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ABSTRACT

Thymidylate synthase (TS, E.C. 2.1.1.45) is a crucial enzyme for de novo deoxythymidine
monophosphate (dTMP) biosynthesis. The gene for this enzyme is thyA, which encodes
the folate-dependent TS that converts deoxyuridine monophosphate group (dUMP)
into (dTMP) using the cofactor 5,10-methylenetetrahydrofolate (mTHF) as a carbon
donor. We identified the thyA gene in the genome of the Vibrio parahaemolyticus strain
FIM-S1708+4- that is innocuous to humans but pathogenic to crustaceans. Surprisingly,
we found changes in the residues that bind the substrate dUMP and mTHF, previously
postulated as invariant among all TSs known (Finer-Moore, Santi & Stroud, 2003).
Interestingly, those amino acid changes were also found in a clade of microorganisms
that contains Vibrionales, Alteromonadales, Aeromonadales, and Pasteurellales (VAAP)
from the Gammaproteobacteria class. In this work, we studied the biochemical properties
of recombinant TS from V. parahemolyticus FIM-S1708+ (VpTS) to address the natural
changes in the TS amino acid sequence of the VAAP clade. Interestingly, the K, for
dUMP was 27.3 £ 4.3 uM, about one-fold larger compared to other TSs. The K,
for mTHF was 96.3 £ 18 wM, about three- to five-fold larger compared to other
species, suggesting also loss of affinity. Thus, the catalytic efficiency was between one
or two orders of magnitude smaller for both substrates. We used trimethoprim, a
common antibiotic that targets both TS and DHEFR for inhibition studies. The 1Cs
values obtained were high compared to other results in the literature. Nonetheless,
this molecule could be a lead for the design antibiotics towards pathogens from the
VAAP clade. Overall, the experimental results also suggest that in the VAAP clade the
nucleotide salvage pathway is important and should be investigated, since the de novo
dTMP synthesis appears to be compromised by a less efficient thymidylate synthase.
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INTRODUCTION

Pathogens comprise a highly complex and diverse community of organisms that include
viruses, bacteria, fungi, protozoans, parasitic arthropods, mollusks, worms, and few
chordates (Bergh et al., 1989; Suttle, 2005; Kristensen et al., 2010). Because of the constant
adverse conditions imposed by their hosts to escape infection, pathogens rapidly evolve
sophisticated strategies to evade or subvert the host immune response after its establishment
(Aguileta et al., 2009).

Bacterial infections from Vibrio are still a critical problem in human health (Colwell,
1996), and also to aquatic organisms (Holmstrom et al., 2003; Wang, Li ¢ Lin, 2008).

Bacteria from the genus Vibrio are part of the natural microflora of wild and cultured
shrimp species (Gomez-Gil et al., 1998; Esiobu & Yamazaki, 2003; Liu et al., 2011; Cornejo-
Granados et al., 2017), although some species, as V. harveyi, V. alginolyticus, V. anguillarum,
V. vulnificus, V. splendidus and V. parahaemolyticus have usually been associated with
diseases in shrimp and shellfish (Lavilla-Pitogo, 1995; Sung et al., 2001; Hsu ¢ Chen, 2007;
Kumar et al., 2014; Cornejo-Granados et al., 2017).

By the end of 2009, the emergence of a new bacterial pathogen affected shrimp
aquaculture in China and later spread to Vietnam, Malaysia, and Thailand (Leario ¢
Mohan, 2012; De Schryver, Defoirdt ¢ Sorgeloos, 2014). Eventually, the disease reached the
Western Hemisphere and emerged in Mexico in early 2013 (Nunan et al., 2014). Several
studies have demonstrated that the etiological agent of this disease, initially referred as Early
Mortality Syndrome or EMS, and more recently named Acute Hepatopancreatic Necrosis
Disease or AHPND (Lightner et al., 2012) were specific strains of V. parahaemolyticus that
do not contain neither the human pathogenic markers tdh (thermostable direct hemolysin)
nor trh (tdh-related hemolysin) (Tran et al., 2013; Joshi et al., 2014; Soto-Rodriguez et al.,
2015). In fact, the AHPND-causing strains of V. parahaemolyticus harbor a 70 kbp plasmid,
which encodes two toxins, ToxA and ToxB, homologs of the Photorhabdus insect-related
(Pir) toxins PirA and PirB (Lee et al., 2015). Currently, there are no active treatments
available against this toxigenic Vibrio strains, and there is a need for of antibacterial
strategies. As with any other living organism, during the bacterial division cycle, the pools
of nucleotides must be maintained at relatively constant concentrations, and nucleotide
synthesis is greatly stimulated (Lane ¢» Fan, 2015). Therefore, this pathway could be
targeted with antibacterial compounds.

Thymidylate synthase (EC 2.1.1.45, TS) catalyzes the reductive methylation of
2’-deoxyuridine-5-monophosphate (dUMP) to 2’-deoxythymidine-5-monophosphate
(dTMP) and dihydrofolate, assisted by the co-factor 5,10-methylenetetrahydrofolate
(mTHF) (Carreras ¢ Santi, 1995). This reaction is the final step in the only de novo
synthetic pathway to thymidylate, so it is essential for DNA replication. thyA corresponds
to the folate-dependent TS found in E. coli (Belfort et al., 1983), invertebrates, vertebrates
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and humans. Recently, a novel flavin-dependent TS was described as thyX. (Myllykallio et
al., 2002), which also has been postulated as an antibacterial target (Choi, Karunaratne ¢
Kohen, 2016).

Folate-dependent TS is an excellent drug target for cancer cells, and there are examples
of drugs in clinical use (Jarmula, 2010). TS is also a good target for antibacterial infectious
diseases (Ferrari, Costi & Wade, 2003). The folate-dependent TS (thyA) has been thoroughly
studied in bacteria to a structural detail where the function of every active-site amino acid
residue has been determined (Finer-Moore, Santi ¢ Stroud, 2003). Nonetheless, with the
advent of massive genome sequencing, changes in bacterial thyA-conserved residues have
been identified. For example, changes in charged residues close to the active site have been
found in Wigglesworthia glossinidia TS (Garg et al., 2015). The importance of electrostatics
in the TS active site was demonstrated by successive mutagenesis of E. coli TS towards the
charged residues in W. glossinidia, observing important changes in the kinetic parameters
of the mutants (Garg et al., 2015). Importantly, V. parahaemolyticus strain FIM-S11708+
TS (Gomez-Jimenez et al., 2014) has a change to glycine in one of the four arginines that
coordinate the nucleotide-phosphate group.

Indeed, little is known regarding the biochemical properties, functionality and metabolic
role of TS on Gammaproteobacteria or Vibrionales whatsoever that are pathogenic to
humans or marine organisms. Therefore, this study aimed to investigate the biochemical
properties of the TS from a V. parahaemolyticus toxigenic strain (VpTS). Comparison of
the Michaelis—Menten kinetic parameters, enzyme inhibition with a known antibacterial
such as trimethoprim and molecular modeling provides insight into the importance of the
de novo dTMP biosynthesis into the VAAP clade.

MATERIALS AND METHODS

Genome used and thymidylate synthase orthologous genes

We used the thymidylate synthase Vibrio parahaemolyticus (GenBank WP _100088861.1)
found in the FIM-S1708+ strain genome deposited as GenBank JPLV00000000.1 (Gormez-
Jimenez et al., 2014) as a seed to identify the homologous TS, using blast searches with
an E-value cutoff of 1.0°"!° against the proteomes encoded in 38 genomes belonging to
the gamma-proteobacteria class (File S1). All proteins that shown an alignment <70% of
their length were kept for further analysis. We collected these genomes for two reasons:
First, to get a better perspective of the variation of the TS across the Gammaproteobacteria
(primarily focused on the active site) and second, these genomes have been used in
phylogenomic analyses of that bacterial class (Williams et al., 2010).

Phylogeny among the thymidylate synthase

To conduct a Maximum Likelihood (ML) phylogeny, we created a protein Multiple
Sequence Alignment (MSA) using MUSCLE with 50 iterations (Edgar, 2004). We ran the
ML phylogeny specifying the LG+G+I model, as determined by ProtTest3 (Darriba et
al., 2011) and using non-parametric bootstrap analysis (100 replicates) to establish the
support for the clades. The phylogenetic tree was colored and edited using FigTree v1.4.3
(http://tree.bio.ed.ac.uk/software/figtree/).
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VpTS expression and purification

VpTS was expressed in Escherichia coli using a codon-optimized synthetic gene cloned into
the T7-promoter expression vector pJexpress414 which contains the ampicillin resistance
gene (DNA2.0). We used the amino acid sequence of Vibrio parahaemolyticus thymidylate
synthase (GenBank WP_100088861.1) including in the N-terminus a 10 His-tag and the
cutting site for the PreScission Protease (GE Healthcare, Little Chalfont, UK). The total
theoretical mass would be 35,944 Da and the tag could be removed upon treatment with
the protease.

The E. coli BL21(DE3)-SI strain was used to express VpTS. To facilitate yield of
soluble protein we used a plasmid containing the chaperones groES-groEL-Tig (TAKARA
plasmid PG-Tf2). For this, the bacteria were transformed first with plasmid pPG-Tf2 with
chloramphenicol selection at 20 g/mL, and later with the pJexpress414-VpTS plasmid
using chloramphenicol and ampicillin at 100 pg/mL. Both antibiotics were used in all
further procedures.

A 5 mL of a starter culture of transformed bacteria was incubated overnight and used to
inoculate 1 L of LB broth without NaCl. The bacteria were incubated in an orbital shaker
at 250 rpm at 37 °C. When an optical density of 0.4 at 600 nm was obtained, chaperone
expression was induced by addition of tetracycline to a final concentration of 9 ng/mL.
When optical density reached 0.6 units (A = 600 nm), the T7-promoter was induced with
IPTG and NacCl to a final concentration of 0.1 mM and 0.3 M respectively. Cell growth was
continued for 24 h at 25 °C. The bacterial pellet was obtained by centrifugation at 7,500 g
at 4 °C, and the biomass was lysed by sonication in 20 mM potassium phosphate buffer
pH 7.5, 5 mM dithiothreitol (DTT), 0.5 mM phenyl methyl sulfonyl fluoride (PMSF), and
5 mM benzamidine. The bacterial lysate was clarified at 25,000 x g for 20 min at 4 °C.

For metal affinity chromatography, a 5 mL Ni-His Trap column (GE Healthcare) was
equilibrated with 20 mM phosphate buffer pH 7.5, 0.5 M NaCl (buffer A) in an Akta Prime
chromatographer (GE Healthcare) at 1 mL/min. The clarified lysate was loaded into the
column and washed with at least five volumes of buffer A until the absorbance at 280 nm
returned to baseline. Elution was done with a linear gradient of buffer A and buffer A
plus 500 mM imidazole. Fractions of 3 mL were collected. Purification was followed by
12% SDS-PAGE using pre-casted TGX stain-free gels (BioRad) and images were recorded
on a GelDoc Easy Imaging system (BioRad). The TGX stain-free detection system has a
sensitivity comparable to silver staining (Gilda ¢» Gomes, 2013).

To further purify VpTS and confirm the oligomeric state, size exclusion chromatography
was used using a Superdex 75 10/300 column in an Akta Pure chromatographer (GE
Healthcare) at 1 mL/min with Tris HCI 20 mM pH 7.5 and NaCl 100 mM as running
buffer. Molecular weight (MW) standards were aprotinin (6.5 kDa), ribonuclease A
(13.7 kDa), carbonic anhydrase (29 kDa), ovalbumin (44 kDa), conalbumin (75 kDa) and
Blue Dextran (2,000 kDa) to determine the column void volume. VpTS native molecular
weight was calculated from linear regression of a K, vs. log MW plot, using the formula

Koy = (Vt - Vo)/(Vf - Vo)
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where V; is the total column volume, V,, is the void column and V7 is the volume where
the sample or a molecular weight standard is eluted. Fractions were analyzed by 12%
SDS-PAGE as mentioned above. Purified protein was quantitated using the bicinchoninic
acid method (BCA Kkit; Pierce, Waltham, MA, USA).

VpTS kinetics and ICs inhibition

TS kinetics were determined using a spectrophotometric assay following the formation
of dihydrofolate at 340 nm (&340 nm = 6,400 M~! cm™!) in a CARY-50 (Varian) UV-vis
spectrophotometer as previously described (Arvizu-Flores et al., 2009). The reaction buffer
contained 50 mM Tris-HClpH 7.5, 5 mM DTT, 1 mM EDTA, 25 mM MgCl,. The substrates
were mTHF (Schircks Laboratories, Jona, Switzerland) and dUMP (Sigma-Aldrich, St.
Louis, MO, USA). The assay was done in a final volume of 1 mL at 30 °C. The reaction was
started by addition of 0.3 uM of recombinant VpTS, and the initial rates were determined
by recording the absorbance increase at 340 nm, changing the substrate concentration for
mTHF (0-300 pM) and dUMP (0-150 wM). Experimental data were obtained in triplicate
and fitted to the Michaelis—Menten equation by a non-linear regression analysis using the
GraFit software (Erithacus Software).

Steady-state ICs( inhibition was determined with trimethoprim (TRIM, Sigma-Aldrich,
St. Louis, MO, USA) as an antifolate in standard activity conditions (Arvizu-Flores et al.,
2009) with saturating substrate concentrations (mTHF 300 uM and dUMP 150 uM) by
triplicate. Data were adjusted to a dose—response model using non-linear fit with the GraFit
software.

Structure modeling

The VpTS structural model was built using Protein Homology/analogY Recognition Engine
V Phyre2.0 server (Kelley et al., 2015). The best model was selected by the highest sequence
identity, alignment coverage and model confidence factor within the closed conformation
structures. The most similar bacterial structure in the dUMP-bound closed conformation,
was E. coli TS (32% of sequence identity; PDB 1AXW) as the reference structure. The
structural analysis was performed in CCP4MG V7.0 program (McNicholas et al., 2011)

RESULTS

Expression and purification of VpTS
VpTS was co-expressed with the set of chaperones groES-groEL-Tigin E. coli strain BL21-S],
observing that the protein was best expressed at 24 h post induction. This was observed
in the SDS-PAGE follow-up of expression, where VpTS migrated to an approximate mass
of 35 kDa (Fig. 1A). This value is within the range of the theoretical molecular weight of
35,944 Da taking into account the 10-His tag. Besides VpTS, there was a highly co-expressed
protein at 60 kDa corresponding to the GroEL chaperone molecular weight (Fig. 1A).
VpTS was purified by IMAC chromatography purification as seen in the SDS-PAGE
of the chromatography fractions (Fig. 1B). VpTS eluted at an imidazole concentration of
375 mM, as observed VpTS in the asterisk lane of Fig. 1B. The yield of VpTS after IMAC
chromatography was 40 mg of protein per liter.

Lopez-Zavala et al. (2018), PeerJ, DOI 10.7717/peerj.5023 519


https://peerj.com
http://dx.doi.org/10.7717/peerj.5023

Peer

A B
M MW L nb ub =
kDa kDa E q |
45— 45
31 vpTS 5, VpTS
e —
C
10004 307 MW L 12 13 14 15 16 17
484 VpTS 10.35
2 4.6
=
— 750 8§44 ”
g 421 45-
o 7 31 eSapss | VpTS
) ; , , . .
& 5004 oy 02 03 04 05
D Kav b
<
€
250
0 T 441 T 1
0 5 10 15 20

Elution volume (mL)

Figure 1 Recombinant expression and purification of VpTS. SDS-PAGE was done in BioRad TGX 12%
Stain Free precast gels. 20 mL of protein sample were treated with the same volume of 2X SDS-Sample
buffer, heated 5 min a 95 °C and loaded per lane. (A) SDS-PAGE of bacterial lysates from expression in
LB media. Lanes represent 0, 2, 4, 5 and 24 h after induction with IPTG. (B) Protein purification follow-
up using nickel His-tag affinity chromatography. Lane L represents a sample of the bacterial lysate loaded
into the column. Lane nb comes from non-bound proteins. Lane ub corresponds to unspecific bound pro-
teins eluted with 10 mM imidazole and the asterisk (*) lane corresponds to VpTS eluted with 375 mM im-
idazole. (C) Size Exclusion Chromatography. The chromatogram recorded at 280 nm is included showing
the volume where VpTS eluted (10.35 mL). As inset, the SDS-PAGE of selected fractions corresponding to
the peak are included. M stands for the molecular weight markers, L for the sample loaded and 1217 cor-
responding to the fractions around the peak at 10.35 mL. Second inset, the K, vs. log MW plot is shown,

where the VpTS native molecular weight mass was interpolated to 70 kDa.
Full-size Gl DOI: 10.7717/peer;j.5023/fig-1

We also included an extra purification step using size-exclusion chromatography, to
confirm the native dimeric TS quaternary structure. A molecular weight of 70 kDa was
interpolated from the analysis of the after mentioned calculation (Fig. 1C). The gel filtration
purified protein had the same specific TS activity, therefore for enzymatic assays we used
VpTS purified by IMAC chromatography only. This has been found also for varicella
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Figure 2 Michaelis-Menten kinetics for VpTS using dUMP as substrate. Initial velocities were mea-
sured by triplicate and kinetic parameters were obtained by non-linear fitting with robust weighting as im-
plemented in the GraFit software. Standard error bars are included.

Full-size Gl DOI: 10.7717/peerj.5023/fig-2

zoster TS, confirming that IMAC was sufficient for VpTS kinetic studies (Hew et al., 2015).
Instead of Coomassie Blue or silver staining, TGX stain-free 12% polyacrylamide gels
(BioRad) were used during all the purification steps, since they provide a good method to
validate protein purity (Gilda & Gomes, 2013; Rivero-Gutiérrez et al., 2014).

Enzymatic and inhibition assay

Kinetic parameters for dUMP were 27.3 & 4.3 uM for K,,,, 0.3 s~! for k., and 0.01
uM~! s~!for kinetic efficiency (Fig. 2). For mTHE, the values were K,;; 96.3 &= 18 uM, ke,
0.3 s7!, and a kinetic efficiency of 0.0031 pM~! s7! (Fig. 3). These values are higher than
those reported for other TS in previous works (Table 1), clearly indicating that a loss of
affinity occurs for both substrate and cofactor compared to prokaryotic and eukaryotic
TSs (Greene et al., 1994; Spencer, Villafranca & Appleman, 1997; Fox et al., 1999; Sergeeva et
al., 2003; Pozzi et al., 2012). Inhibition of VpTS was studied using TRIM, which is a broad
range inhibitor of bacterial TS and dihydrofolate reductase (DHFR). Inhibition data were
adjusted to a non-linear dose—response model obtaining an ICsy value of 106 pM, with a
standard error of 11.36 uM (Fig. 4).
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sured by triplicate and kinetic parameters were obtained by non-linear fitting with robust weighting as im-
plemented in the GraFit software. Standard error bars are included.
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Table 1 Comparison of kinetics parameters for TS from different organisms. Standard deviation values are included where available.

Organism kear K,, dUMP K,, mTHF keo: /K, AUMP keor /K, mTHF
™) (M) (M) (WM™"'s™h) (LM™'s™)
V. parahaemolyticus 0.3 27.3+43 96.3 + 18 0.01 0.003 This work
L. vannamei 4.1 2.1 13.5 1.95 0.030 Arvizu-Flores et al. (2009)
WSSV 2.8 1.2 13.4 2.33 0.209 Arvizu-Flores et al. (2009)
L. casei 5.1 2.6 20 1.96 0.255 Kawase et al. (2000)
E. coli 1.9 1.2 11 1.58 0.173 Spencer, Villafranca & Appleman (1997)
L. lactis 11 7.2 19 1.53 0.579 Greene et al. (1994)
E. faecalis 4.3 7.0 20 0.65 0.215 Pozzi et al. (2012)
B. subtilis 20 3.4 11.2 5.88 1.786 Fox et al. (1999)
Human 0.21 2.7 £0.33 10.1 + 0.7 Sergeeva et al. (2003)

Phylogenetic analysis of thymidylate synthases among the
Gammaproteobacteria

To get a more compressive view of the molecular evolution of the TS among the

gammaproteobacteria, we constructed an ML-phylogeny using 38 genomes (File S1), which

represent the main orders of the Gammaproteobacteria. We have aligned selected TS amino
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logarithmic TRIM concentration. Standard error bars are included.
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acid sequences and highlighted in yellow the active site residues (File S2). The first thing
we noticed is that two main clades were formed and the small clade (orange) corresponds
to the VAAP: Vibrionales, Alteromonadales, Pasteurellales and Oceanospirales (Fig. 5).
Interestingly, the TS of Shewanella amazonensis, Shewanella denitrificans, Shewanella
baltica, Shewanella sp. MR-4, Shewanella putrefaciens and Pseudoalteromonas tunicate, do
not reflect a history of the species according to the species tree of these genomes previously
reported (Williams et al., 2010). These results suggest that these TS and other genes could
be acquired by horizontal gene transfer in these phylogenetic clades.

Moreover, from the amino acid sequence alignment (File S2), we confirmed that all
residues that form the canonical TS active site are invariant, except for the TSs in the VAAP
clade (Fig. 5, orange rectangle). One of them was a conservative change of lysine to arginine
at position 50 in VpTS (Table 2). This residue is important for folate binding as it makes
an ionic contact between the mTHF y-glutamate and its mutation reduces folate affinity
(Arvizu-Flores et al., 2008). The other change is more dramatic, a glycine for an arginine
at position 141" in VpTS (Fig. 5, orange rectangle). This change leaves three arginines to
coordinate the dUMP phosphate group and possibly reduces nucleotide affinity (Table 2).
Other authors have also found that position Argl79" (equivalent to VpTS Gly141’) was
relatively permissive to mutations (Kawase et al., 2000).
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Figure 5 Phylogeny of TS for selected Gammaproteobacterias. Maximum likelihood phylogeny of
Thymidylate synthase based on protein sequences alignment. The labels are colored corresponding
to the different gammaproteobacteria orders: brown, Enterobacteriales; blue, Vibrionales; green,
Pasteurellales; purple, Alteromonadales; light blue (cyan), Oceanospirales; navy blue, Pseudomonadales
and Xanthomonadales in yellow. The numbers next to the nodes correspond to the bootstrap values for
some of the main clades, plus signs show nodes with 70 or higher bootstrap support. Asterisks denote
nodes with less than 70 bootstrap support. The orange rectangle contains all the sequences that contain
a glycine in position 141 (G141) vs. the consensus arginine (R). The sequences used on this analysis are
located in File S2.

Full-size G4l DOI: 10.7717/peerj.5023/fig-5

Table 2 Function of invariant residues in TS. Selected residues with critical function for TS catalytic ac-
tivity are listed for V. parahaemolyticus, E. coli, L casei and human sequences. Based on Finer-Moore, Santi
& Stroud (2003).

V. para. E. coli L. casei Human Function

Cys160 Cys146 Cys198 Cys195 Catalytic residue for nuclephilic attack to dUMP
Asnl191 Asnl78 Asn229 Asn226 Substrate specificity towards dUMP base
His221 His207 His259 His256 Hydrogen bonding with dUMP ribose hydroxyl
Tyr223 Tyr209 Tyr261 Tyr258 idem

Trp82 Trp80 Trp82 Trpl109 Positioning of folate

Arg22 Arg21 Arg23 Arg50 dUMP phosphate binding

Argl40’ Argl26’ Argl78' Argl75' idem

Gly141’ Argl27' Argl79' Argl76' idem

Argl80 Argl66 Arg218 Arg215 idem

Arg50 Lys48 Lys50 Lys77 Tonic interaction with y-glutamate from mTHF
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Cys160/Ec146

Arg140°/Ec126

EcTS

VpTS Gly141°/EcArg127

Figure 6 Prediction of the active site of VpTS. The theoretical model of VpTS (represented in light blue
ribbons) was superimposed to the crystallographic structure of E. coli TS bound to dUMP (represented
in light grey ribbons; PDB 1AWX). The nucleotide is represented as cylinders and colored by atom
type (carbon in green, nitrogen in blue, oxygen in red, phosphorous in magenta). The catalytic cysteine
and phosphate-binding arginines are included. Two invariant arginine residues VpArg180/Ec166
and VpArgl40'/Ec126’ are presented. Residues from the opposite monomer have a prime (') in their
numbering. Critical sequence changes are VpGly141'/EcArgl27, and an arrow is indicating the position of
the alpha-carbon for VpGly141’. Hydrogen bonds are shown as dotted lines based on the crystallographic
structure.

Full-size Gl DOI: 10.7717/peerj.5023/fig-6

Molecular modeling of the dUMP binding site in VpTS

The sequence of VpTS was modeled with Phyre2 to predict the three-dimensional structure
of the enzyme. TS has a well-described conformational change from an open active site
when unbound or dUMP is present. A closed conformation occurs when the nucleotide
and a folate analog are bound (Finer-Moore, Santi & Stroud, 2003). We modeled a dUMP-
bound complex by superposing the Phyre2-VpTS model with an E. coli TS structure (PDB
1AXW) with a 100% confidence level and 99% alignment coverage. We confirmed that the
nucleotide phosphate was coordinated by three invariant arginine residues in VpTS: Arg22,
Arg 140" and Argl80 (Fig. 6). For clarity, Arg22 was not included the figure. As mentioned
above, VpTS lacks the fourth arginine residue (Ec Argl27’; Lc Argl79'; hArgl76’; see
Table 2) that is important to stabilize the phosphate group by two hydrogen bonds. The
presence of glycine in this position (Gly141’) is recurrent in the VAAP clade (File S2).

DISCUSSION

The kinetic results for the VpTS are consistent with loss of one arginine residue involved
in dUMP binding. Loss of affinity for the VpTS nucleotide substrate led to a reduction
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in catalytic efficiency compared to other TSs (Table 1). Proteins that participate directly
and indirectly in the generation of nucleotides for DNA replication are highly conserved
in sequence as well as in their structure (Cui ef al., 2013). TS is an homodimer where
each active site is comprised of residues from both monomers, although without any
cooperativity (Sapienza, Falk ¢ Lee, 2015). These differences are usually exploited in drug
development for proliferative disease treatment where the pathogen and the host share
the same enzyme (Carreras ¢» Santi, 1995; De Clercq, 2002). Sequence analysis showed that
VpTS has important amino acid changes concerning the consensus TSs known to this date
(Table 2 and File S2).

A key change is the loss of one of the four arginine residues that coordinate the dUMP
phosphate group by the presence of Glyl41” where most of TSs have an arginine residue.
Site-directed mutagenesis studies in L. casei TS have demonstrated that changes in this
position are allowed (Kawase et al., 2000), meaning that the enzyme still retains enzymatic
activity.

To our knowledge, this is the first report of an organism where naturally one of the
four nucleotide-binding arginines was substituted by another residue. Likewise, a change
of Argl79’ for Ala, Thr, Lys or Glu, led to higher values of K, in all directed-site mutants
(Santi et al., 1990). In E. coli, Argl66 (Argl80 in VpTS) is fundamental for the thiolate
formation beside nucleotide binding (Sotelo-Mundo et al., 2006). There are two other
arginines that also coordinate the nucleotide phosphate, the Arg126’ and Arg 127" in EcTS,
which correspond to Arg140” and Gly141’ in V. parahaemolyticus, respectively. Arg126 has
been studied structurally since a conservative mutation impairs catalysis and the structure
(Strop et al., 1997).

We concluded that the increase in K;;, for dUMP in VpTS may reflecting a loss in affinity
for the nucleotide due to less favorable interactions with the dUMP phosphate. TS has an
ordered kinetic mechanism, where dUMP is the first substrate bound (Sperncer, Villafranca
& Appleman, 1997), therefore the K,,, for mTHF is also affected and k., /K, too.

An additional change in the active site vicinity occurs at VpTS Met161, where other
species have a His o Lys that makes hydrogen bonds with the uridine ring. Loss of an
additional hydrogen bond by the loss of the imidazole group at position 161 could be an
additional factor in a reduced nucleotide affinity. In previous works, it was shown that
the changes in EcHis147, affect significantly the TS catalytic efficiency (Dev et al., 1989;
LaPat-Polasko, Maley & Maley, 1990).

The conservative change at position 50 may have a steric effect over folate binding. In
the T4 phage TS, the Lys48Arg mutation increased its K,, value for mTHF by two orders
of magnitude respect to the wild-type enzyme. This change in size and not in charge may
contribute to the increase in mTHF K,,, for mTHF compared to other species (Table 1).

TRIM inhibition of VpTS

Some treatments against proliferative, microbial, inflammatory and parasitic diseases
have been focused on folate metabolism inhibition (Gonen ¢ Assaraf, 2012). TRIM is
an antifolate with structural differences respect to methotrexate, which increase their
specificity for the bacterial DHFR (Navarrete et al., 2013). In this work, the inhibitory
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capacity by TRIM for VpTS was evaluated. The ICs, value was 106 M, whereas values for
bacterial DHRF are usually very low, such as 0.001 pM for Haemophilus influenzae and
0.01 uM for E. coli (Wax, 2008). Although TRIM is not a potent inhibitor of TS, due to its
commercial availability, it is possible to improve its affinity to TS by rational drug design
that would allow inhibition values comparable to the specific compounds for TS.

CONCLUSION

In conclusion, we experimentally evaluated the biochemical properties of VpTS found in
the VAAP clade that had changes in key residues for substrate binding. These changes do
not imply the loss of function from site-directed mutagenesis studies done in other TSs.
Nonetheless, considering that the active site of TS is invariant from phages to human,

a further detail into the alternative pathway for dTMP biosynthesis such as nucleotide
salvage by thymidine kinase is worth investigating. Also, the evolutionary history of the
VAAP clade should deserve attention, as part of the microbiota of marine organisms and
as some important pathogens such as Vibrio sp.
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