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Abstract

The feasibility of visible and near infrared (NIR) spectroscopy as tool to classify Miscanthus

samples was explored in this study. Three types of Miscanthus plants, namely, M. sinensis,

M. sacchariflorus and M. fIoridulus, were analyzed using a NIR spectrophotometer. Several

classification models based on the NIR spectra data were developed using line discrimi-

nated analysis (LDA), partial least squares (PLS), least squares support vector machine

regression (LSSVR), radial basis function (RBF) and neural network (NN). The principal

component analysis (PCA) presented rough classification with overlapping samples, while

the models of Line_LSSVR, RBF_LSSVR and RBF_NN presented almost same calibration

and validation results. Due to the higher speed of Line_LSSVR than RBF_LSSVR and

RBF_NN, we selected the line_LSSVR model as a representative. In our study, the model

based on line_LSSVR showed higher accuracy than LDA and PLS models. The total correct

classification rates of 87.79 and 96.51% were observed based on LDA and PLS model in

the testing set, respectively, while the line_LSSVR showed 99.42% of total correct classifi-

cation rate. Meanwhile, the lin_LSSVR model in the testing set showed correct classification

rate of 100, 100 and 96.77% for M. sinensis, M. sacchariflorus and M. fIoridulus, respec-

tively. The lin_LSSVR model assigned 99.42% of samples to the right groups, except one

M. fIoridulus sample. The results demonstrated that NIR spectra combined with a prelimi-

nary morphological classification could be an effective and reliable procedure for the classifi-

cation of Miscanthus species.
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Introduction

The giant grasses, some species in Miscanthus, have high potential of biomass productivity and

could be used as a feedstock of renewable energy. Recently, Miscanthus sacchariflorus, M.

sinensis and M. fIoridulus were proved to the most potential biomass grass species. Xi and

Jeźowski presented systematic positions of these species, M. sacchariflorus, M. sinensis and M.

fIoridulus belong to Subtrib. Saccharinae [1]. These three species generally grow in the similar

environment; even grow together [1, 2]. Meanwhile, they demonstrate similar morphology, so

the identification of Miscanthus varieties has to been achieved by morphological examination,

field investigation, observation of cultivated accessions and statistical analysis [15]. In order to

classify the species, the detailed morphological traits, e.g., plant height, stem diameter near

base; culm number, auricles, panicle, glumes, root types and so on, in the whole growth period,

have to be observed and recorded [1].

Up to date, several methods have been tried to distinguish the Miscanthus species. The

DNA content of diploid was tested as 4.37 ±0.02 pg/2C in M. lutarioriparius, 4.37 ± 0.01 pg/2C

in M. sacchariflorus, and 5.37 ± 0.03 pg/2C in M. sinensis, respectively, by flow cytometry of

nuclei in 36 populations [3]. In their study, the genome size of M. fIoridulus was not assessed.

Thus, M. sacchariflorus, M. sinensis and M. fIoridulus can’t be well distinguished. Miscanthus
species showed high levels of genetic variation within and between species [4]. There is also

spontaneous triploid species in the nature. Overall, these methods are time-consuming, labori-

ous, expensive, or require highly skilled taxonomy experts. So far, there is no effective method

to distinguish M. sacchariflorus, M. sinensis and M. fIoridulus. Taking these into account, it is

very important for us to develop a rapid, inexpensive and efficient approach for distinguishing

Miscanthus species.

Near-infrared (NIR) spectroscopy is a very efficient method for high-throughput screening

of plant materials for their chemical characteristics. It provides rapid, nondestructive, low-cost

and environment-friendly measurements. Based on the correlation among the vibration prop-

erties of organic molecule chemical bonds and their interactions with infrared radiation, NIR

spectrum has been applied to the qualitative and quantitative analyses of biological and non-

biological materials such as food, agriculture, textile and pharmaceutical fields and so on [5–

7]. Furthermore, NIR spectroscopy has been used in the classification of materials. Using NIR,

Wu et al. constructed models for stalk soluble sugars, bagasse hydrolyzed sugars, and three

major cell wall polymers in bioenergy sweet sorghum [8]. The NIR spectroscopy was also

applied to predict the methane yield at 29 days, cellulose, acid detergent fiber, neutral deter-

gent fiber and crude protein of forbs and grass-clover mixture. The best prediction models

were obtained for methane yield at 29 days, cellulose, acid detergent fiber, neutral detergent

fiber and crude protein (R2 > 0.9) [9]. Using NIR spectra and PLS multivariate analysis, the

calibration models were built to predict the feedstock composition and the release and yield of

soluble carbohydrates generated [10]. NIR spectroscopy was also used in Miscanthus to predict

the lignocellulosic components, biomass digestibility, moisture, calorific value, ash and carbon

content [6, 11,12]. Zhao et al. used NIR spectroscopy to clarify wheat geographical origins

[13]. According to different floral origins of Chinese honey samples, the feasibility of NIR

spectroscopy and multivariate analysis as tools to classify samples was explored. An artificial

neural network (ANN) model resulted in total correct classification rates of 90.9% and 89.3%

for the calibration and validation sets [14].

Therefore, NIR spectroscopy combined with a classification technique could be a feasible

approach for the classification of materials. The major objective of this current study is to

apply visible and NIR spectroscopy to species identification of the important biomass grass

plant, Miscanthus.
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Materials and methods

Miscanthus samples and classification using the classical botanical

method

A total of 517 Miscanthus accessions originated from China, Korea, Japan, Russia (Table 1)

were planted in the Miscanthus fields in Zhejiang, Hunan and Hubei provinces. Of these mate-

rials, 141 M. sacchariflorus, 92 M. sinensis and 26 M. fIoridulus were collected from a Mis-
canthus garden in Zhejiang province (Zhuji, China, E120˚09.441’, N29˚49.509’). Meanwhile,

we collected 30 M. sacchariflorus, 30 M. sinensis and 65 M. fIoridulus accessions in Hunan

province (Changsha, China, E113˚04’08.4”, N28˚11’14.6’). The remaining samples were col-

lected in Hubei province (Wuhan, China, E113˚04’08.4”, N28˚11’14.6”) (Table 1). Before sam-

ple collection, the materials were distinguished using the classical taxonomy in botany [1, 15].

Fresh leaves of each accession were collected and stored at 4˚C before scanning.

Visible and near infrared measurements

All samples were scanned in transmission mode (400–2500 nm) with an interval of 2 nm using

a scanning monochromator FOSS NIRSystems 6500 (FOSS NIRSystems, Silver Spring, MD,

USA) in reflectance mode. Spectral data were collected using Vision software (version 3.5.0.0).

Thirty-two scans were performed for each sample. From the 517 samples, 345 were randomly

selected for the calibration (S1 Table), and the remaining 172 were used for the validation test

(S2 Table). The spectrum of each sample was recorded three times.

Spectral data pre-treatment

In order to reduce the systematic noise and strengthen contribution of the chemical composi-

tion to the spectral signal, specific spectral preprocessing methods were applied to the mean

spectral data of each sample. The preprocessing methods including wavelet transform (WT)

smoothing with segment size of 3, area normalization, spectroscopic transformation, multipli-

cative scatter correction (MSC), the first derivative of the calibration spectra calculated with 3

gaps of data points, baseline and standard normal variance with de-trending (SNV-D) were

used in this study, respectively. The pretreatments were carried out according to the users’

manual of the Unscrambler V9.5 (CAMO PROCESS AS, Oslo, Norway). The effect of pretreat-

ment was assessed by naked eyes and partial least-squares regression (PLS).

Multivariate data analysis

To classify Miscanthus species, the principal component analysis (PCA), linear discriminant

analysis (LDA) and partial least-squares (PLS) models were developed using full cross

Table 1. Information of Miscanthus species, amount, locations in the sampling regions.

Growth location Species Origin No. of samples Latitude Longitude Elevation (m)

Zhejiang Province M. sinensis China, Japan, Korea 92 N29˚49.509’ E120˚09.441’ 56

M. sacchariflorus China, Japan, Korea, Russia 141

M. fIoridulus China 26

Hubei Province M. sinensis China 30 N30˚09.138” E114˚17.160’ 34

M. sacchariflorus China 100

M. fIoridulus China 3

Hunan Province M. sinensis China 30 N28˚11.146’ E113˚04.084’ 47

M. sacchariflorus China 30

M. fIoridulus China 65

https://doi.org/10.1371/journal.pone.0171360.t001
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validation in the present study. PCA is a statistical procedure that uses an orthogonal transfor-

mation to convert a set of observations of possibly correlated variables into a set of values of

linearly uncorrelated variables, principal components (PC). PCA was performed as a tool to

extract the main information from the multivariate data set in this study. Each sample had a

score along each PC used for further modeling instead of spectral data. In addition, the cluster-

ing between different groups could be examined preliminarily by plotting PCs.

LDA was carried out using the SPSS 16.0 software package (SPSS Inc., Chicago, IL). It yields

a number of orthogonal linear discriminant functions that allow the samples to be classified

into one or another category. By calculating the squared Mahalanobis distance of a sample

from their gravity centers of the considered groups, the samples close to the gravity center of

were clustered into one group. LDA was carried out for the Miscanthus from different regions.

Every sample set was randomly split up into two groups, with 345 samples as the calibration

set and the remaining 172 as the test set. The results were analyzed in terms of the percentage

of correct classification of samples.

PLS was conducted using the Unscrambler V9.5 (CAMO PROCESS AS, Oslo, Norway).

The PLS is a bilinear modeling method for relationship between a set of independent spectral

variables (X) and a single dependent variable (Y). PLS algorithm was used as the regression

method to develop classification models. PLS regression uses group number as the depen-

dent variable Y and the wavelengths as the independent X variables. Group membership of a

new unknown sample is determined by its predicted value with PLS. A sample is considered

to be correctly categorized, if the predicted value lies on the two sides of the assigned values.

In this study, samples from a the specific region under examination in each PLS model were

assigned a Miscanthus species value of 1, 2 and 3, and threshold value was ±0.5. For models

of least square support vector regression (LSSVR) and radial basis function neural network

(RBF_NN), the same Miscanthus species value of 1, 2 and 3, and threshold value of ±0.5 were

also assigned.

The LSSVR was carried out based on the LS-SVM toolbox of MATLAB (Version 7.8.0.347,

The MathWorks. Inc US). In order to evaluate classification performance of the models and to

reduce risk of the overly optimistic results, the models were tested through cross-validation

(CV) and by predicting the results for independent sets of samples (test sets). Moreover, the

models were optimized by computing a random subset cross-validation with three iterations.

The RBF_NN is a type of nonlinear neural network, which is used to solve several types of

classification and regression problems. The theory of RBF_NN has been described extensively

[16]. All calculations of RBF_NN were implemented based on the Neural Networks toolbox of

MATLAB (Version 7.8.0.347, The MathWorks. Inc US). A model with a low standard error of

calibration (SEC), a low standard error of prediction (SEP), and a high r was considered as

good model [5]. Meanwhile, the residual prediction deviation (RPD), defined as the standard

deviation (SD) of the samples’ reference values divided by SEC for the NIR spectroscopy cali-

brations, was a good index to evaluate the quality of regression models. A relatively high RPD

value indicates that the model is able to reliably predict the chemical composition. In order to

establish an optimal network structure with a low SEP and a short convergence time, different

networks are often trained under a wide range of parameter settings, including learning rates,

momentums, and different numbers of input nodes and hidden nodes [16, 17].

Results

Classical classification

Before we collected the leaf samples, all the 517 Miscanthus accessions were distinguished

using the classical procedures of taxonomy in botany [1,15]. The characters used to distinguish
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samples were summarized in S3 Table. Morphological traits of Miscanthus species including

habit, rhizome, adventitious roots, branches of culms etc., were observed. The 517 Miscanthus
accessions were successfully classified into three species, 271 of M. sacchariflorus, 152 of M.

sinensis and 94 of M. fIoridulus (Table 1, S4 Table).

NIR analysis

The wavelength range from 400 to 2500 nm with an interval of 2 nm was used in our study.

The main peaks of Miscanthus were marked in Fig 1. Fig 1A, 1B and 1C show the original spec-

tra of the three Miscanthus species. The trend of the spectral curves is quite similar and there

are overlaps among the three species. No outliers could be identified directly by the naked eye.

Therefore, further data treatment is needed and then the latent features of the spectra will be

applied for classification. In order to find out the best pretreatment, the effect of pretreatments

was evaluated one by one (Table 2). Of them, the baseline treatment showed significant

improvement. Thus, we only used the spectral data with baseline pre-treatment for further

analysis. Seven peaks in Fig 1A to 1F were found, respectively, while the peaks in Fig 1D, 1E

and 1F treated with baseline were sharper and clearer than those in Fig 1A, 1B and 1C. The

results indicated that the data with baseline treatment might include more obvious NIR infor-

mation than the other pre-treatments.

As shown in Fig 1, two strong peaks with wavelength of 488 nm and 676 nm located in the

visible spectra range, which could be related to -C = O, while one weak peak with wavelength

of 974 nm and a strong peak with wavelength of 1930 nm are assigned to the 2nd overtone and

combination of free -OH, respectively [18]. The band at approximately 1198 nm of wavelength

is attributable to C–H stretching (the 2nd overtone) [19,20]. The signal peaks at wavelengths

of 1452 nm and 1794 nm are ascribed to the combination of C-H stretching, CH3 and CH2

(the 1st overtone), respectively [20,21].

Fig 1. Raw spectra and the spectra with baseline treatment of Miscanthus varieties. A-C, raw spectra of M. sinensis,

M. sacchariflorus and M. fIoridulus; D-F, the spectra with baseline treatment of M. sinensis, M. sacchariflorus and M.

fIoridulus.

https://doi.org/10.1371/journal.pone.0171360.g001
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PCA analysis

PCA was performed on the 517 Miscanthus samples, in order to figure out the possible classifi-

cation of Miscanthus species using the visible and NIR spetra. The first three PCs account for

96% of the variation in the NIR spectra of Miscanthus samples, and the score plot of the first

three PCs was showed in Fig 2. A rough separation among three Miscanthus species was

observed and some overlaps were also present. Therefore, further chemometric methods includ-

ing LDA, PLS and LS-SVR were used to construct models for the Miscanthus classification.

LDA analysis

The 517 Miscanthus samples collected from Zhejiang, Hubei and Hunan provinces (Table 1)

were split into a calibration set including 101 M. sinensis, 181 M. sacchariflorus and 63 M.

Table 2. Miscanthus classification based on the PLS models with different pretreatments in the full spectral range.

Pretreatment M. sinensis M. sacchariflorus M. fIoridulus Total

Total No. Right No. CC (%) Total No. Right No. CC (%) Total No. Right No. CC (%) Total No. Right No. CC (%)

Original 51 48 94.12 90 88 97.78 31 29 93.55 172 165 95.93

Smoothing 48 94.12 88 97.78 29 93.55 165 95.93

Normalization 48 94.12 88 97.78 29 93.55 165 95.93

Spectroscopic

transformation

46 90.20 86 95.56 26 83.87 158 91.86

MSC 46 90.20 26 28.89 27 87.10 99 57.56

1st derivative 46 90.20 87 96.67 27 87.10 160 93.02

Baseline 48 94.12 89 98.89 29 93.55 166 96.51

SNV-D 46 90.20 87 96.67 27 87.10 160 93.02

CC%: correct classifications

https://doi.org/10.1371/journal.pone.0171360.t002

Fig 2. The first three PC score plot of Miscanthus samples.

https://doi.org/10.1371/journal.pone.0171360.g002
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fIoridulus accessions and a validation set including 51 M. sinensis, 90 M. sacchariflorus and 31

M. fIoridulus accessions, respectively (Table 2). The PCA models were developed for M. sinen-
sis, M. sacchariflorus and M. fIoridulus accessions, respectively. Subsequently, the PCA scores

were used as input data for LDA. LDA was performed on the first five PCs from PCA, which

accounted for 99% variation of the spectral data. LDA results for NIR analysis are shown in

Table 2. In terms of Miscanthus samples, rate of correct classification of 88.24%, 86.67% and

87.10% were achieved for M. sinensis, M. sacchariflorus and M. fIoridulus, respectively, while

the F score for these Miscanthus species were 0.88, 0.88 and 0.84, respectively (Table 2). LDA

models were developed using specific pairs from different Miscanthus species. This resulted in

95% correct classification between M. sinensis and M. sacchariflorus, 93.6% correct classifica-

tion between M. sacchariflorus and M. fIoridulus, and 94.6% between M. sinensis and M. fIori-
dulus. These classification results indicated that there are specific chemical components and

morphological traits in Miscanthus samples from different species.

PLS analysis

PLS results for Miscanthus samples are shown in Table 2. The rates of correct classification for

M. sinensis, M. sacchariflorus and M. fIoridulus are 94.12, 98.33 and 93.55%, respectively, while

the F scores of them were 0.97, 097 and 0.95, respectively. Of them, the PLS model for M. sac-
chariflorus with higher rate of correct classification and f score was obviously better than that

for other two Miscanthus species. The results indicated that there were differences of NIR spec-

tra among Miscanthus species. The 96.51% of total correct classification rate was achieved,

higher than the first two ways of PCA and PLS analysis.

LS-SVM and RBF_NN analysis

In our study, calibration models for Lin_LSSVR, RBF_LSSVR and RBF_NN arithmetics were

developed. The modeling parameters should be optimized before LSSVR model is developed.

Two parameters, including γ and the δ2 are very important in the RBF kernel function. The γ
is a regularization parameter, which determines the tradeoff between the structural and empir-

ical risk minimization. The δ2 is the kernel width parameter and plays an important role in

improving the generalization performance of the LSSVR model. The combination of the two-

step grid search approach and the ten-fold cross-validation was utilized for global optimization

of these parameters in this study. The initial values of γ and δ2 in the RBF_LSSVR model were

both set as 2. The range of γ and δ2 was 0.001–100,000 and 0.001–500,000, respectively. The

logarithmic transformation was employed in the search plane due to the large magnitude in

the investigated ranges of these parameters. The optimal value of γ and δ2 was obtained as

4.4590 e + 003 and 3.3941 e + 004, respectively. The optimal parameters of the LSSVR model

were set to the same values as for Lin_LSSVR, RBF_LSSVR and RBF_NN models.

In order to optimize the network, an appropriate learning rate and different numbers of

input nodes and of hidden layer neurons were all examined. In this study, a three-layer model

was achieved at last, with the sigmoid transfer function. The output layer was set as one neu-

ron. After multi-training, the optimal number of nodes in the hidden layer and the learning

rate were defined as 12 and 0.2, respectively. At the optimal parameter settings, the RBF_ANN

model was developed. The goal error was set as 0.001. The correct classification rate and f

scores in the three models were almost the same (Table 3). Due to the higher computation

speed, we preferred using the Lin_LSSVR model in the classification of Miscanthus species

other than RBF_LSSVR and RBF_NN models. The correct classification rate in Lin_LSSVR

model for M. sinensis, M. sacchariflorus, M. fIoridulus in calibration set was 98.86%, 99.54%

and 93.65%, respectively, while correct classification rate for these three groups in the
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validation set were 100%, 100% and 96.77%, respectively (Table 4). The model could assign

99.42% of the samples to the right groups, except for that one sample of M. fIoridulus was

wrongly grouped. Compared with LDA and PLS, Lin_LSSVR model showed the highest accu-

racy (Table 3; Fig 3).

Discussion

Up to date, there is no report on classification of Miscanthus species using NIR spectroscopy.

In previous studies, the classification of Miscanthus species was mainly based on the morpho-

logical traits [1, 15]. According to the classical botanical classification standard (S3 Table), we

examined and recorded all the morphological traits of samples during whole growth period.

Based on the morphological observations and with the assistance of a professional plant taxon-

omist, Professor Yi Ren of Shanxi normal university, we unambiguously classified the 517

Table 3. Classification of Miscanthus accessions using LDA, PLS, LS-SVM, RBF_LSSVR and RBF_NN.

Species Method Total No. Right No. CC (%) Precision (%) Recall rate(%) F score

M. sinensis LDA 51 45 88.24 88.24 88.24 0.88

PLS 48 94.12 100 94.12 0.97

Lin-LSSVM 51 100 100 100 1

RBF_LSSVR 51 100 100 100 1

RBF_NN 51 100 100 100 1

M. sacchariflorus LDA 90 78 86.67 88.64 86.67 0.88

PLS 89 98.89 94.68 98.89 0.97

Lin-LSSVM 90 100 98.90 100 0.99

RBF_LSSVR 90 100 98.90 100 0.99

RBF_NN 90 100 98.90 100 0.99

M. fIoridulus LDA 31 27 87.10 81.82 87.10 0.84

PLS 29 93.55 96.67 93.55 0.95

Lin-LSSVM 30 96.77 100 96.77 0.98

RBF_LSSVR 30 96.77 100 96.77 0.98

RBF_NN 30 96.77 100 96.77 0.98

Total LDA 172 150 87.21 87.21 87.21 0.87

PLS 166 96.51 96.51 96.51 0.97

Lin-LSSVM 171 99.42 99.42 99.42 0.98

RBF_LSSVR 171 99.42 99.42 99.42 0.98

RBF_NN 171 99.42 99.42 99.42 0.98

CC: correct classifications

https://doi.org/10.1371/journal.pone.0171360.t003

Table 4. Calibration and prediction results for the classification of the Miscanthus species according

to the model developed by Lin_LSSVM.

Species CC%

Calibration Validation

M. sinensis 98.86 100

M. sacchariflorus 99.54 100

M. fIoridulus 93.65 96.77

Total 98.13 99.42

CC%: correct classifications

https://doi.org/10.1371/journal.pone.0171360.t004
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Miscanthus samples into three species, M. sacchariflorus, M. sinensis and M. fIoridulus
(Table 1, S3 Table). So far, there is still no simple and easy way to distinguish the three species

of Miscanthus. It is necessary for us to develop a rapid, cost-effective and user-friendly tech-

nique for discriminating the Miscanthus varieties.

Recently, models using the near-infrared spectroscopy were developed for measurement of

chemical components and classification in plants. Several models were established to figure

out the geographical origin of corn distillers dried grains with solubles, amazonian tree species

and hazelnut, wheat and the different floral origins of Chinese honey samples by NIR spectros-

copy [13–14,22–25]. Leaves are complex assemblies of organic compounds and, because of

this, may be expected to exhibit different spectral responses. M. sacchariflorus, M. sinensis and

M. fIoridulus may show different intensity and position of the absorption bands in leaves.

These differences may be related to several factors possibly associated with the compounds,

hydrogen bonds, and crystallinity. As reported in the previous studies, the leaf size and shape

[26, 27], phenology [28], photosynthesis and water-use strategies [29], and even the complex

cell wall components in Miscanthus could be variable and thus result in the variation of the

NIR spectra. Therefore, we used the visible and NIR spectroscopy of leaves in the present

study to distinguish plant species of Miscanthus.
In our study, five calibration models were built, namely LDA, PLS, Lin_LSSVR, RBF_LSSVR

and RBF_NN arithmetics. As shown in Fig 2, we could not clearly distinguish the experimental

samples using LDA, because of the partial overlaps among the species, and 88.24, 86.67 and

87.10% of the samples were assigned correctly to the M. sinensis, M. sacchariflorus and M. fIori-
dulus group, respectively. When using the PLS model, the rate of correct classification was

enhanced to 94.12, 98.33 and 93.55%, respectively, for the three species. There still were obvi-

ously wrongly assigned accessions. In order to further improve the grouping accuracy, other

three models including Lin_LSSVR, RBF_LSSVR and RBF_NN, were applied. These three

models demonstrated good correlation between the expected and the actual values. Only one

M. fIoridulus sample was wrongly grouped. Among the methods of Lin_LSSVR, RBF_LSSVR

and RBF_NN, the computation of RBF_LSSVR and RBF_NN are more complicated and spend

more time and energy than Lin_LSSVR. Furthermore, the three models, Lin_LSSVR,

Fig 3. The bar chart of five calculation models for M. sinensis, M. sacchariflorus and M. fIoridulus.

https://doi.org/10.1371/journal.pone.0171360.g003
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RBF_LSSVR and RBF_NN showed almost the same accuracy (Fig 3; Table 3). Therefore, the

Lin_LSSVR model should be recommended to classification of Miscanthus accessions.

Using the Lin_LSSVR model based on NIR spectra of leaves, the samples of M. sinensis, M.

sacchariflorus and M. fIoridulus can be unambiguously discriminated in the present study

except only one samples was wrongly grouped in the models of Lin_LSSVR, RBF_LSSVR and

RBF_NN (Fig 3; Tables 2 & 3). The models of Lin_LSSVR, RBF_LSSVR and RBF_NN showed

higher accuracy. Moreover, the cost-efficiency of spectroscopy-based method is high due to

the high speed, low cost and ability to achieve successful hits. The method of scanning leaves

by NIR spectrophotometer and based on the Lin_LSSVR model is truly a cost-effective

approach for sample classification of Miscanthus plant.

Supporting information

S1 Table. The data of visible and near-infrared spectroscopy with baseline treatment and

classification for the calibration set.

(XLSX)

S2 Table. The data of visible and near-infrared spectroscopy with baseline treatment and
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(XLSX)

S3 Table. GPS data for the Miscanthus accessions examined.
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S4 Table. The classical standards of classification for three Miscanthus species.

(XLS)
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