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INTRODUCTION

Alzheimer’s disease (AD) is the most common type of dementia and its prevalence is expected to
rise in response to an aging human population. Yet, there is no disease-modifying drug currently
available. The neuropathological hallmarks of AD are amyloid plaques composed of amyloid ß (Aß)
peptides derived from successive cleavages of Amyloid Precursor Protein (APP) and neurofibrillary
tangles (NFTs) constituted of the microtubule-associated protein tau (Brion, 2006). In AD brains,
tau is hyperphosphorylated and aggregated to form paired helical filaments (PHF-tau). The disease
pathogenesis precedes the overt clinical symptoms by 10–15 years. Early diagnosis and biomarkers
are thus crucial for future clinical trials of AD. However, current standard biomarkers such as
amyloid-PET scans are highly expensive and the patients are exposed to a considerable amount
of ionizing radiation at each test. Cerebrospinal-fluid analyses for Aß and tau are highly invasive
due to lumbar punctures (Dolgin, 2018). We need to search for additional biomarkers that are less
expensive and less invasive.

Emerging evidence suggests that Aß modifies the metabolism of phosphoinositides (PIs)
(Berman et al., 2008; Kam et al., 2016). PIs control major signaling pathways and cell processes in
eukaryotic cells. Ten enzymes of the inositol and phosphoinositide 5-phosphatases (hereafter, PI 5-
phosphatases) have been identified in the human genome i.e., INPP5A, INPP5D (SHIP1), INPPL1
(SHIP2), INPP5G (SYNJ1), INPP5H (SYNJ2), OCRL, INPP5E (Pharbin), INPP5B, INPP5J (PIPP)
and INPP5K (SKIP) (Figure 1). Except for INPP5A, PI 5-phosphatases essentially dephosphorylate
PI(4,5)P2 and PI(3,4,5)P3 at the 5-position of the inositol ring with different degrees of catalytic
efficiency and selectivity for each isoenzyme. PI 5-phosphatases are involved in fine-tuning
regulation of PI(4,5)P2 and PI(3,4,5)P3, key intracellular signaling molecules known to be present
in different subcellular compartments of the cells. Recent genetic and epigenetic studies have
unequivocally suggested that some of the PI 5-phosphatases are implicated in AD, in addition to
several other human diseases (Ramos et al., 2019). In this opinion article, we review recent findings
on the PI 5-phosphatases in relation to AD, aging and cognitive functions. Such information could
be potentially useful for developing novel biomarkers for AD in the future.
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FIGURE 1 | The figure shows the schematic illustrations of the major domains of PI 5-phosphatases and summarizes the implications of PI 5-phosphatases and PIs in

AD. Each PI 5-phosphatase contains a highly conserved 5-phosphatase domain shown in green. PI, phosphoinositide; SHIP1, SH2 domain-containing inositol

polyphosphate 5-phosphatase-1; SHIP2, SH2 domain-containing inositol polyphosphate 5-phosphatase-2; SYNJ1, Synaptojanin 1; SYNJ2, Synaptojanin 2; OCRL,

(Continued)
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FIGURE 1 | oculocerebrorenal syndrome of Lowe, PIPP, proline-rich inositol polyphosphate 5-phosphatase; SKIP, skeletal muscle and kidney enriched inositol

phosphatase; CAAX, CAAX motif; SH2, Src homology 2; PH, Pleckstrin-homology; PRD, proline-rich domain; NPxY, a conserved tyrosine phosphorylation motif

(Asn-Pro-x-Tyr) for binding to a phospho-tyrosine binding (PTB) domain; SAM, sterile alpha motif; SAC1, suppressor of actin 1; RRM, RNA recognition motif; ASH,

ASPM-SPD2-Hydin domain; RhoGAP, Rho GTPase-activating protein domain; CB, clathrin binding domain; SRD, serine rich domain; SKICH, SKIP COOH terminal

homology domain.

INPP5A and Cognitive Functions
Unlike other PI 5-phosphatase family members, INPP5A
recognizes only soluble inositol 1,4,5-trisphosphate
[Ins(1,4,5)P3] and inositol 1,3,4,5-tetrakisphosphate
[Ins(1,3,4,5)P4] as substrates. INPP5A is ubiquitously expressed
including in the hippocampus and prefrontal cortex, the brain
regions highly affected in AD, and is abundantly detected in
cerebellum (Liu et al., 2020). INPP5A negatively controls the
mobilization of intracellular calcium by decreasing Ins(1,4,5)P3
levels (De Smedt et al., 1997). DNA methylation of the INPP5A
gene is increased in association with aging in neurons (Gasparoni
et al., 2018). Meta-analysis of blood-based DNA methylation has
shown that the methylation of cg12507869 located in the INPP5A
gene had a significant negative correlation with phonemic verbal
fluency and was associated with logical memory and vocabulary
(Marioni et al., 2018). Blood-based DNA methylation of
cg12507869 in the INPP5A could be thus considered as a
potential biomarker for aging and cognitive functions.

SHIP1 and AD
SHIP1 is a hematopoietic-specific PI 5-phosphatase activated

downstream of a multitude of receptors for growth factors,

cytokines, antigens, immunoglobulin and toll-like receptor

agonists. Once activated and correctly localized, SHIP1

generally acts as a negative regulator of signaling processes in

hematopoietic cells, for example on the B cell receptor activation

signaling pathway (Ramos et al., 2019). SHIP1 is detected in
the brain, primarily in microglia reflecting its myeloid origin.
Genome-wide association studies (GWAS) have identified the
risk variant rs35349669 in INPP5D, the gene encoding human
SHIP1 for late-onset AD (Lambert et al., 2013). INPP5DmRNA is
significantly upregulated in human AD brains and in transgenic
mouse brains with knock-in mutations of APPNL−G−F/NL−G−F

(Castillo et al., 2017). INPP5D mRNA expression in peripheral
leucocytes is elevated in early AD but is decreased with cognitive

decline (Yoshino et al., 2017). Further long-time follow-up of
the participants would be necessary to decipher the correlation

between the level of INPP5DmRNA and cognitive decline. Since
SHIP1 converts PI(3,4,5)P3 to PI(3,4)P2, the amounts of these

PIs in the blood leucocytes may also be altered and needs to
be further investigated (as discussed in section PI Metabolism
and Autophagic-Endosomal-Lysosomal Abnormalities). Taken
together, the level of INPP5D mRNA in leucocytes could be an
interesting target to develop a blood-based biomarker in the
early stages of AD.

SHIP2 and AD
SHIP2, encoded by INPPL1, is ubiquitously expressed including
in the brain (Muraille et al., 1999). By using PI(3,4,5)P3 as

substrate, SHIP2 controls PI(3,4)P2 content, a major SHIP2
product (Ghosh et al., 2018). SHIP2 can also dephosphorylate
PI(4,5)P2, another albeit less potent substrate (Elong Edimo
et al., 2016). PI(3,4)P2 is scarce under normal conditions but
increases through signaling following PI 3-kinase activation.
This lipid plays critical roles as a second messenger in cell
migration, polarity, feedback control of PI(3,4,5)P3 generation,
and basal mTORC1 activity (Ramos et al., 2019). SHIP2 is
directly implicated in several human diseases: mutations in
INPPL1 cause opsismodysplasia, a rare autosomal recessive
disease characterized by delayed bone maturation (Fradet and
Fitzgerald, 2017). SHIP2 is also upregulated in some cancer cells,
particularly in aggressive human breast cancer cells (Ghosh et al.,
2018). SHIP2 negatively regulates insulin/IGF-I actions and is
implicated in type 2 diabetes and metabolic syndrome (Marion
et al., 2002). Recent network-based approach has unraveled that
SHIP2 is also linked to AD and cognitive decline: upregulation
of INPPL1 transcript in the brain significantly correlates with
cognitive decline in human AD patients (Mostafavi et al., 2018).
The same study also reported that SHIP2 immunoreactivity
was detected in astrocytes and neurons in the post-mortem
human brain tissues of AD patients and that lentivirus-
mediated down regulation of SHIP2 in cultured astrocytes
significantly reduced Aß production (Mostafavi et al., 2018).
Other independent studies have reported SHIP2 functions as
a mediator of amyloid toxicity via tau hyperphosphorylation
(Kam et al., 2016) and actin-cytoskeleton reorganization (Lee
et al., 2019). Kam et al. reported that the interaction between
Aß and the FcγRIIb immuno-receptor leads to a translocation
of SHIP2 to the plasma membrane to form a protein complex
in which SHIP2 dephosphorylates PI(3,4,5)P3 into PI(3,4)P2.
Increased amounts of PI(3,4)P2 lead to decreased inhibitory
phosphorylation of GSK3ß at Ser9 via endoplasmic reticulum
(ER) stress in cultured neurons (Kam et al., 2016). Consequently,
tau phosphorylation by GSK3ß is increased by Aß via FcγRIIb-
SHIP2 complex (Kam et al., 2016). SHIP2 inhibitors are thus
under active scrutiny as a novel therapeutic target for AD.
Actually, SHIP2 inhibitors represent new treatments for several
diseases: SHIP2 inhibition has been reported to partially rescue
memory deficits in transgenic mouse models of diabetes and
AD (Soeda et al., 2010; Kam et al., 2016) and to prevent
metastasis in breast cancer cells (Ghosh et al., 2018). Since
both SHIP1 and SHIP2 play critical roles in antagonizing
microglial proliferation and phagocytosis, the use of both SHIP1
and SHIP2 inhibitors has been proposed in AD to enhance
basal microglial homeostatic functions for therapeutic purposes
(Pedicone et al., 2020). Although SHIP2 could be a potential
biomarker and a valuable therapeutic target for AD, it remains
largely elusive whether SHIP2 undergoes a significant alteration
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in subcellular localization and post-translational modifications
during the progression of the disease. SHIP2 has more than
20 putative phosphorylation sites and its phosphatase activity
and substrate recognition are, at least partially, regulated by
phosphorylation, protein-protein interaction and subcellular
localization (Elong Edimo et al., 2011). Given that SHIP2 is
translocated to plasma membranes upon Aß-FcγRIIb interaction
(Kam et al., 2016), subcellular localization of SHIP2 should be
significantly altered in AD brains. Since FcγRIIb activation leads
to tyrosine phosphorylation of SHIP2 (Muraille et al., 1999), the
post-translational modifications of SHIP2 could be altered in the
affected areas of AD brains. It remains to be carefully determined
in post-mortem brain tissues of AD patients whether there are
changes in SHIP2 subcellular localizations, post-translational
modifications and the impact of SHIP2 upregulation in AD on
PI amounts, particularly PI(3,4,5)P3 and PI(3,4)P2.

SYNJ1 and SYNJ2
SYNJ1 and SYNJ2 are both highly conserved and their genetic
variants are associated with cognitive abilities in a cohort
with a mean age of 70 (Lopez et al., 2012). SYNJ1 is a
brain-enriched presynaptic phosphatase involved in synaptic
vesicle recycling, clathrin-coated vesicle uncoating at synapse
(Cremona et al., 1999) and autophagosomal maturation within
presynaptic terminals (Vanhauwaert et al., 2017). SYNJ1, whose
gene is located in chromosome 21, is linked to endolysosomal
abnormalities in Down syndrome (Cossec et al., 2012). Several
mutations in SYNJ1 gene are associated with early-onset
Parkinsonism (Tran et al., 2020). Some of the polymorphisms
in SYNJ1 are also linked with age of onset in familial AD,
late-onset AD and Down syndrome with AD (Miranda et al.,
2018). SYNJ1 is expressed in neurons and is implicated in Aß
toxicity (Berman et al., 2008), synaptic toxicity (McIntire et al.,
2012) and Aß clearance (Zhu et al., 2013). The mRNA level
of SYNJ1 is significantly upregulated in post-mortem AD brains
in association with APOE genotype (Zhu et al., 2015; Ando
et al., 2020). SYNJ1 protein undergoes a significant solubility
change and is co-enriched with PHF-tau in the sarkosyl-
insoluble fraction (Ando et al., 2020). SYNJ1 immunoreactivity
is detected in actin-positive Hirano bodies, some NFTs and
plaque-associated dystrophic neurites in post-mortem human
AD brains (Ando et al., 2020). Such aberrant alteration of
mRNA levels, protein localization, and protein solubility of
SYNJ1 could be applied to establish a valid biomarker for AD.
While SYNJ1 is brain specific, its paralog SYNJ2 is ubiquitously
expressed, but is also abundantly expressed in the synapse. In the
temporal cortex from patients with depressive disorder, SYNJ2
transcript expression is significantly decreased (Aston et al.,
2005). Furthermore, differential methylation in the gene of SYNJ2
has been also reported in association with aging in neuronal cells
(Gasparoni et al., 2018).

Potential Involvements of Other PI
5-Phosphatases in AD
The implication of the other members of PI 5-phosphatase family
in AD remains largely unknown. Given that AD is associated
with autophagic-endosomal-lysosomal dysfunction (Nixon et al.,
2008), we speculate that INPP5E and OCRL, highly expressed

in the brain and critical in autophagosome-lysosome fusion (De
Leo et al., 2016; Hasegawa et al., 2016), might be involved in
dysregulation of autophagy in AD brains.

PI Metabolism and
Autophagic-Endosomal-Lysosomal
Abnormalities
Consistent with alterations of some PI 5-phosphatases observed
in AD brains, there are substantial findings suggesting that PIs
undergo dysregulation during the disease progression in AD
brains (Stokes andHawthorne, 1987) and in the AD blood plasma
(Mapstone et al., 2014). In the AD prefrontal cortex where both
amyloid and tau pathologies are abundant, the amounts of PI
3-phosphate (PI3P) and PI(4,5)P2 are significantly decreased
(Morel et al., 2013). Deficiency of PIs in AD brains may be linked
to autophagic-endosomal-lysosomal abnormalities observed in
neurons of the AD patients even at an early stage (Nixon et al.,
2008). Considering that PIs regulate membrane dynamics, we
hypothesize that autophagic-endosomal-lysosomal abnormalities
could be a potential target for developing AD biomarkers. For
instance, endosomal morphology alteration has been observed in
iPSC-neurons derived from AD fibroblasts (Israel et al., 2012)
and AD blood monocytes (Corlier et al., 2015). Whereas the
precise mechanisms underlying endosomal abnormalities remain
to be determined, such endosomal alterations in peripheral cells
could be considered as a novel potential approach to develop
AD biomarkers.

DISCUSSION

Upregulation of some PI 5-phosphatases and PI dysregulations
have been evidenced in AD and such alterations could be
useful to develop new biomarkers for AD. Careful investigations
will be needed to assess if these alterations are AD-specific
or also associated with other diseases. Blood-based analyses of
some PI 5-phosphatases, PI metabolism, transcriptomic and
epigenetic changes have demonstrated alterations in AD and are
conceivable strategies toward development of new biomarkers.
Further studies will also be needed to evaluate the sensitivity
and the specificity of these alterations during the progression
of AD compared to currently available other markers such
as those of PET and CSF analyses. These studies will be
critical for deciphering the most reliable biomarkers and their
complementarity for the diagnosis and the prognosis of this
devastating disease.
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