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Giant viruses of amoebae were discovered in 2003. Since then, their diversity has
greatly expanded. They were suggested to form a fourth branch of life, collectively
named ‘TRUC’ (for “Things Resisting Uncompleted Classifications”) alongside Bacteria,
Archaea, and Eukarya. Their origin and ancestrality remain controversial. Here, we
specify the evolution and definition of giant viruses. Phylogenetic and phenetic
analyses of informational gene repertoires of giant viruses and selected bacteria,
archaea and eukaryota were performed, including structural phylogenomics based
on protein structural domains grouped into 289 universal fold superfamilies (FSFs).
Hierarchical clustering analysis was performed based on a binary presence/absence
matrix constructed using 727 informational COGs from cellular organisms. The
presence/absence of ‘universal’ FSF domains was used to generate an unrooted
maximum parsimony phylogenomic tree. Comparison of the gene content of a giant
virus with those of a bacterium, an archaeon, and a eukaryote with small genomes
was also performed. Overall, both cladistic analyses based on gene sequences of very
central and ancient proteins and on highly conserved protein fold structures as well
as phenetic analyses were congruent regarding the delineation of a fourth branch of
microbes comprised by giant viruses. Giant viruses appeared as a basal group in the
tree of all proteomes. A pangenome and core genome determined for Rickettsia bellii
(bacteria), Methanomassiliicoccus luminyensis (archaeon), Encephalitozoon intestinalis
(eukaryote), and Tupanvirus (giant virus) showed a substantial proportion of Tupanvirus
genes that overlap with those of the cellular microbes. In addition, a substantial
genome mosaicism was observed, with 51, 11, 8, and 0.2% of Tupanvirus genes best
matching with viruses, eukaryota, bacteria, and archaea, respectively. Finally, we found
that genes themselves may be subject to lateral sequence transfers. In summary, our
data highlight the quantum leap between classical and giant viruses. Phylogenetic and
phyletic analyses and the study of protein fold superfamilies confirm previous evidence
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of the existence of a fourth TRUC of life that includes giant viruses, and highlight its
ancestrality and mosaicism. They also point out that best evolutionary representations
for giant viruses and cellular microorganisms are rhizomes, and that sequence transfers
rather than gene transfers have to be considered.

Keywords: giant virus, TRUC, megavirales, mimivirus, informational genes, protein structural domains

INTRODUCTION

Since the Mimivirus discovery in 2003, dozens of giant viruses
that infect Acanthamoeba spp. or Vermamoeba vermiformis have
been isolated from various environmental samples, and more
recently from animals including humans (La Scola et al., 2003;
Raoult et al., 2004; Colson et al., 2017a). Currently, families
Mimiviridae (La Scola et al., 2005) and Marseilleviridae (Boyer
et al., 2009; Colson et al., 2013b) and isolates that represent
new putative families of giant viruses of amoebae, including
pandoraviruses (Philippe et al., 2013), pithoviruses (Legendre
et al., 2015), faustoviruses (Reteno et al., 2015), Mollivirus
(Legendre et al., 2015), Kaumoebavirus (Bajrai et al., 2016),
cedratviruses (Andreani et al., 2016), Pacmanvirus (Andreani
et al., 2017), and Orpheovirus (Andreani et al., 2018) have been
described (Colson et al., 2017b). These giant viruses of amoebae
exhibit unique phenotypic and genotypic characteristics that
differentiate them from ‘traditional’ viruses and bring them close
to small microbes (Lwoff, 1957; Colson et al., 2017a).

These viruses were linked through phylogenomic analyses
to poxviruses, asfarviruses, ascoviruses, iridoviruses, and
phycodnaviruses (formerly the largest viral representatives),
which were grouped in 2001 in a superfamily named
nucleocytoplasmic large DNA viruses (NCLDVs) (Iyer et al.,
2001, 2006; Raoult et al., 2004). NCLDVs and giant viruses of
amoebae were reported to share a putative ancient common
ancestor harboring about 50 conserved core genes responsible
for key viral functions (Yutin et al., 2009; Koonin and Yutin,
2010; Yutin and Koonin, 2012). Together with a common virion
architecture and common major biological features including
reproduction within cytoplasmic factories, this contributed to
propose reclassifying NCLDVs, mimiviruses and marseilleviruses
in a new viral order named Megavirales (Colson et al., 2013a).

The origin and ancestrality of giant viruses has remained
controversial. From the onset, when the Mimivirus genome was
sequenced in 2004, a phylogeny based on seven concatenated
universally conserved genes showed that Mimivirus branched
near the origin of the eukaryotic branch, and it was suggested
that giant viruses comprised a fourth additional branch in the
Tree of Life, alongside Bacteria, Archaea, and Eukarya (Raoult
et al., 2004). This hypothesis was thereafter strengthened by
both cladistic and phenetic analyses based on informational
genes, including those implicated in nucleotide biosynthesis,
transcription and translation (Boyer et al., 2010). The hypothesis
of the existence of a fourth branch of microbes prompted to
define the ‘TRUCs,’ which is an acronym for “Things Resisting
Uncompleted Classifications” (Raoult, 2013, 2014). This term
was coined because the definition of domains of life by C.R.
Woese was based on ribosomal genes that are absent in

giant viruses. This proposal of a fourth branch of life comprised
by giant viruses has remained controversial and a subject of
debate among virologists and evolutionary biologists. Some
phylogenetic analyses were deemed to suggest complex patterns
of evolutionary relationships for different informational proteins
from giant viruses, which even questioned the monophyly
of NCLDVs (Yutin and Koonin, 2012; Yutin et al., 2014).
A high level of mosaicism has been highlighted for the
genomes of giant viruses of amoebae, which was related to
sequence transfers with organisms belonging to the three
cellular domains of Life (Raoult et al., 2004; Boyer et al.,
2009). A substantial gene flow has been also described in
NCLDVs including in coccolithoviruses (Wilson et al., 2009;
Nissimov et al., 2017). It was suspected that lateral gene
transfers blurred phylogenies based on genes shared by giant
viruses and cellular organisms (Moreira and Lopez-Garcia, 2009).
Several phylogenetic reconstructions in which giant viruses
branch within eukaryotes were published (Moreira and Lopez-
Garcia, 2009, 2015; Williams et al., 2011), and it was put
forward that the universally conserved genes used in phylogeny
reconstructions might have been acquired by giant viruses from
their proto-eukaryotic hosts (Moreira and Lopez-Garcia, 2009;
Yutin et al., 2014). The interpretation of some phylogenies
was also that modern giant viruses might originate from
smaller NCLDVs (Yutin and Koonin, 2013; Yutin et al., 2014).
Conversely, it was proposed that giant viruses might derive
from ancestral cellular genomes by reductive evolution (Legendre
et al., 2012). Besides, phylogenetic reconstructions supporting
the fourth TRUC hypothesis triggered methodological criticisms
arguing that they were distorted by long-branch attraction
and technical issues, and divergences in their interpretation.
However, alternative phylogenies were not accurate either
regarding the phylogeny of Archaea, Bacteria, or Eukarya
(Williams et al., 2011; Moreira and Lopez-Garcia, 2015). A four-
branch topology was also obtained by reconstructing phylogenies
that describe the evolution of proteomes and protein domain
structures (Nasir et al., 2012; Nasir and Caetano-Anollés,
2015). The genomic and structural diversity embedded in
giant virus proteomes was found similar to that of proteomes
of cellular organisms with parasitic lifestyles. Beyond, other
phylogenies based on RNA polymerase suggested the presence
in metagenomes of sequences related to giant virus relatives
(Wu et al., 2011; Sharma et al., 2014). As a synthesis, it was
deemed that more work is needed on Megavirales phylogenies
to clarify if these viruses are monophyletic or have different
evolutionary histories (Forterre and Gaia, 2016). Here, we specify
the definition of giant viruses, highlight their mosaicism at
the genome, structure and sequence level, and strengthen the
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evidence for their ancestrality and the existence of a fourth TRUC
of microbes.

MATERIALS AND METHODS

Definition of Giant Viruses
We collected and reviewed current knowledge on giant viruses
from articles gathered from the NCBI PubMed database
and from Google Scholar using as keywords “giant virus”;
Megavirales; mimivir∗; marseillevir∗; pandoravir∗; pithovir∗;
faustovir∗; mollivirus; cedratvirus; kaumoebavirus; pacmanvirus;
virophage; transpoviron. We then compared the phenotypic and
genotypic features of these viruses with those used as criteria
to define classical viruses and those that are hallmark features
of cellular organisms. The list of those criteria is presented in
Table 1.

Protein Structure Assignment to Viral
and Cellular Proteomes
Protein sequences from completely-sequenced proteomes of 80
Megavirales were scanned against the library of hidden Markov
models (HMMs) of structural recognition maintained by the
SUPERFAMILY database for structure assignment at an E-value
cutoff of < 0.0001 (Gough et al., 2001; Gough and Chothia,
2002). The SUPERFAMILY HMMs represent proteins of known
three-dimensional (3D) structures and assign each detected
occurrence of protein domain into fold superfamilies (FSFs), as
defined by the Structural Classification of Proteins (ver. 1.75)
database (Andreeva et al., 2008). FSFs are collections of one or
more protein families that show recognizable 3D structural and
functional similarities, but not necessarily sequence identities,
that are indicative of common origin. Thus, FSFs represent
highly dissimilar protein domains at the sequence level that have
evolved via divergence from a common structure and can still be
recognized based on the presence of that conserved structural
core by HMMs trained to detect remote homologies. Because
of the fast mutation rates of viral genes, it sometimes becomes
impossible to generate meaningful global sequence alignments
when considering viral and cellular genes together in data
matrices. The fast mutation rates, especially when considering
proteins separated by large evolutionary distances and involving
distantly related taxa, lead to alignment inaccuracies and large
number of gaps. In contrast, protein structure evolves at least
3 to 10 times slower than molecular sequences (Illergard et al.,
2009) and hence provides an alternative to study the deep
evolutionary history of cells and viruses (Nasir et al., 2012; Nasir
and Caetano-Anollés, 2015). In parallel, FSF assignments for a
total of 102 cellular organisms including an equal number of
archaea, bacteria, and eukaryota were retrieved from a previous
work during which a total of 1,797 distinct FSF domains had
been detected (E-value < 0.0001) (Nasir and Caetano-Anollés,
2015).

Structural Phylogenomics
Using an in-house Python script, we generated a data matrix
containing 182 rows (proteomes from 34 archaea, 34 bacteria,

34 eukaryota, and 80 Megavirales members) and 289 columns
(FSFs) containing presence/absence information for ‘universal’
FSFs. ‘Universal’ FSFs, by definition, included FSFs that were
detected in at least one proteome each from archaea, bacteria,
eukaryota, and a Megavirales member. In other words, FSFs
unique to one of these four groups (e.g., bacteria-specific FSFs)
or shared by 2-to-3 groups of cellular organisms and/or viruses
(e.g., FSFs detected in archaea, bacteria, and viruses but not
eukaryota) were excluded from our definition of universal
FSFs (see (Nasir et al., 2015) for details on FSF groups in
cellular organisms and viruses). This data matrix containing
182 proteomes and 289 universal FSFs was imported into the
PAUP (ver. 4.0b10) software (Swofford, 2002) for phylogenomic
tree reconstruction. Proteomes were treated as taxa and FSFs as
characters. Presence/absence of FSFs (represented by 1 and 0,
respectively) were used as distinct character states to distinguish
taxa. Maximum parsimony method was set as optimality criterion
to reconstruct the most parsimonious unrooted phylogenomic
tree describing the evolution of sampled proteomes based on the
presence/absence of 286 parsimony informative FSF characters.
The unrooted reconstructed tree was rooted a posteriori by the
branch resulting in minimum increase in overall tree length
using the Lundberg method (Lundberg, 1972; see Nasir et al.,
2017; Caetano-Anollés et al., 2018 for description and review
of rooting methodology). The reliability of the phylogenetic
splits was evaluated by running 1,000 bootstraps. Separately, we
performed principal coordinate analysis (PCoA) on the same
data matrix and plotted the 182 sampled viral and cellular
proteomes into 3D space. Proteomes are composed of FSF
domains of different evolutionary and geological ages. From
a previously reconstructed tree of domains (ToD) (Nasir and
Caetano-Anollés, 2015), we retrieved the relative evolutionary
ages for each of the 289 universal FSFs. The relative scale reflects
the distance of each node (FSF domain) from the root of the
ToD and ranges from 0 (closer to the root, most ancient) to
1 (most recent). The node distance (nd) value thus describes a
clock-like behavior for the evolution of FSF domains and has
previously been linked to the geological record (Wang et al.,
2011). Euclidean distance was used to plot proteome dissimilarity
based on the 1-nd transformation of the nd scale for each FSF
domain in every proteome, as previously (Nasir and Caetano-
Anollés, 2015). Since the PCoA is centered around nd variable
derived from an evolutionary tree, we refer to this method as
evo-PCoA. The evo-PCoA thus projects proteome dissimilarity
into 3D space based on differences in the evolutionary ages of
components of each proteome. XLSTAT plugin was added to
Microsoft Excel for generation of PCoA.

Collection of Orthologous Sequences
From Viruses
Analysis was performed as described in previous works (Boyer
et al., 2010; Sharma et al., 2014). The genes used in the
present study were identified from clusters of orthologous
groups of proteins (COGs) involved in nucleotide transport
and metabolism and information storage and processing (i.e.,
categories F, J, A, K, L, and B). These genes comprise proteins that
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are the most conserved between cellular organisms and viruses
(Boyer et al., 2010). They notably include three genes conserved
among previously identified Megavirales representatives and in
faustoviruses, and that encode DNA-dependent RNA polymerase
subunits 1 (RNAP1) and 2 (RNAP2), and family B DNA
polymerase (DNApol). Viral orthologs for these three genes were
retrieved with the OrthoMCL program (Li et al., 2003) from
the gene complements of 317 viral genomes harboring > 100
genes downloaded from the NCBI sequence databases1, and
orthologs from nine faustovirus genomes (Benamar et al., 2016)
and Mollivirus sibericum (Legendre et al., 2015) were added to
this sequence set (Supplementary Table S1).

Collection of Orthologous Sequences
From Cellular Organisms
Informational gene homologs from cellular organisms
(maximum number: 20,000) were retrieved from the NCBI
GenBank non-redundant (nr) protein sequence database by
stand-alone BLAST searches with viral sequences as query, using
default parameters except for the maximum target number limit,
set to 20,000 (Altschul et al., 1990). Homologous sequences were
selected from representative species that diverged approximately
500 million years ago using TimeTree (Hedges et al., 2006;
Sharma et al., 2014). BLASTp results were filtered by taxon
identifiers, selected sequences were downloaded using their
GenBank identifier, and duplicates were removed by clustering
with the CD-HIT suite, as previously described (Sharma et al.,
2014, 2015b).

Multiple Sequence Alignments and
Phylogeny Reconstructions
Sequences (Supplementary Table S2) were aligned with the
MUSCLE software (Edgar, 2004) and alignments were manually
curated. Phylogeny reconstructions were performed using
FastTree (Price et al., 2010) with the Maximum Likelihood
method, and the CAT 20 model that analyses the alignment site
by site and reduces long branch attraction artifacts (Lartillot et al.,
2007). Then, trees were visualized using FigTree2. Confidence
values were determined by the Shimodaira-Hasegawa (SH) test
using FastTree (Price et al., 2010).

Comparison of Informational Genes
Repertoires
Hierarchical clustering was performed with the Pearson distance
method and the TM4 multi-package software, as previously
described (Sharma et al., 2015a,b). This analysis relied on
the comparison of the presence/absence patterns of 726
COGs involved in nucleotide transport and metabolism and
information storage and processing in the gene contents of
viruses and of selected bacterial, archaeal, and eukaryotic
representatives (Sharma et al., 2015a,b). Viral orthologs were
identified through BLASTp searches using these 726 COGs.

1ftp://ftp.ncbi.nih.gov/genomes/Viruses/
2http://tree.bio.ed.ac.uk/software/figtree/

BLAST searches were performed with default parameters, except
for the maximum target number limit, set to 20,000.

Comparison of Gene Repertoires From a
Representative of Each of the Three
Cellular Domains of Life and From a
Giant Virus, and Construction of the
Rhizome of Genomes and Genes
Comparison of the gene contents was performed for three
members of cellular domains that were selected because they
harbor small genomes and are intracellular parasites [namely
Encephalitozoon intestinalis (an eukaryote) (Corradi et al., 2010),
Methanomassiliicoccus luminyensis (an archaeon) (Gorlas et al.,
2012), Rickettsia bellii (a bacterium) (Ogata et al., 2006)], and for
Tupanvirus soda lake (Abrahao et al., 2018), a recently described
giant virus that was selected here because it has a particularly
large gene content and harbors the largest set of translation
components among giant viruses. This comparison used the
ProteinOrtho v5 tool with 1e-3, 20 and 30% as thresholds for
e-value, amino acid identity, and coverage of aligned sequences,
respectively (Lechner et al., 2011). In addition, best BLASTp
hits against the NCBI GenBank protein sequence database
were obtained for these four organisms. The “rhizomes” of the
genomes were built using the Circos tool3. Rhizomes consist in
a representation of the genome evolution and mosaicism that
takes into consideration the fact that genes from this genome as
well as intragenic sequences do not have the same evolutionary
history, and can result from exchanges, fusions, recombination,
degradation, or de novo creation (Raoult, 2010). Rhizomes, which
are devoid of a center, were proposed as a better paradigm of
genetic evolution than trees (Deleuze and Guattari, 1976; Raoult,
2010). Rhizomes built here show in a single figure, for all the
genes from a given virus or cellular organisms, the taxonomy
of their best BLASTp hits that represent putative donors or
acceptors involved in sequence transfers, as well as the ORFans
(sequences devoid of homolog in databases). Furthermore, a
rhizome of genes was also determined for the genes encoding
a methionyl-tRNA synthetase shared by the four organisms, by
performing BLASTp searches with fragments obtained from this
gene by cutting its amino acid sequence into 40 amino acid-long
fragments that overlapped with a sliding window of 20 amino
acids.

RESULTS AND DISCUSSION

Phylogenetic Analyses of Protein
Structural Domains of Viral and Cellular
Proteomes
A total of ∼1,200 folds, ∼2,000 superfamilies, and ∼5,000
families of structural domains encompass the entire evolutionary
and functional diversity of the protein world. The history of
these folds, superfamilies and families has been traced with
phylogenomic methods by studying the entire repertoires of

3http://circos.ca/
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proteins (proteomes), beginning with a study of a small set of 32
completely sequenced genomes (Caetano-Anollés and Caetano-
Anollés, 2003) and continuing with a recent extended analysis
of thousands of viral and cellular genomes (Nasir and Caetano-
Anollés, 2015). Timelines of domain history could be calibrated
with a molecular clock that relates them to the geological
record (Wang et al., 2011). The timelines showed that the
oldest domain families harbored ‘Rossmann-like’ α/β/α-layered
and bundle structures typical of globular proteins, followed by
barrel structures typical of membrane and metabolic proteins
(Caetano-Anollés et al., 2012). The oldest of these structures are
predominant in membrane-associated proteins, suggesting a very
early onset of cellular structure. Their link to metabolism, but not
translation, also suggests the late development of the genetic code
and the late appearance of the ribosome (Harish and Caetano-
Anollés, 2012; Caetano-Anollés et al., 2013). Remarkably, the late
arrival of modern genetics ∼3 billion years (Gy) ago signals the
end of a period responsible for the primordial cellular origin of
viruses, clearly evident by the fact that the oldest superfamilies are
common to cells and viruses (Nasir and Caetano-Anollés, 2015).
In addition, these data also indicated that RNA polymerases are
more ancient than the ribosome. Such diversification occurred
prior to the appearance of the cellular domains of life.

A previous phylogenomic data-driven analysis of proteomes
confirmed the early cellular origin of viruses and the rise of viral
RNA proteomes followed by that of DNA viruses and Megavirales
representatives (Nasir and Caetano-Anollés, 2015). Here we
focused on the evolutionary relationship of Megavirales and
cellular organisms. Out of all possible FSF domains (Figure 1), we
selected 289 that were universal, i.e., that were shared by viruses
and cellular organisms. We then used this set to build a phylogeny
of proteomes (Figure 2). Megavirales representatives appear as
a basal group in the tree of proteomes, which is consistent with
results from sequence analyses performed here and previously
(Boyer et al., 2010; Sharma et al., 2014). The subgroup that was
closest to cellular organisms was family Mimiviridae, followed
by family Phycodnaviridae and then groups comprised by

FIGURE 1 | Venn diagram displaying FSF distribution and sharing patterns
among Archaea, Bacteria, Eukarya, and Megavirales. A, Archaea; B, Bacteria;
E, Eukarya; FSF, fold superfamilies; V, viruses.

family Marseilleviridae and by faustoviruses, mollivirus, and
pandoraviruses. Similar phylogenetic patterms were revealed
when we used multidimensional scaling approaches to explore
the temporal space of ages of individual structural domains
in proteomes (Figure 3). We found distinct temporal clouds
of proteomes for viruses and organisms belonging to Archaea,
Bacteria, and Eukarya. The Mimiviridae group was clearly
dissected from the main viral cloud, which was temporally
closer to cellular proteomes, suggesting their late appearance
in viral evolution. Again, the family Phycodnaviridae appeared
between the family Mimiviridae and the rest of the viral cloud.
In terms of the proportions of FSFs detected in giant viral
groups, asfarviruses have a proteome that is more similar
to that of faustovirus, which is consistent with phylogenetic
analysis of sequences. However, when considering raw number,
mimiviruses have more FSFs in common with faustovirus.
Finally, when plotting phylogenetic indices measuring the levels
of homoplasy of the MP tree reconstruction (corresponding
to Figure 2) against age of the phylogenetic character (fold
superfamily), high retention indices, especially for lower nd
values (oldest domains), indicated excellent fit of characters
to the phylogeny (Figure 4). Homoplasy indicates the level
of independent gain of characters in lineages and is a good
indicator of deviations from vertical inheritance (Farris, 1983).
The levels of homoplasy were moderate for protein folds,
showing that the vertical signals override the horizontal
signals.

Phylogenetic Analyses of RNA and DNA
Polymerases and Phenetic Comparison
of Informational COGs
As shown in Figures 5, 6, trees reconstructed using both
RNA polymerase subunit sequences (RNAP1 and 2) from
members of Megavirales (including recently described giant
viruses of amoebae), Bacteria, Archaea, and Eukarya clearly
displayed a topology with four branches. The Megavirales group
exhibits a considerable genetic diversity. Regarding phylogeny
reconstruction based on DNA polymerases present in archaea,
eukaryotes and giant viruses, giant viruses are separated into
two groups. Faustoviruses and asfarviruses are clustered together
and comprise sister branches, apart from other giant viruses
that form an independent and strongly supported cluster
(Figure 7). Hierarchical clustering analysis was performed based
on a binary presence/absence matrix constructed using 727
informational COGs present in 143 representative genomes of
cellular organisms from Bacteria, Archaea and Eukarya, and
viruses from Megavirales (Figure 8). This phenetic analysis based
on informational genes also showed a four-branch topology,
Megavirales being a distinct branch alongside Eukarya, Archaea,
and Bacteria.

Pangenome and Core Genome for One
Member of Each of the Three Cellular
Domains of Life and of a Giant Virus
A pangenome and core genome was determined for one
representative of each of the four TRUCs of microbes: namely
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FIGURE 2 | Phylogeny of proteomes describing the evolution of 182 proteomes randomly sampled from cellular organisms and viruses. The universal Tree of Life is
rooted using Weston’s generality criterion. The 102 cellular proteomes are from Nasir and Caetano-Anollés (2015).

R. bellii (bacteria, 1,430 genes), M. luminyensis (archaea, 2,533
genes), E. intestinalis (eukaryota, 1,910 genes), and Tupanvirus
soda lake (giant virus, 1,269 genes). The pangenome describes
the full complement of genes in a group of organisms, in our
case the four microbes, and is comprised by the core genome
that contains genes present in all 4 microbes and by the
dispensable genome composed of genes that are unique to each
microbe and genes absent from one or more microbes. The
pangenome of these four microbes was composed of 6,531
genes, and their core genome (shared by all four organisms)
was composed of 33 genes that represented between 1.3
and 2.6% of their gene contents. This core genome included
notably genes encoding a DNA-directed RNA polymerase,
a ribonucleoside-diphosphate reductase, a translation elongation
factor 2, and several aminoacyl-tRNA synthetases. A majority
of these genes therefore consisted of translation components. In
addition, 23 (1.6%), 68 (5.4%), 13 (0.7%), and 68 (5.4%) genes
from R. bellii, M. luminyensis, E. intestinalis, and Tupanvirus,
respectively, had homologs in the genomes of two other
microbes. Finally, 261 genes in R. bellii (18.3%), 362 in
M. luminyensis (14.3%), 298 in E. intestinalis (15.6%), and

132 in Tupanvirus (10.4%) had homologs in at least one of
the three other microbes. These results show that beyond the
fact that the number of genes for Tupanvirus is in the same
order of magnitude than for the three cellular microorganisms,
a substantial proportion of the genes of this giant virus
overlaps with those of the bacteria, the archaeon and the
eukaryote.

Rhizomes of Genomes and Genes as
Appropriate Representations of the
Origin and Evolution of Members From
the Four TRUCs of Microbes
A substantial genome mosaicism, consisting of genomes
composed by genes with sequences suggesting different
evolutionary origins and histories, was observed for
representatives of the four TRUCs, including R. bellii,
M. luminyensis, E. intestinalis, and Tupanvirus (Figure 9).
This mosaicism was particularly predominant in the Tupanvirus
genome as described previously (Abrahao et al., 2018), with
51, 11, 8, and 0.2% of its genes best matching with viruses,
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FIGURE 3 | Evolutionary principal coordinate (evoPCO) analysis plot portrays in its first three axes the evolutionary distances between cellular and viral proteomes.
The percentage of variability explained by each coordinate is given in parentheses on each axis. Data points of the 3-dimensional scatter plot describing temporal
clouds are mapped onto projections planes and connected with vertical leading drop lines along the PCO3 axis. The list of whole coordinate information for building
the PCoA plot of this figure is provided in Supplementary Table S3.

eukaryota, bacteria, and archaea, respectively, but it was a
shared feature of the three non-eukaryotic microorganisms. This
illustrates that a rhizome is the most appropriate representation
of the evolutionary history at a genome scale, as individual
genes can have distinct and distant origins (Raoult, 2010).
Such representation notably takes into account introgressive
descent as a result of lateral sequence transfers. Moreover,
it appears that genes themselves may be subject to lateral
sequence transfer rearrangements (through gene conversion),
as shown here for the case of the methionyl-tRNA synthetase
encoding gene of the four microorganisms (Figure 10). Indeed,
40 amino acid-long fragments of these genes alternately found
as best hits, apart from relatives from the same family or
genus, sequences from archaea, bacteria, eukaryota, or viruses.
Such a gene sequence mosaicism was particularly broad for
Tupanvirus and M. luminyensis. For the case of Tupanvirus
soda lake, 15, 3, 2, and 1 methionyl-tRNA synthetase gene
fragments found as best hits an eukaryote, a virus, a bacterium
and an archaeon, respectively. This was also remarkably
exemplified with the case of the glutaminyl-tRNA synthetase
of Klosneuvirus, a mimivirus relative (Schulz et al., 2017).
Indeed, fragments of this glutaminyl-tRNA synthetase gene
showed a mixture of sequences from eukaryotes, bacteria
and of unknown sources, or of sequences retrieved from

metagenomes, in particular those of Antarctic dry valleys
(Abrahao et al., 2018). These findings make the notion of gene
lateral transfer obsolete, as sequences, rather than genes, are
transferred (Merhej et al., 2011). Thus, the source of a gene
may be better defined by a rhizome than by a tree, as previously
proposed for organisms (Raoult, 2010) (Figure 11). Examples
of chimeric genes have been previously described. Thus,
ORF13 of the Sputnik virophage encodes a primase-helicase
whose N-terminal region is of archaea-eukaryotic source
and C-terminal portion was inferred to originate from giant
viruses (La Scola et al., 2008). In the fern Adiantum capillus-
veneris, a chimeric photoreceptor was identified that may
have been critical in the divergence and rise of some fern
species under low luminosity environments (Kawai et al., 2003).
More broadly, it has been described that the creation of novel
chimeric genes, referred as chimeric nuclear symbiogenetic
genes (S-genes), occurred during eukaryogenesis through the
fusion of bacterial and archaeal genes; this gave rise in early
eukaryotes to novel chimeric proteins with central functions
(Meheust et al., 2018). These data confirm and expand to
genes the concept that no single tree can define the chimeric
nature of genomes, as genes themselves are mosaics (Dagan
and Martin, 2006; Merhej et al., 2011). As a consequence,
trees made with homologous sequences make no sense if
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FIGURE 4 | Plots of the indices of the phylogenetic tree of proteomes describing the evolution of 182 proteomes randomly sampled from cellular organisms and
viruses (corresponding to Figure 2) against the age of the phylogenetic character [fold superfamily (FSF)]. Five measures of the levels of lateral sequence transfers for
the maximum parsimony tree reconstruction performed in the present study, namely consistency index (A), retention index (B), rescaled consistency index (C),
homoplasy index (D), and G-fit (E), are plotted against the age of the phylogenetic character FSF [measured as node distance (nd) values] for 289 characters (FSF)
shared by archaea, bacteria, eukaryota, and viruses. High retention indices, especially for lower nd values (corresponding to older domains), indicates excellent fit of
the characters to the phylogeny.

FIGURE 5 | RNAP1 phylogenetic tree. The RNAP1 tree was built by using aligned protein sequences from Megavirales (red), Bacteria (green), Archaea (pink), and
Eukarya (blue). Confidence values were calculated by the Shimodaira-Hasegawa (SH) test using the FastTree program (Price et al., 2010). Average length of
sequences was 1,336 amino acids. The scale bar represents the number of estimated changes per position.

not all fragments of these sequences have a common source.
Phylogeny reconstructions based on concatenated genes are
still worse when the trees built based on the separate genes
do not have the same topology, because they consist in
mixing sequences from different, and eventually very distant,
origins.

Definition Criteria for Giant Viruses or
Megavirales
As shown in Table 1, giant viruses exhibit unique phenotypic and
genotypic features that differentiate them from ‘classical’ viruses,
indicate their much greater complexity, and bring them close
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FIGURE 6 | RNAP2 phylogenetic tree. The RNAP2 tree was built by using aligned protein sequences from Megavirales (red), Bacteria (green), Archaea (pink), and
Eukarya (blue). Confidence values were calculated by the SH test using the FastTree program (Price et al., 2010). Average length of sequences was 1,188 amino
acids. The scale bar represents the number of estimated changes per position.

FIGURE 7 | DNA polymerase phylogenetic tree. The DNA polymerase tree was built by using aligned protein sequences from Megavirales (red), Bacteria (green),
Archaea (pink), and Eukarya (blue). Confidence values were calculated by the SH support using the FastTree program (Price et al., 2010). Average length of
sequences was 1,134 amino acids. The scale bar represents the number of estimated changes per position.

to small micro-organisms. These characteristics can be classified
as follows: (i) Giant sizes of the virions and their genomes.
(ii) Complexity, with presence in virions of dozens of proteins,
and of messenger RNA. (iii) Presence of translation components

unique among viruses; in this view, the recent characterization of
klosneuviruses (Schulz et al., 2017) and tupanviruses (Abrahao
et al., 2018) has led to a considerable expansion of the set of
such translation components. Notably, the tupanvirus isolates
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FIGURE 8 | Hierarchical clustering by phyletic pattern based on the presence/absence of informational Clusters of Orthologous Groups (COGs) of proteins. The
Megavirales members are represented in red, Bacteria members in green, Archaea members in pink, and Eukarya members in blue.

encode for 67–70 tRNA, 20 aminoacyl tRNA-synthetases, and
11 translation factors. (iv) Presence of a specific mobilome in
mimiviruses that includes virophages, transpovirons, introns,
and endonucleases (Desnues et al., 2012), as well as MIMIVIRE,
a defense system against virophages (Levasseur et al., 2016b; Dou
et al., 2018). (v) Based on phylogenetic, phyletic, and protein
fold superfamilies analyses, delineation of a fourth group of
micro-organisms comprised by giant amoebal viruses alongside
bacterial, archeal and eukaryotic microbes, and evidence of an
archaic origin (Boyer et al., 2010; Sharma et al., 2014; Nasir
and Caetano-Anollés, 2015). Moreover, the recent comparison
of the genomes of a fossil and a modern pithovirus highlighted
that giant viruses evolve with a mutation rate estimated to
be lower than that of RNA viruses and comparable to those
determined for bacteria and archaea, and by classical mechanisms
of evolution, including through long-term fixation of genes
that are acquired by horizontal gene transfer (Levasseur et al.,
2016a).

Giant viruses of amoebae certainly exhibit several criteria
that are hallmarks and definition criteria of viruses. These
include the occurrence of an eclipse phase during their
replicative cycle, an obligatory replication into host cells, and
the presence of a capsid (Lwoff, 1957; La Scola et al., 2003;
Raoult and Forterre, 2008). Nevertheless, regarding the capsid,
pandoraviruses, pithoviruses, mollivirus, and cedratviruses have
virions surrounded by a tegument-like structure and no known
capsid morphology (Philippe et al., 2013; Yutin and Koonin,
2013; Legendre et al., 2014, 2015). Pandoraviruses do not
have a recognizable capsid-encoding gene, pithoviruses have a
barely identifiable capsid-encoding gene, while capsid proteins
are detected in Mollivirus virions but they are not part of
the virion structure. Other giant virions with an ovoid or
spherical shape such as cedratviruses and Orpheovirus are also
devoid of a morphology resembling those provided by known
capsids. An atypical capsid structure was previously described
for Megavirales representatives. Thus, most poxviruses have
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FIGURE 9 | Rhizomes of genomes illustrative of the mosaicism of the genomes of representatives of the four TRUCs of microbes including Tupanvirus soda lake (a
mimivirus) (A); Encephalitozoon intestinalis (a microbial eukaryote) (B); Methanomassiliicoccus luminyensis (an archaeon) (C); and Rickettsia bellii (a bacterium) (D).
The genes of these four microorganisms were linked to their most similar sequences in the NCBI GenBank protein sequence database according to the BLAST
program (https://blast.ncbi.nlm.nih.gov/Blast.cgi), classified according to their belonging to viruses, eukaryotes, bacteria or archaea, and integrated in a circular gene
data visualization. The figures were performed using the CIRCOS online tool (http://mkweb.bcgsc.ca/tableviewer/visualize/). Circular representations in A and C are
the same than those produced for figures from articles Abrahao et al. (2018) and Levasseur et al. (2017), respectively, as they originate from the same data. These
representations are licensed under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/) and CC-BY-NC (https://creativecommons.org/licenses/by-nc/4.0/),
respectively.

brick-shaped virions, the capsid precursors being assembled
following icosahedral symmetry and the final shape being reached
after proteolytical cleavages (Condit et al., 2006), and ascoviruses
harbor allantoid capsids (Federici et al., 1990).

Moreover, although giant viruses of amoebae share phenotypic
and genotypic features with cellular microorganisms, they were
described to lack key cellular hallmarks. A first one consists
in proteins involved in the production of energy. This might
not be strictly true as tupanviruses harbor genes encoding a
putative citrate synthase (Abrahao et al., 2018), and the genome
of a distant mimivirus relative (Tetraselmis virus 1) that infects
a green alga was shown to harbor key fermentation genes (a
pyruvate formate-lyase and a pyruvate formate-lyase activating
enzyme) that might ensure energy requirements (Schvarcz and
Steward, 2018). A second one consists in ribosomal DNA and
proteins, which are absent from giant viruses. Nevertheless, two
distinct copies of an 18S rRNA intronic region were recently

described in tupanviruses (Abrahao et al., 2018). These sequences
were found to be highly expressed, and led to detect similar
18S rRNA intronic region in the majority of other mimivirus
genomes. A third cellular hallmark that lacks in giant viruses of
amoebae is binary fission as multiplication mechanism.

Conversely, it must be also considered that some bacteria
display viral specific features and also lack hallmark features
of cellular microorganisms. Numerous bacteria are indeed
obligatory intracellular parasites. Moreover, some small cellular
microorganisms such as Carsonella ruddii lack a comprehensive
ATP generation machinery and, in addition, have a not
comprehensive set of ribosomal proteins and aminoacyl-tRNA
synthetases (Nakabachi et al., 2006; Tamames et al., 2007). Other
cellular microorganisms, such as Chlamydia spp. (Abdelrahman
et al., 2016; Bou Khalil et al., 2016), Ehrlichia spp. (Zhang
et al., 2007), and Babela sp. (Pagnier et al., 2015) have no bona
fide binary fission step during their multiplication. These data

Frontiers in Microbiology | www.frontiersin.org 13 November 2018 | Volume 9 | Article 2668

https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://mkweb.bcgsc.ca/tableviewer/visualize/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-02668 November 24, 2018 Time: 17:56 # 14

Colson et al. Ancestrality and Mosaicism of the Fourth TRUC

FIGURE 10 | Rhizomes of methionyl-tRNA synthetase gene fragments illustrative of the mosaicism of the genes of representatives of the four TRUCs of microbes
including Tupanvirus soda lake (a mimivirus) (A); Encephalitozoon intestinalis (a microbial eukaryote) (B); Methanomassiliicoccus luminyensis (an archaeon) (C); and
Rickettsia bellii (a bacterium) (D). Forty amino acid-long fragments of the methionyl-tRNA synthetase encoding genes of the four microorganisms were linked to their
most similar sequences in the NCBI GenBank protein sequence database according to the BLAST program (https://blast.ncbi.nlm.nih.gov/Blast.cgi), classified
according to their belonging to viruses, eukaryotes, bacteria or archaea, and integrated in a circular gene data visualization. The figures were performed using the
CIRCOS online tool (http://mkweb.bcgsc.ca/tableviewer/visualize/).

highlight that both classical viruses and cellular microorganisms
can lack one or several pillar defining features. Finally, while a few
viruses, including pandoraviruses, are devoid of capsid (Philippe
et al., 2013; Koonin and Dolja, 2014), two classes of icosahedral
compartments exist in bacteria and archaea that resemble
to viral capsids: they include encapsulin nanocompartments
structurally similar to and possibly derived from major capsid
proteins of tailed bacterial and archaeal caudaviruses, and
microcompartments present in bacteria (including cyanobacteria
and many chemotropic bacteria) that encapsulate enzymes
involved in metabolic pathways (Tanaka et al., 2008; Krupovic
and Koonin, 2017).

CONCLUSION AND PERSPECTIVES

Viruses have long been considered as parasitic entities invisible
by light microscopy and with a limited repertoire of genes
(Raoult and Forterre, 2008). The fact that they are devoid
of ribosomal genes has confined them outside of the “tree

of life.” Giant viruses of amoebae have undermined this
paradigm due to their characteristics that are, at the scale
of classical viruses, outstanding (Raoult et al., 2007; Sharma
et al., 2016). Phylogenies that were constructed here based on
three ancient genes, including RNAP1/2 and DNA polymerase,
delineate a fourth TRUC of microbes, as previously reported
(Boyer et al., 2010; Sharma et al., 2014, 2015b). Hierarchical
clustering performed using a set of informational COGs also
shows a fourth independent branch alongside the three cellular
branches. Because the tree of proteomes provides a more
global and conserved phylogenomic view of protein domain
composition in proteomes, their topologies can differ from
single-gene based phylogenies that can independently indicate
different evolutionary histories. However, here, the four branch
topology was maintained in both sequence and structure based
trees.

With the recent expansion of the proposed order Megavirales,
the number of genes that are shared by these viruses and
cellular organisms has shrunk, making it more difficult to
build a fourth branch. Nevertheless, among the genes that still
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FIGURE 11 | Representation as a rhizome of the genetic evolution for four current intracellular parasites of the four TRUCs of microbes with a comparable genome
size, including Rickettsia bellii (a bacterium), Methanomassiliicoccus luminyensis (an archaeon), Encephalitozoon intestinalis (a microbial eukaryote), and Tupanvirus
soda lake (a mimivirus). Rhizomes consist in a representation of genome evolution and mosaicism that takes into account that genes and intragenic sequences do
not have the same evolutionary history, being proposed as better paradigm of genetic evolution than phylogenetic trees. The genomes of each of the four
represented current microorganisms harbor mixtures of sequences of different origins. Sequences corresponding to current bacteria, Archaea, eukaryota, giant
viruses, and to ORFans are colored in green, purple, blue, red, and orange, respectively. Rhizomes of the genomes of Tupanvirus and Methanomassiliicoccus
luminyensis were adapted from same representations than representations from Levasseur et al. (2017) and Abrahao et al. (2018), respectively, licensed under CC
BY 4.0 (https://creativecommons.org/licenses/by/4.0/) and CC-BY-NC (https://creativecommons.org/licenses/by-nc/4.0/), respectively (see legend to Figure 9).

show a monophyly are polymerases, which were shown to be
among the most ancient protein fold superfamilies (Nasir and
Caetano-Anollés, 2015). The ancestrality of conserved genes
such as the RNA polymerases, which are suspected to be
more ancient than the ribosome (Nasir and Caetano-Anollés,
2015), highlights that evolution can be the result of structural
constraints. This concept was described by Gould and Lewontin
who used San Marco Cathedral’s spandrels to illustrate that
adaptation through selection cannot comprehensively explain
the evolution of genomes, and that biological constraints
have to be considered (Gould and Lewontin, 1979). The
structural, functional and evolutionary units of proteins are
the structural domains, highly compact and recurrent segments
of the molecules that often combine with others to perform
major molecular and cellular tasks (Caetano-Anollés et al., 2009).
Domains are evolutionarily highly conserved since they are
defined by three-dimensional (3D) structural folds rather than
amino acid sequences (Illergard et al., 2009). A rough estimate
of evolutionary change suggests that a new fold structure takes
millions of years to unfold, while a stable new sequence appears
on Earth at least once every microsecond (Caetano-Anollés
et al., 2009). In addition, hairpin-forming palindromes, which
are possible primordial functional RNAs, are widely distributed
among living entities, and they were found to be represented

in giant viruses and virophages (Seligmann and Raoult, 2016).
Short hairpin structures exist in the genomes of Mimivirus and
the Sputnik virophage that may be involved in determining
the polyadenylation site of transcripts (Byrne et al., 2009;
Claverie and Abergel, 2009). While viral diversification appears
fundamentally tailored by reductive evolution, the enrichment
of viral genomes with primordial superfamilies of structural
domains provides a strong support to the development of the
viral proteome core prior to the inception of the ribosome
but after the appearance of synthetase-like proteins capable of
specific aminoacylation of tRNA molecules (Nasir and Caetano-
Anollés, 2015). This could explain the existence of remnants of
the translation machinery, the number of which has recently
expanded considerably through the isolation of tupanviruses
(Abrahao et al., 2018) and the assembly of klosneuvirus genomes
(Schulz et al., 2017). As a matter of fact, it is unlikely that
there has been a gradual and random acquisition of such large
numbers of translation components in giant viruses, such as in
mimiviruses, without using it. Hence, this translation machinery
might have been acquired in a single step, or, alternatively, might
have originated with giant viruses.

The classification of microbes, including the giant viruses, is
more realistically based on their genomic content, which reflects
their lifestyle, rather than on the phylogenies of supposedly
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representative genes, which may be confusing because of
their mosaicism. This mosaicism results from sequence
(and not gene) exchanges occurring during billion years of
interactions between emerging lineages or organisms, and
is particularly frequent between sympatric microorganisms
(Moliner et al., 2010; Raoult and Boyer, 2010). Indeed,
microorganisms that encounter and multiply or replicate in
same biological niches are particularly prone to exchange
nucleic acid sequences. This is well-suggested by the case of
Acanthamoeba spp. that can be infected concomitantly by
several amoeba-resistant microorganisms including intracellular
bacteria and giant viruses with significantly larger repertoires
than other related organisms (Moliner et al., 2010; Raoult
and Boyer, 2010). Genes evolve by point mutations, but
also by fusion, shuffling and fission of genetic fragments,
which likely produce gene sequences that are mosaics (Long
et al., 1999; Meheust et al., 2018; Pathmanathan et al.,
2018). Such chimeric genes have been described in several
studies (Ben et al., 2008; Merhej et al., 2011; Meheust et al.,
2018), and we found here hints of such gene sequence
mosaicism. In addition, many of the genes studied here encode
for multi-domain proteins, which makes them mosaics of
domains of different ages and histories. The phylogenomic
tree reconstructed from domain structures that we describe
here disentangles evolutionary histories because each domain
becomes a separate phylogenetic character used to build the
tree of proteomes. We note however that structural domains
and their complex 3D topologies are also built from smaller
module-like pieces of arrangements of helix, strand and
turn segments (e.g., αα-hairpins, ββ-hairpins, βαβ-motifs)
that act as evolutionary building blocks. Recent studies
identified combinable (Goncearenco and Berezovsky, 2015) and
no-combinable (Alva et al., 2015) ‘loop’ modules of these kinds.
In fact, we recently studied the evolutionary combination of
loops in domains by generating networks of loops and domains
and by tracing their evolution along a timeline of billions of
years (Aziz et al., 2016). We uncovered remarkable patterns
such as the existence of two functional ‘waves’ of innovation
associated with the ‘p-loop’ and ‘winged helix’ general domain
structures, the preferential recruitment of ancient loops into
new domain structures, and a pervasive network tendency
toward hierarchical modularity. Given this difficult ‘mosaic’
problem that affects the sequences of genes and demands
phylogenetic dissection, it is interesting to observe here that
the tree of proteomes and the trees reconstructed from central
genes provided a same overall phylogenetic insight of four
TRUCs.

In summary, we highlight here the quantum leap that
exists between classical and giant viruses. Our analyses confirm

previous evidence of the existence of a fourth TRUC of life that
includes viruses, and highlight its ancestrality and mosaicism.
Results suggest that best representations for the evolution of giant
viruses and cellular microorganisms are rhizomes, and, beyond,
that mosaicism has to be considered at the genome (gene content)
level but, more generally, at the gene and sequence level. Giant
viruses may be represented as comprised by an evolutionary
core inferred from highly conserved protein fold structures and
gene sequences of very central and ancient proteins, surrounded
by a larger and more dynamic gene complement characterized
by genome and gene sequence mosaicisms. Such an abductive
path as we use, which is based on phenotypic observations,
is propitious to provide novel insight on microbial evolution.
The “Fourth TRUC” club should, beyond any doubt, continue
to expand in the near future, which may be boosted by using
new amoebae as co-culture supports and by implementing high-
throughput isolation strategies (Khalil et al., 2016). These giant
viruses, as new biological entities, should continue to challenge
previous paradigms, and a first step is to describe extensively
these parasitic microbes without ribosomes.
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