterize than the dynamics of the actual activations. This
work fills the gap by focusing on the derivative as a measure of
the instantaneous variation of brain connectivity.

Functional connectivity measures the level of co-activation
of fMRI time-series from anatomically separated brain regions
(Friston et al., 1993). Previous connectivity studies considered
functional connectivity to remain constant during the scan
duration (Allen et al., 2011; Espinoza et al., 2018). Recent studies
applying the dynamic FNC method (dFNC) have demonstrated
that temporal functional network connectivity (FNC) analysis
(i.e., co-activation between covarying networks estimated via
independent component analysis) can uncover reoccurring
connectivity patterns at resting state or during task performances.
Their results also indicate that brain connectivity patterns iterate
through time and show smooth variations of connectivity (Allen
et al., 2014; Calhoun et al., 2014; Damaraju et al., 2014; Rashid
et al., 2014; Espinoza et al., 2019). The dFNC method provides
a way to explore temporally transient changes in the functional
connectivity among brain networks using sliding windows to
compute FNC across time (Sakoğlu et al., 2010; Allen et al.,
2014). Among the limitations of the dFNC method, is the lack of
justification for the reporting of very similar connectivity states
identified by k-means clustering algorithm. At glance, the similar
states can be combined into one state without taking into account
the states temporal behavior. In this work, we aim to improve
the ability of the dFNC method to characterize connectivity
dynamics by including derivatives of windowed FNC in the
identification of reoccurring states of connectivity.

Our approach referred to as temporal variation of functional
network connectivity (tvFNC) is validated with a simulated

data sample, and then applied to a resting-state fMRI sample
formed by healthy controls (HC) and schizophrenia (SZ)
patients that was previously analyzed with the original dFNC
method (Damaraju et al., 2014). Among our goals were: to
extend time-varying FNC states characterization by including
the first derivatives of the windowed FNC; to provide
complement states differentiation by including their derivatives
information; to expose group differences not captured by the
current dFNC method.

METHODS

Static Functional Network Connectivity
Static FNC (sFNC) analysis is based on the assumption that
functional connectivity, defined as statistical dependence among
N number of fMRI time-courses does not change during
scanning time. Currently available connectivity measures include
correlations (Rodgers and Nicewander, 1988), coherence (Chang
and Glover, 2010; Yaesoubi et al., 2015) and mutual information
(Gomez-Verdejo et al., 2012; Wang et al., 2015) among others. In
this study, functional connectivity is measured via the Pearson’s
pairwise correlation, which is the most widely used approach
to date (Allen et al., 2011; Espinoza et al., 2018). Correlations
between each pair of time-courses generates a FNC vector
with N∗(N−1)/2 unique FNC values. The FNC vector is then
represented by an NxN symmetric FNC matrix (Figure 1A).

Dynamic Functional Network
Connectivity
The dFNC analysis is an extension of sFNC, developed to
capture time-varying FNC. In this method each time-course
is discretized into a set of time domains using the sliding
windowed approach (Sakoğlu et al., 2010; Allen et al., 2014).
Then, in each time-windowed domain a FNC vector is calculated.
This procedure generates a discrete sequence of windowed
FNC (wFNC) vectors that are then represented by wFNC
matrices (Figure 1B) describing connectivity behavior across
time (Sakoğlu et al., 2010; Allen et al., 2014; Damaraju et al.,
2014; Rashid et al., 2014; Espinoza et al., 2019). Subjects’ dFNC
data is formed by all wFNC vectors, and is referred to as
the zero order derivatives of the sliding window correlations.
In summary, the dFNC method pipeline is as follows, for
all subjects compute sliding windowed correlations (wFNC);
form dFNC data by stacking time-wise all subjects’ dFNC data;
run clustering analysis on dFNC data to identify reoccurring
connectivity states.
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FIGURE 1 | Functional network connectivity (FNC) subject’s data, (A) Static FNC, (B) Dynamic FNC, and (C) Temporal variation of FNC.

Temporal Variation of Functional
Network Connectivity
The tvFNC analysis is an extension of dFNC, aiming to
improve state classification by including wFNC derivatives
in the clustering step. First order time derivatives of wFNC
vectors are computed using finite difference approximations.
For each subject, the discrete derivative of the first wFNC
was estimated using the forward difference formula,
Dw1FNC = w2FNC – w1FNC. The discrete derivatives of
the interior wFNC were estimated using central difference
formula, DwiFNC = (wi+1FNC – wi−1FNC)/2, for i = 2 to
W−1, where W is the number of windows. Lastly, the discrete
derivative of the last wFNC was estimated using the backward
difference formula, DwWFNC = wWFNC – wW−1FNC. Subjects’
DdFNC data is formed by all wFNC derivatives, and is referred to
as the first order derivatives of the sliding window correlations.

The tvFNC method pipeline is as follows, for all subjects
(1) compute dFNC data (sliding windowed correlations wFNC);

(2) estimate DdFNC data (derivatives of sliding windowed
correlations DwFNC); (3) concatenate row wise zero and first
order windowed correlations [wFNC and DwFNC] divided by
their corresponding standard deviations (Figure 1C). The tvFNC
data is formed by stacking time-wise all subjects [dFNC and
DdFNC] data, and is referred to as the zero and first order
derivatives of the sliding window correlations; (4) run clustering
analysis on all subjects’ tvFNC data to identify reoccurring
connectivity states and their derivatives patterns.

Clustering Analysis
In both methods dFNC and tvFNC, time-varying connectivity is
captured by performing k-means clustering analysis, assigning
all subjects’ temporal FNC data into a selected number of
clusters representing distinct functional connectivity states. The
clustering algorithm selection is based on previous connectivity
studies that successfully applied k-means algorithm to identify
reoccurring patterns of connectivity within and between subjects
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across time (Allen et al., 2014; Calhoun et al., 2014; Damaraju
et al., 2014; Rashid et al., 2014; Faghiri et al., 2018; Vergara et al.,
2018; Espinoza et al., 2019). We refer to Allen et al. (2014),
Damaraju et al. (2014), and Abrol et al. (2017) for details on
k-means clustering validation. The k-means clustering algorithm
is applied to the temporal FNC data with the number of clusters
ranging from 1 to K along with the Elbow criterion to identify
the optimal number of clusters referred to as states. The optimal
number of clusters is selected from the Elbow criterion cluster
index results. The cluster index is defined as the ratio between the
sums of the within-cluster sums of point-to-centroid distances to
the sums of all the distances from each point to every centroid
(Allen et al., 2014).

Simulated Data
The simulated data was designed to show the tvFNC method for a
given a number of subjects S, and their corresponding N number
of fMRI time-courses. For simplicity, we considered N = 12
and generated tvFNC data for S = 300 subjects. For simulation
purposes, the subjects were divided into five groups with the
same number of individuals in each group. For each subject, a
time-varying sequence of 136 wFNC vectors describing subjects’
dFNC behavior during scan duration was created. The number of
windows, W = 136 was chosen to match the one obtained in the
dFNC analysis of the selected fMRI data sample. Each simulated
FNC and wFNC vectors contains 66 [=N∗(N−1)/2)] unique FNC
pairs. Subjects’ dFNC data sets were created using three distinct
connectivity patterns referred to as FNC seeds plus perturbation
seeds created using random noise and white Gaussian noise
(σ = 0.003). The first FNC seed shows a pattern with positive
connectivity in the upper left block. The second FNC seed shows
a pattern with positive connectivity in the lower right block. The
third FNC seed shows a pattern with positive connectivity in the
upper right and lower left blocks. FNC seed patterns are shown
in Figure 2A. The perturbation seeds were chosen to be the
first derivatives of the FNC seeds. These derivatives were tailored
to have unique patterns simulating subject specific differences
existing in real data. FNC seed derivatives patterns are shown
in Figure 2B.

The simulation is initialized by setting the first window to
the seed pattern plus noise: w1FNC = FNC seed. Windowed
FNC vectors are then simulated by using the recursive equation:
wi+1FNC = wiFNC ± DFNC seed + N(0,σ), i = 1 to W−1.
The symbol ± indicates that DFNC seed was added in some
subjects, but subtracted in others. The recurrent equation was
applied only to generate dFNC data from seeds 1 and 2. Dynamic
FNC data generated from the third FNC seed did not include
the derivative term DFNC seed. This way we covered the
cases where states can have different derivative patterns across
time (derivatives could go in opposite directions) and where
there are no significant derivative changes. Next, first order
time DdFNC of simulated data were computed, and tvFNC
data was formed as previously explained. Then, the k-means
clustering algorithm was applied to each simulated temporal
FNC set ([dFNC] and [dFNC DdFNC]) with the number of
clusters ranging from 1 to 10 along with the Elbow criterion
to identify the optimal number of clusters. The simulations

were repeated one hundred times and mean values of cluster
index were computed.

Resting State fMRI Data
Data Sample
The resting state functional magnetic resonance imaging (fMRI)
data used in this study was taken from the Functional Imaging
Biomedical Informatics Research Network (FBIRN) Phase III
study. Participants (healthy controls and patients) were recruited
in seven sites across the United States. Participants’ information
and scan collection was approved by all seven sites’ institutional
review boards (IRB). The sample is formed by a total of 314
participants. The cohort includes 163 healthy controls (117
males, 46 females; average age 36.9 years) and 151 age- and
gender matched patients with SZ (114 males, 37 females; average
age 37.8 years).

Data Acquisition
All participants provided written informed consent before
scanning. Resting-state fMRI scans were collected at seven sites
using a 3T Siemens Tim Trio System scanner in six locations and
a 3T General Electric Discovery MR750 scanner in one location.
Participants were asked to lay still, stay awake and keep their eyes
closed during the whole scan duration. In all sites, T2∗-weighted
gradient-echo echo-planar images (EPIs) were acquired with the
following parameters: voxel size = 3.4375 × 3.4375 × 4.0 mm3,
repetition time (TR) = 2 s, eco time (TE) = 30 ms, flip angle
(FA) = 77 degrees, field of view (FOV) = 220 × 220 mm
(64 × 64 matrix), slice thickness = 4 mm, gap = 1 mm,
number of slices = 32 sequential ascending slices. Scans lasted
5:4 min, a total of 162 volumes of echo planar imaging BOLD
fMRI were collected.

Data Pre-processing, Group Independent
Component Analysis, and Post-processing
Detail information of selected rsfMRI scans quality control, pre-
processing, group independent component analysis (GICA), and
post-processing can be found in Damaraju et al. (2014). In
summary, functional images were preprocessed using custom
written Matlab scripts along with three available toolboxes,
Analysis of Functional NeuroImages (AFNI)1, Spatial Parametric
Mapping (SPM)2, and Group ICA/IVA of fMRI Toolbox (GIFT)3.
Rigid body motion correction was performed using INRIalign
(Freire and Mangin, 2001). Resting-state fMRI scans were
spatially normalized to the Montreal Neurological Institute
(MNI) space (Friston, 1995), resliced to 3 mm x 3 mm x 3 mm
voxels, and smoothed using a Gaussian kernel with a full-
width at half maximum (FWHM) of 6 mm. Lastly, each
voxel time-course was variance normalized completing the data
preprocess step. Participants (HC and SZ) whole brain functional
parcellation was obtained by applying the spatial GICA algorithm
implemented in the GIFT toolbox (Calhoun et al., 2001; Correa
et al., 2005) to the preprocessed fMRI data. Spatial GICA is an

1http://mialab.mrn.org/software/gift/
2https://afni.nimh.nih.gov/
3http://www.fil.ion.ucl.ac.uk/spm/
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FIGURE 2 | Simulated data, (A) FNC seeds, (B) derivatives of FNC seeds, (C) Elbow criterion results for dFNC and tvFNC methods, panels (D,E) show FNC states
and their derivatives choosing optimal number of clusters = 5.

extension of spatial ICA, which decomposes all subjects’ fMRI
data into linear mixtures of maximally spatially independent
components and provides their unique time-course profiles.
One hundred independent components (ICs) representing whole
brain functional parcellation were obtained using principal
component analysis (Rachakonda et al., 2016) and the infomax
algorithm (Bell and Sejnowski, 1995). Subjects’ ICs anatomical
brain regions referred as spatial maps and their corresponding
time-courses were obtained using the spatiotemporal regression
back reconstruction approach (Calhoun et al., 2001; Erhardt
et al., 2011). Out of the 100 ICs that were estimated, N = 47
ICs were identified as meaningful resting state networks (RSNs)

by evaluating the ratio of high to low frequency power in the
spectra of components, as well as whether peak activations took
place in gray matter (Meda et al., 2008; Robinson et al., 2009;
Allen et al., 2011). Post-processing of the selected 47 RSNs time-
courses included: detrending and despiking using 3DDespike,
filtering using a fifth-order Butterworth low-pass filter with a high
frequency cutoff of 0.15 Hz, and variance normalization.

Estimation of dFNC and tvFNC Data
Whole brain dFNC is computed by obtaining a sequence of
time domains for each of the selected 47 RSNs time-courses
using the tapered sliding window approach (Allen et al., 2014).
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A total of 136 widows (W = 136) were obtained using a
rectangular window width of 22 TRs (=44 s, TR = 2 s) convolved
with a Gaussian of sigma 3 TRs, and sliding in one TR step
until covering the whole time domain. Then, for each subject’s
windows 1 to 136, FNC among the RSN windowed time-
courses was calculated generating a discrete sequence of wFNC
vectors containing 1081 [=N∗(N−1)/2] unique FNC pairs. Each
wFNC vector is then represented by a full covariance matrix
named wFNC and/or dFNC matrix. Since time-courses of short
length may have insufficient information to characterize full
covariance matrices, the graphical LASSO algorithm (Friedman
et al., 2008) was used to overcome this limitation. Covariance
matrices were estimated from regularized inverse covariance
matrices (Smith et al., 2011). A penalty on the L1 norm of
the precision matrix was applied to enforce sparsity. The cross-
validation scheme for estimating covariance with graphical lasso
framework is as follows: For each subject, a random windowed
data is chosen and rest of the subject’s windowed data is
considered as unseen data. The regularization parameter defined
as the optimum hyperparameter lambda (among a set of lambda
values selected a priori) that maximizes the log likelihood of the
unseen data is chosen. This process is repeated for few randomly
chosen windows of the subject and the mean lambda across the
repetitions is then used for estimating covariance for all of the
windows of that subject. Overall 42,704 (=314 participants times
136 wFNC) dFNC matrices were obtained representing subjects’
FNC as a function of time. To account for nuisance effects,
subjects’ dFNC data (zero order sliding windowed correlations)
were Fisher z transformed, and residualized with respect to
age, gender and multi-site (Damaraju et al., 2014). Next, time
derivatives of the dFNC data were computed (first order
derivatives of sliding windowed correlations). Lastly, tvFNC data
was formed as previously explained.

Clustering of dFNC and tvFNC Data
The dFNC data was represented by five FNC states using
the K-means clustering algorithm along with the correlation
distance metric. The optimal number of states/clusters k = 5
was identifying using the elbow criterion of the cluster index
(Damaraju et al., 2014). To be able to compare our results to the
dFNC results, the tvFNC data was clustered with the same cluster
algorithm, number of clusters and distance metric. Connectivity
dynamism was assessed by two measures computed from the
clustering results (1) mean dwell time and (2) fraction time. Mean
dwell time provides an average time an individual spend in each
state before changing to another state, and fraction time provides
a percentage of total time an individual spend in each state.

Group Differences
Group differences in tvFNC between HC and SZ subjects were
tested using two sample t-tests and results were corrected for
multiple comparisons applying false discovery rate threshold at
a significant level of q < 0.05. Group differences were tested for
connectivity dynamism on the clustering measures, mean dwell
time and fraction time; and for FNC states on all FNC pairs. In
each state, first we identified subjects with at least one tvFNC
element ([wFNC DwFNC]) in that state. Then, the median of

all identified tvFNC elements was calculated as the subject state
contribution. Therefore, the number of subjects in each state is
not fixed. Next, we separate subjects’ states’ median FNC as states
FNC and their corresponding derivatives. Lastly, SZ-HC group
differences were tested in each state and their corresponding
derivatives for each FNC pair.

RESULTS

Simulated dFNC Data
Simulations were designed to extend three original FNC states
(Figure 2A) into five states (Figure 2D). Dynamically, the first
two states show two patterns of positive and negative derivatives,
and the last state show small connectivity changes across time
(Figure 2E). From the Elbow plot Figure 2C, we can observe that
the dFNC method shows a sharp decay in the cluster index from
two to three clusters. This result could imply that three could
be selected as the optimal number of clusters/states. However,
we can notice no changes in the cluster index for the number
of clusters bigger than five. In other words, this data can be
well represented by five clusters. On the other hand, the tvFNC
method shows smooth cluster index decay from two to five
clusters and small decline for the higher number of clusters. The
tvFNC clustering results with the optimal number of clusters,
k = 5 are shown in Figure 2D (states) and Figure 2E (states
derivatives). These results show that the inclusion of a derivative
pattern in the simulation allowed for a clearer identification of
similar clusters with different temporal behavior.

The tvFNC method supports the identification of very similar
states capturing different temporal behavior not shown in the
dFNC method. The absence of derivatives in the clustering
estimation resulted in a poor differentiation of similar states even
at small noise perturbations. As in the simulation, clustering of
real data analyzed in the next subsection can also benefit from
the extra information provided by the derivatives.

Resting State fMRI Data
Functional classification of the selected 47 RSNs is based on
anatomy and brain functioning. The 47 RSNs were grouped into
seven functional domains: sub-cortical [(SC), 5 RSNs]; auditory
[(AUD), 2 RSNs]; visual [(VIS), 11 RSNs]; sensorimotor [(SM), 6
RSNs]; attention/cognitive control [(CC), 13 RSNs]; default mode
network [(DMN), 8 RSNs]; cerebellar [(CB), 2RSNs]. Table 1 in
Damaraju et al. (2014) of the 47 RSNs along with their Brodmann
area numbers, number of voxels in each components cluster,
component numbers and peak activation coordinates x, y, and
z. Figure 3 depicts the spatial maps of the 47 RSNs grouped by
seven functional domains.

Temporal Variation of Functional
Network Connectivity Characterization
Using sliding-window and k-means clustering whole brain
temporal variation of FNC during scan duration were
represented by five connectivity states. Figure 4 displays
the centroids of the five states broke down as FNC states 1–5
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FIGURE 3 | Spatial Maps and their corresponding independent component numbers of the 47 selected resting state networks group into seven domains subcortical
(SC), auditory (AUD), sensorimotor (SM), visual (VIS), default mode network (DMN), cerebellar (CB), and cognitive control (CC).

FIGURE 4 | Functional network connectivity states (A) and their derivatives (B).
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(first row) and their corresponding derivatives (second row); the
total number of wFNC in each state along with its equivalent
percent frequency in parenthesis is also listed. States numbering
was assigned based on the order of clustering formation. States’
FNC pattern description is presented in descend order based on
their wFNC frequency distribution.

State 5, the one with the higher frequency distribution (30%
wFNC) shows weak connectivity overall. This state displays
mostly negative correlations between domains and positive
correlations within visual, cognitive control and default mode
domains. The derivative of State 5 is represented by an
unstructured weak connectivity pattern. Small positive and
negative correlation values display a mix of increasing and
decreasing connectivity.

State 4, the one with the second higher frequency distribution
(19% wFNC) shows slightly stronger connectivity than State 5,
with higher within- and between connectivity modularity in the
visual and sensorimotor domains. The derivative of State 4 is
represented by a similar unstructured weak connectivity as the
derivative of State 5. In addition, this state derivative displays
more pronounced positive correlation values between cognitive
control and visual domain can be observed.

State 2, the one with the third higher frequency distribution
(18% wFNC) shows a more structured connectivity pattern
compared to States 4 and 5. This state captures stronger positive
correlations within the visual and sensorimotor domains, and
between most RSNs from the auditory, visual, and sensorimotor
domains, and a few components from the cognitive control
and default mode domains. We can also observe notable
negative correlations between the subcortical domain and the
auditory, visual, and sensorimotor domains. The derivative
of State 2 is represented by a well-structured connectivity
pattern displaying increase and/or decrease in connectivity
within and between domains. We can observe that the marked
positive and negative FNC captured in State 2 has negative
and positive derivatives. These results imply that (1) there is
noticeable decrease in connectivity within the visual domain
and between the auditory, visual, sensorimotor and a few
components from the cognitive control domains. (2) There
is noticeable increase in connectivity between the subcortical,
auditory, sensorimotor and some components from the cognitive
control and default mode domains.

State 1, the one with the second lowest frequency distribution
(17% wFNC) shows weaker connectivity patterns than States
2 and 3. This state also shows noticeable positive correlations
between RSNs from the default mode domain. In addition, we
can observe slightly stronger negative correlations between the
auditory, visual, sensorimotor, and default node domains. The
derivative of State 1 is represented by weaker connectivity pattern
in comparison to the derivative of State 3.

We can observe that most of the pronounced positive and
negative FNC captured in State 1 has positive and negative
derivatives. These results imply that (1) there is a noticeable
increase in connectivity within the visual domain and between
the auditory, visual, sensorimotor and a few components from
the cognitive control domains. (2) There is a noticeable decrease
in connectivity between the auditory, visual, and default mode

domains. Also we can observe weaker decrease in connectivity
between the subcortical, cognitive control, and cerebellar and the
rest of domains.

State 3, the one with the lowest frequency distribution
(16% wFNC) shows very similar connectivity patterns as State
2. However, the derivative of State 3 is represented by a
well-structured connectivity pattern very different than the
derivative of State 2. The derivative of State 3 seems like the
complement of the derivative of State 2 displaying increase
and/or decrease in connectivity within and between domains.
We can observe that the marked positive and negative FNC
captured in State 3 has positive and negative derivatives.
These results imply that (1) there is a noticeable increase in
connectivity within the visual domain and between the auditory,
visual, sensorimotor and a few components from the cognitive
control and default node domains. (2) There is a noticeable
decrease in connectivity between the subcortical, auditory,
sensorimotor and some components from the cognitive control
and default mode domains.

Figure 5 depicts the FNC states (A) and their derivative (B)
centroids separated by groups HC (first row) and SZ (second
row). The total number of subjects in each state is listed in
parenthesis. The HC and SZ group FNC states 1–5 and their
derivatives patterns are very similar to those shown in Figure 4.
State 1, the fourth state in the wFNC percent frequency rank
contains the highest number of subjects [N = 254, HC = 127,
and SZ = 127]. It is followed by State 5 [N = 236, HC = 109, and
SZ = 127], the number one in the wFNC percent frequency rank.
The HC FNC states show slightly higher positive and negative
connectivity patterns than SZ states.

Schizophrenia and Healthy Control
Group Differences in Temporal Variation
of Functional Network Connectivity
All presented results were corrected for multiple testing. From
Figure 6 we can observe that HC individuals spend significantly
more time in States 2 and 3. These states show stronger
within- and between-connectivity in the auditory, visual, and
sensorimotor domains compared to the other states. On the
other hand, SZ individuals spend more time in State 5 (a state
displaying weakly connectivity between RSNs from all domains).
The t- and p-values are listed in Table 1.

Figure 7 depicts the significant connectivity differences
between SZ and HC subjects in states 1–5 (Figure 7A, first
row) and in the states derivatives (Figure 7B, second row).
From Figure 7A, showing FNC group differences in states 1–3
we can observe that compared to HC, SZ patients showed
higher connectivity between a RSN from the subcortical domain
[thalamus (IC18)] and RSNS from the auditory [superior
temporal (IC58) and middle temporal gyrus (IC51)], visual
[lingual gyrus (IC91), parahippocampal gyrus IC(57), middle
temporal gyrus(IC42), middle frontal gyrus (IC20), cuneus
(IC78), middle temporal gyrus (IC80), cuneus IC(7), superior
parietal lobule (IC24)], and sensorimotor [medial frontal gyrus
(IC9), right post-central gyrus (IC6)] domains. We can also
notice less pronounced connectivity between RSNs from the
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FIGURE 5 | Healthy control (HC) and schizophrenia (SZ) participants’ functional Network connectivity states (A) and their derivatives (B).

subcortical domain and RSNs from the auditory, visual, cognitive
control, and cerebellar domains in State 1; between RSNs
from the subcortical and cerebellar domains and RSNs from
the other domains in States 2 and 3; between subcortical,
auditory, visual, cognitive control, default mode, and cerebellar
domains in State 4. On the other hand, compared to SZ, HC
showed higher within connectivity in the visual, sensorimotor,
cognitive control domains; and among the subcortical, auditory,
sensorimotor and the rest of domains. From Figure 7B, we
can observe FNC group differences between SZ and HC in
the derivatives of states 1–3. No significant differences in
the derivatives of states 4 and 5 were found. Compared
to HC, SZ subjects showed higher increase in derivatives
in State 1 between inferior parietal lobe (IC96, CC) and
precentral gyrus (IC5, SM), middle frontal gyrus (IC21, CC);
and between cingulate gyrus (IC47, CC) and anterior cingulate
gyrus (IC53, DMN); in State 2 between inferior frontal gyrus
(IC34, CC) and thalamus (IC18, SC), and middle frontal
gyrus (IC69, DMN) and post-central gyrus (IC6, SM); and

in State 3 between middle temporal gyrus (IC80, VIS), and
thalamus (IC18, SC).

DISCUSSION

In this work we have presented the tvFNC method which is
an extension of the current dFNC approach to include the first
derivative of the time dependent FNC patterns in the overall
analysis. We found that time derivatives exhibits their own
clustering patterns. The inclusion of the derivative information
was useful for the clustering procedure to find an accurate
clustering partition.

Clustering and tvFNC
Simulated data showed that the identification of occurring
connectivity patterns performed by clustering analysis can benefit
from using the first derivative information to support the
existence of similar patterns with different temporal behavior. We
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FIGURE 6 | Bar plots displaying mean dwell times in States 1–5 for HC (red)
and SZ (blue) participants. The states showing significant differences between
the HC and SZ groups are marked with a black star (FDR-corrected results).
The two test t- and p-values are listed in Table 1.

confirm the premise that time point information can be better
described, and subsequently clustered, by using its derivative.
It is not the first time that derivatives are used to improve the
characterization of a time varying signal. This assumption is
rooted in Taylor’s theorem. Notice that due to fMRI protocols
we don’t really have a continuous description of the signal. In
fact, the fMRI data consists of snapshots spaced in time by a
predefined TR. In the current context, we are improving the
discrete time estimation of the dFNC at a given time point
t = n∗TR by adding information of the estimated derivative
DdFNC at that time point. The simulation showed that including
time specific estimations of derivatives helped in recognizing
the different dFNC patterns imposed in the simulation. The
importance of the derivative extends to the real data where an
extra set of observations can be accounted for.

Dynamic FNC was captured by five connectivity states that
reoccurred over time supporting previous finding that whole-
brain functional connectivity is not stationary (Allen et al.,
2014; Damaraju et al., 2014; Rashid et al., 2014; Faghiri et al.,
2018; Espinoza et al., 2019). In addition, the dFNC states’ time
derivatives provide a measure that is sensitive to dFNC changes

TABLE 1 | Two t-test mean dwell time and fraction time results showing Healthy
control (HC) and Schizophrenia (SZ) differences in each state.

State-1 State-2 State-3 State-4 State-5

Mean dwell time

p-value 0.6984 0.0278∗ 0.0058∗ 0.3811 9.88e− 05∗

t-Value −0.3880 2.2134 2.7899 −0.8776 −3.9618

Fraction time

p-value 0.1089 0.0006∗ 3.22e− 07∗0.9943 9.98e− 10∗

t-Value −1.6088 3.4697 5.2759 −0.0072 −6.3690

The FDR corrected p-values showing significant differences between HC and SZ
are marked with a star.

over a period of time. These tvFNC results are also in line
with previous resting state studies results examining functional
disruptions in SZ. For instance, the five dFNC states identified in
this study are very similar to those identified by Damaraju and
collaborators (Damaraju et al., 2014). In that study, the optimum
number of clusters representing connectivity states was selected
using the Elbow criterion. Based on this approach, five states
were obtained to describe FNC over time. It can be observed in
both, Figure 4 here and in Damaraju et al., that States 2 and 3
are very similar. From just looking at the dFNC states results, it
can be inferred that the number of FNC states can be reduced
from five to four. However, the derivative patterns observed
using the tvFNC method complements the results from the dFNC
approach, validating the previously obtained FNC states and
providing additional support for states separation. A clear state
differentiation is observed from the FNC derivatives of States 2
and 3 which display different connectivity patterns, Figure 4B.

Another important observation to make is that the
connectivity patterns of States 2 and 3 derivatives seem to
complement each other. For example, from Figure 4 we observe
that the derivative of State 2 shows decreasing connectivity
among auditory, visual and sensorimotor domains while the
derivative of State 3, shows increasing connectivity among these
domains. On the other hand, the derivative of State 2 shows
increasing connectivity among subcortical, auditory, visual, and
sensorimotor domains while the derivative of State 3 shows
decreasing connectivity among these domains. Overall, both
states derivatives values are very close to zero showing almost
constant (very small temporal variations) connectivity over time.

HC Versus SZ
In terms of dynamism, HC changed states more than SZ subjects
did. These changes were measured by computing the fraction
time (FT) spend in states for the two groups. Compared to
HC, SZ individuals spend significant more time in State 5, a
state showing weakly dFNC and almost constant behavior over
time. Lower degree of functional connectivity and reduced in
modularity in SZ was also reported by Lynall et al. (2010),
Yu et al. (2011), and Damaraju et al. (2014). The tvFNC
analysis captured group differences in all five states. It also
uncovered significant group differences in States 4 and 5 not
previously captured (Damaraju et al., 2014). Figure 7 shows SZ
individuals with lower connectivity than HC in states where
the connectivity is already weak (States 4 and 5). These two
states might be visualized as a valley or a point in time where
the general connectivity lowers then rises. Since there is no
significant difference in the derivatives of States 4 and 5, we
can argue that spending more time in the weak states (just
as SZ subjects do) allows reaching lower connectivity. On the
contrary, HC dwelling is shorter and the connectivity does not
reach the same minimum value. This new observation shows
extra evidence that derivatives gives new refinements in the
analysis. With respect to States 1, 2, and 3, Figure 7A shows
hyperconnectivity in SZ between the subcortical (thalamus) and
RSNs from the auditory, visual and sensorimotor domains.
Hypoconnectivity between (1) subcortical and cognitive control
and default mode domains; (2) default mode and cognitive
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FIGURE 7 | Two t-test results showing states (A) and derivatives (B) connectivity differences between the SZ and HC groups, FDR corrected results threshold at a
q < 0.05.

control domains; and (3) cerebellar and auditory, visual and
sensorimotor, cognitive control domains is also observed. These
states (1, 2, and 3) suffer more sudden and faster changes, thus
the dynamics are different than States 4 and 5. Note that, a
similar pattern of hypoconnectivity within auditory and visual
domains can be seen in all five states which is consistent with the
disconnection hypothesis (Friston et al., 2016). Results seem in
higher agreement with the disconnection hypothesis since some
dFNC has slower dynamicity as seen in Figures 5B, 6 where some
derivatives exhibit lower magnitudes in SZ.

In a compensatory manner, thalamic connectivity is stronger
in SZ as it is the main characteristic shared by states 1, 2,
and 3. Although this observation seems contrary to Friston’s
disconnection hypothesis, it is not a rare observation. Resting-
state fMRI studies have reported SZ thalamic hyperconnectivity
with sensorimotor cortices, whole brain (Woodward et al.,
2012; Damaraju et al., 2014; Rashid et al., 2014) and seed-
based (Woodward et al., 2012; Anticevic et al., 2014). To
counterbalance the previous statement, we must point out
that thalamic hyperconnectivity pertain to states with short
dwelling while larger dwelling states characterizes the absence
of this hyperconnectivity (see Figures 5, 6). However, sensorial
hypoconnectivity (auditory, visual and sensorimotor) can be
found in all states, thus present 100 % of the time.

The novel contributions of this work are the differences
in dynamicity, as measured using the derivatives of dFNC.
Figure 7B displays states derivative differences’ between SZ
and HC. Group differences were captured in three out of the
five states among six domains. Compared to HC, SZ subjects
showed higher increase in derivatives in State 1 between inferior
parietal lobe and, precentral gyrus and middle frontal gyrus;
and cingulate gyrus and anterior cingulate gyrus. In State
2 between inferior frontal gyrus and thalamus; and middle

frontal gyrus and post-central gyrus. In State 3 between middle
temporal gyrus and thalamus. Despite these increments in
variation, the connectivity strength was not different for the
mentioned IC pairs in States 2 and 3. This can be observed
by comparing the mentioned derivatives in Figure 5B with the
connectivity in Figure 5A. This observation is not consistent
since we could expect that higher derivatives would help
increasing the magnitude of connectivity. Since this was not
the case, we can conclude that the aggregated effect of the
increased derivatives was not coherent or not strong enough
to produce a consistent difference in connectivity. However,
the observation points to a more rapid connectivity fluctuation
in CC and DMN brain areas pointing to possible causes
of cognitive deficiencies known to occur in schizophrenia
(Schaefer et al., 2013).

Limitations and Future Directions
Among the limitations to be consider in this work: Functional
connectivity is measured as the Pearson correlation between
fMRI time-courses, and this lower order statistic provided
significant results. Higher order statistics, such as mutual
information, could be considered in future work to extend
this analysis. The calculation of dFNC data requires a window
length selection. The selected windowed size should be able to
capture functional connectivity variability in small time domains
(Sakoğlu et al., 2010). Following this recommendation, a fixed
window size of 22 TR (=44 s) similar to the one used in
Damaraju et al. (2014) was selected. Future work should evaluate
state derivative changes over range of window sizes. Another
limitation lies on the scan duration. This resting state fMRI data
was collected for 5.4 min, a longer scanning time may uncover
the identification of critical time points where FNC states reaches
stationary behavior.

Frontiers in Neuroscience | www.frontiersin.org 11 June 2019 | Volume 13 | Article 634

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00634 June 28, 2019 Time: 16:33 # 12

Espinoza et al. Characterizing Whole Brain Temporal Connectivity

ETHICS STATEMENT

Participants’ scan and information collection was approved by
all seven sites’ institutional review boards (IRB). Each participant
provided written informed consent before scanning.

AUTHOR CONTRIBUTIONS

FE, VV, and VC designed the methods and carried out the study.
VV and AF helped to refine the data simulations. FE, ED, and

KH carried out the data analysis. JT, AB, JF, SM, DM, BM, SP,
AP, JV, and TvE collected the data. FE wrote the first draft of the
manuscript. All authors contributed to the manuscript revision,
read, and approved its final version.

FUNDING

This work was supported by grants from the National Institutes of
Health (R01EB020407, P20GM103472, and P30GM122734) and
the National Science Foundation (1539067).

REFERENCES
Abrol, A., Damaraju, E., Miller, R. L., Stephen, J. M., Claus, E. D., Mayer, A. R.,

et al. (2017). Replicability of time-varying connectivity patterns in large resting
state fMRI samples. Neuroimage 163, 160–176. doi: 10.1016/j.neuroimage.2017.
09.020

Allen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele, T., and Calhoun, V. D.
(2014). Tracking whole-brain connectivity dynamics in the resting state. Cereb.
Cortex 24, 663–676. doi: 10.1093/cercor/bhs352

Allen, E. A., Erhardt, E. B., Damaraju, E., Gruner, W., Segall, J. M., Silva, R. F., et al.
(2011). A baseline for the multivariate comparison of resting-state networks.
Front. Syst. Neurosci. 5:2. doi: 10.3389/fnsys.2011.00002

Anticevic, A., Cole, M. W., Repovs, G., Murray, J. D., Brumbaugh, M. S.,
Winkler, A. M., et al. (2014). Characterizing thalamo-cortical disturbances in
schizophrenia and bipolar illness. Cereb. Cortex 24, 3116–3130. doi: 10.1093/
cercor/bht165

Bell, A. J., and Sejnowski, T. J. (1995). An information-maximization approach
to blind separation and blind deconvolution. Neural Comput. 7, 1129–1159.
doi: 10.1162/neco.1995.7.6.1129

Calhoun, V. D., Adali, T., Pearlson, G. D., and Pekar, J. J. (2001). A method
for making group inferences from functional MRI data using independent
component analysis. Hum. Brain Map. 14, 140–151. doi: 10.1002/hbm.
1048

Calhoun, V. D., Miller, R., Pearlson, G., and Adalı , T. (2014). The chronnectome:
time-varying connectivity networks as the next frontier in fMRI data discovery.
Neuron 84, 262–274. doi: 10.1016/j.neuron.2014.10.015

Chang, C., and Glover, G. H. (2010). Time-frequency dynamics of resting-state
brain connectivity measured with fMRI. Neuroimage 50, 81–98. doi: 10.1016/
j.neuroimage.2009.12.011

Correa, N., Adali, T., Li, Y. O., and Calhoun, V. D. (2005). “Comparison of blind
source separation algorithms for FMRI using a new Matlab toolbox: Gift,”
in IEEE International Conference on Acoustics, Speech, and Signal Processing,
ICASSP, Philadelphia, PA, 401–404.

Damaraju, E., Allen, E. A., Belger, A., Ford, J. M., McEwen, S., Mathalon, D. H.,
et al. (2014). Dynamic functional connectivity analysis reveals transient states of
dysconnectivity in schizophrenia. Neuroimage. Clin. 5, 298–308. doi: 10.1016/j.
nicl.2014.07.003

Erhardt, E. B., Rachakonda, S., Bedrick, E. J., Allen, E. A., Adali, T., and
Calhoun, V. D. (2011). Comparison of multi-subject ICA methods for
analysis of fMRI data. Hum. Brain Mapp. 32, 2075–2095. doi: 10.1002/hbm.
21170

Espinoza, F. A., Liu, J., Ciarochi, J., Turner, J. A., Vergara, V. M., Caprihan, A.,
et al. (2019). Dynamic functional network connectivity in Huntington’s disease
and its associations with motor and cognitive measures. Hum. Brain Mapp. 40,
1955–1968. doi: 10.1002/hbm.24504

Espinoza, F. A., Turner, J. A., Vergara, V. M., Miller, R. L., Mennigen, E., Liu,
J., et al. (2018). Whole-brain connectivity in a large study of Huntington’s
disease gene mutation carriers and healthy controls. Brain Connect. 8, 166–178.
doi: 10.1089/brain.2017.0538

Faghiri, A., Stephen, J. M., Wang, Y. P., Wilson, T. W., and Calhoun, V. D. (2018).
Changing brain connectivity dynamics: from early childhood to adulthood.
Hum. Brain Mapp. 39, 1108–1117. doi: 10.1002/hbm.23896

Fox, M. D., Greicius, M., Fox, M., and Greicius, M. (2010). Clinical applications
of resting state functional connectivity. Front. Syst. Neurosci. 4:19. doi: 10.3389/
fnsys.2010.00019

Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., and
Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic,
anticorrelated functional networks. Proc. Natl. Acad. Sci. U.S.A. 102, 9673–9678.
doi: 10.1073/pnas.0504136102

Freire, L., and Mangin, J. F. (2001). Motion correction algorithms may create
spurious brain activations in the absence of subject motion. Neuroimage 14,
709–722. doi: 10.1006/nimg.2001.0869

Friedman, J., Hastie, T., and Tibshirani, R. (2008). Sparse inverse covariance
estimation with the graphical lasso. Biostatistics 9, 432–441. doi: 10.1093/
biostatistics/kxm045

Friston, K. (1995). Spatial Normalisation: A New Approach. San Antonio, TX:
Presented at the BrainMap ′95 UTHSC.

Friston, K., Brown, H. R., Siemerkus, J., and Stephan, K. E. (2016). The
dysconnection hypothesis (2016). Schizophr. Res. 176, 83–94. doi: 10.1016/j.
schres.2016.07.014

Friston, K. J., Frith, C. D., Liddle, P. F., and Frackowiak, R. S. (1993). Functional
connectivity: the principal-component analysis of large (PET) data sets. J. Cereb.
Blood Flow Metab. 13, 5–14. doi: 10.1038/jcbfm.1993.4

Gomez-Verdejo, V., Martinez-Ramon, M., Florensa-Vila, J., and Oliviero, A.
(2012). Analysis of fMRI time series with mutual information.Med. Image Anal.
16, 451–458. doi: 10.1016/j.media.2011.11.002

Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A., Calhoun, V. D.,
Corbetta, M., et al. (2013). Dynamic functional connectivity: promise, issues,
and interpretations. Neuroimage 80, 360–378. doi: 10.1016/j.neuroimage.2013.
05.079

Lynall, M. E., Bassett, D. S., Kerwin, R., McKenna, P. J., Kitzbichler, M.,
Muller, U., et al. (2010). Functional connectivity and brain networks in
schizophrenia. J. Neurosci. 30, 9477–9487. doi: 10.1523/JNEUROSCI.0333-
10.2010

Meda, S. A., Giuliani, N. R., Calhoun, V. D., Jagannathan, K., Schretlen, D. J.,
Pulver, A., et al. (2008). A large scale (N = 400) investigation of gray
matter differences in schizophrenia using optimized voxel-based morphometry.
Schizophr. Res. 101, 95–105. doi: 10.1016/j.schres.2008.02.007

Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A.,
et al. (2011). Functional network organization of the human brain. Neuron 72,
665–678.

Rachakonda, S., Silva, R. F., Liu, J., and Calhoun, V. D. (2016). Memory efficient
PCA methods for large group ICA. Front. Neurosci. 10:17. doi: 10.3389/fnins.
2016.00017

Rashid, B., Damaraju, E., Pearlson, G. D., and Calhoun, V. D. (2014). Dynamic
connectivity states estimated from resting fMRI Identify differences among
Schizophrenia, bipolar disorder, and healthy control subjects. Front. Hum.
Neurosci. 8:897. doi: 10.3389/fnhum.2014.00897

Robinson, S., Basso, G., Soldati, N., Sailer, U., Jovicich, J., Bruzzone, L., et al. (2009).
A resting state network in the motor control circuit of the basal ganglia. BMC
Neurosci. 10:137. doi: 10.1186/1471-2202-10-137

Rodgers, J. L., and Nicewander, W. A. (1988). Thirteen ways to look at the
correlation coefficient. Am. Stat. 42, 59–66. doi: 10.1080/00031305.1988.
10475524

Frontiers in Neuroscience | www.frontiersin.org 12 June 2019 | Volume 13 | Article 634

https://doi.org/10.1016/j.neuroimage.2017.09.020
https://doi.org/10.1016/j.neuroimage.2017.09.020
https://doi.org/10.1093/cercor/bhs352
https://doi.org/10.3389/fnsys.2011.00002
https://doi.org/10.1093/cercor/bht165
https://doi.org/10.1093/cercor/bht165
https://doi.org/10.1162/neco.1995.7.6.1129
https://doi.org/10.1002/hbm.1048
https://doi.org/10.1002/hbm.1048
https://doi.org/10.1016/j.neuron.2014.10.015
https://doi.org/10.1016/j.neuroimage.2009.12.011
https://doi.org/10.1016/j.neuroimage.2009.12.011
https://doi.org/10.1016/j.nicl.2014.07.003
https://doi.org/10.1016/j.nicl.2014.07.003
https://doi.org/10.1002/hbm.21170
https://doi.org/10.1002/hbm.21170
https://doi.org/10.1002/hbm.24504
https://doi.org/10.1089/brain.2017.0538
https://doi.org/10.1002/hbm.23896
https://doi.org/10.3389/fnsys.2010.00019
https://doi.org/10.3389/fnsys.2010.00019
https://doi.org/10.1073/pnas.0504136102
https://doi.org/10.1006/nimg.2001.0869
https://doi.org/10.1093/biostatistics/kxm045
https://doi.org/10.1093/biostatistics/kxm045
https://doi.org/10.1016/j.schres.2016.07.014
https://doi.org/10.1016/j.schres.2016.07.014
https://doi.org/10.1038/jcbfm.1993.4
https://doi.org/10.1016/j.media.2011.11.002
https://doi.org/10.1016/j.neuroimage.2013.05.079
https://doi.org/10.1016/j.neuroimage.2013.05.079
https://doi.org/10.1523/JNEUROSCI.0333-10.2010
https://doi.org/10.1523/JNEUROSCI.0333-10.2010
https://doi.org/10.1016/j.schres.2008.02.007
https://doi.org/10.3389/fnins.2016.00017
https://doi.org/10.3389/fnins.2016.00017
https://doi.org/10.3389/fnhum.2014.00897
https://doi.org/10.1186/1471-2202-10-137
https://doi.org/10.1080/00031305.1988.10475524
https://doi.org/10.1080/00031305.1988.10475524
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00634 June 28, 2019 Time: 16:33 # 13

Espinoza et al. Characterizing Whole Brain Temporal Connectivity

Saggar, M., Sporns, O., Gonzalez-Castillo, J., Bandettini, P. A., Carlsson, G., Glover,
G., et al. (2018). Towards a new approach to reveal dynamical organization of
the brain using topological data analysis. Nat. Commun. 9:1399. doi: 10.1038/
s41467-018-03664-4
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