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Available computational methods for tumor phylogeny inference via single-cell sequencing (SCS) data typically aim to iden-

tify the most likely perfect phylogeny tree satisfying the infinite sites assumption (ISA). However, the limitations of SCS technologies

including frequent allele dropout and variable sequence coverage may prohibit a perfect phylogeny. In addition, ISA vio-

lations are commonly observed in tumor phylogenies due to the loss of heterozygosity, deletions, and convergent evolu-

tion. In order to address such limitations, we introduce the optimal subperfect phylogeny problemwhich asks to integrate SCS data

with matching bulk sequencing data byminimizing a linear combination of potential false negatives (due to allele dropout or

variance in sequence coverage), false positives (due to read errors) among mutation calls, and the number of mutations that

violate ISA (real or because of incorrect copy number estimation). We then describe a combinatorial formulation to solve

this problem which ensures that several lineage constraints imposed by the use of variant allele frequencies (VAFs, derived

from bulk sequence data) are satisfied. We express our formulation both in the form of an integer linear program (ILP) and

—as a first in tumor phylogeny reconstruction—a Boolean constraint satisfaction problem (CSP) and solve them by lever-

aging state-of-the-art ILP/CSP solvers. The resulting method, which we name PhISCS, is the first to integrate SCS and bulk

sequencing data while accounting for ISA violating mutations. In contrast to the alternative methods, typically based on

probabilistic approaches, PhISCS provides a guarantee of optimality in reported solutions. Using simulated and real data

sets, we demonstrate that PhISCS is more general and accurate than all available approaches.

[Supplemental material is available for this article.]

The clonal theory of cancer evolution suggests that cancer is an
evolutionary disease where multiple distinct cellular populations
(i.e., subclones) emerge through successive rounds of mutation
and selection. At the time of clinical diagnosis, most tumors are
heterogeneous, consisting of multiple subclones harboring differ-
ent sets of somatic mutations. Increasing evidence suggests that
this phenomenon, better known as “intra-tumor heterogeneity”
(ITH), has a profound impact on treatment outcomes, and that
the existence of treatment-resistant subclones is one of the main
causes of treatment failures (Alizadeh et al. 2015). Deciphering in-
tra-tumor heterogeneity and tumor evolutionary history thus rep-
resent some of the key challenges in designing effective
combinatorial therapies and better understanding of dynamics
of cancer initiation and progression.

Most of the existing approaches for studying ITH are based on
analyzing data from high-throughput bulk sequencing experi-
ments where only an average signal over a large number of cells
is obtained. In the past few years, numerous computational meth-
ods for analyzing such signals with the aim of inferring tumor
subclonal composition and evolutionary history have been devel-
oped (Strino et al. 2013; Hajirasouliha et al. 2014; Jiao et al. 2014;
Deshwar et al. 2015; El-Kebir et al. 2015, 2016; Malikic et al. 2015;
Popic et al. 2015; Yuan et al. 2015; Marass et al. 2016; Donmez
et al. 2017; Satas and Raphael 2017). Even though these methods
employ a variety of computational approaches, each with a partic-
ular strength, all have theoretical limitations, mainly due to the
limited resolution offered by bulk sequencing data, admittingmul-
tiple equivalent solutions (e.g., a linear topology for any possible
instance of the problem).

While it is still expensive and experimentally challenging
to robustly perform single-cell library preparation, recent10Co-senior authors
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technological advancements in single-cell sequencing (SCS) po-
tentially provide higher resolution data for studying ITH. Single-
cell data sets are, however, characterized by high levels of sequenc-
ing noise that includes both false positive (e.g., due to the read er-
rors) and false negative (e.g., due to the allele dropout or variance
in sequence coverage) mutation calls, as well as missing values for
mutations from sites affected by DNA amplification failure. This
necessitates the development of sophisticated computational
methods that are sensitive to the noise characteristics of SCS
data, while incorporating the assumptions of the clonal theory
of cancer evolution to tumor evolution modeling.

We note that a final additional source of noise is doublets, two
(or rarelymore) cells with heterogeneousmutation profiles treated
as a single cell. There already exist computational tools for identi-
fying and decoupling doublets, in particular Single Cell Genotyper
(Roth et al. 2016), which we employ in this study as a preprocess-
ing step for the purpose of reducing their impact in our analysis.
Furthermore, a recently developed tool, SiCloneFit (Zafar et al.
2019) offers the ability to identify doublets while resolving ITH
through a Gibbs sampling approach.

A number of availablemethods for studying ITH via the use of
SCS data are based on probabilistic approaches with the goal of in-
ferring the most-likely perfect-phylogeny for a tumor. SCITE (Jahn
et al. 2016), for example, is a Markov chain Monte Carlo
(MCMC) search method that aims to infer the maximum-likeli-
hood (ML) mutational history from a potentially incomplete and
noisy matrix containing genotypes of single cells. OncoNEM
(Ross andMarkowetz 2016) is amaximum-likelihood-based search
approach to identifyhomogeneous cellular subpopulations and in-
fer both their genotypes and the tree describing their evolutionary
history. For achieving their respective goals, SCITE and OncoNEM
both rely on the infinite sites assumption (ISA), that is, that each ge-
nomic position is affected by atmost onemutationhit in the entire
tumor phylogeny.

A more recent maximum-likelihood-based approach, SiFit
(Zafar et al. 2017), aims to extend the above by employing amodel
of evolution that accounts for deletions, loss of heterozygosity
(LOH), and recurrent point mutations on genomic sites. However,
none of the above approaches provide means to integratively use
SCS with bulk sequencing data, which, in principle, may provide
additional guidance to the tumor phylogeny reconstruction pro-
cess. Another recent tool, ddClone (Salehi et al. 2017), is the first
to combine the strengths of bulk and SCS data in a joint statistical
inference model for the most likely tumor subclonal composition.
However, ddClone does not aim to build a tumor phylogeny and is
not suitable to study cancer evolution. Finally, B-SCITE (Malikic
et al. 2019) is a newly developed method with the aim of integrat-
ing SCITEwithCITUP (Malikic et al. 2015) so as tomake jointuse of
SCS and bulk sequencing data. B-SCITE is an MCMC-based tool
and, as per SCITE, it does not account for ISA violations.

Even though the above methods for SCS data analysis are
probabilistic, many of the related methods for bulk sequencing
data analysis are combinatorial in nature (Strino et al. 2013;
Hajirasouliha et al. 2014; El-Kebir et al. 2015, 2016; Malikic et al.
2015; Popic et al. 2015). Combinatorial, in particular integer linear
programming (ILP), formulations for phylogeny inference have
been available in the literature for a while. One example is the hap-
lotype inference problem (HIP) (Gusfield et al. 2007), where given a
binary incomplete matrix M of n rows (corresponding to species)
and m columns (corresponding to sites), the goal is to decompose
each row to two binary vectors (haplotypes) so that the haplotypes
can fit in a Perfect Phylogeny, that is, a phylogeny satisfying ISA. HIP

can be formulated and efficiently solved as an instance of ILP.
Later, a similar formulation was proposed in Gusfield (2015) to
solve the Persistent Phylogeny Problem (Goldberg et al. 1996;
Bonizzoni et al. 2012). A persistent phylogeny is one in which
eachmutation is allowed to be “lost” atmost once. Recently, an ex-
tension of the formulation from Gusfield (2015) was proposed in
Bonizzoni et al. (2017), where more general phylogeny models
are used and the goal is to infer entire cancer phylogenies by the
use of bulk sequencing data.

Finally, the notion of flip distance was introduced in Ragan
(1992) and later explored in Chimani et al. (2010) to compare a
matrix M (see above) that does not admit a perfect phylogeny
with M′, a matrix admitting a perfect phylogeny that differs from
M as little as possible. As will be seen, our method builds on this
notion of distance.

ILP formulations for HIP and related problems are routinely
solved through commercial tools such as Gurobi or IBM CPLEX,
which have been developed over many years and provide reliable
and fast solutions for relatively small-sized optimization problems.
These solvers aim to optimize a typically linear objective while sat-
isfying a number of linear constraints. As such, ILP is related to an-
other fundamental problem, the Boolean constraint satisfaction
problem (CSP) that can be used as an alternative for modeling
many ILP problems encountered in practice.

Perhaps the best-known variant of CSP is the satisfiability
problem (SAT) which asks to find a Boolean assignment to a set
of input variables to satisfy (the conjunction of) a number of
Boolean constraints. Another variant is Max-SAT, which asks to
find a Boolean assignment to variables so that not necessarily all
but the maximum number of input constraints are satisfied.
Finally, the weighted version of Max-SAT, which can be abbreviat-
edaswMax-SAT, asks for theassignment thatmaximizes the sumof
(user-defined)weights of the constraints satisfied. The generality of
wMax-SAT has prompted the development of many tools to solve
them with the goal of obtaining solutions to practical instances
of NP-complete problems. These tools compete in the annual SAT
conference on several benchmarking data sets generated by a
wide variety of applications (see http://www.satcompetition.org).
Recently developed wMax-SAT solvers such as MAXINO (Alviano
et al. 2015) and MaxHS (Davies and Bacchus 2011, 2013a,b) are
very fast; in addition, MaxHS is open source. A number of studies
had already demonstrated the utility of CSP solvers for the haplo-
type inference problem and its variants - before the advent of
high-throughput sequencing (Lynce and Marques-Silva 2006;
Neigenfind et al. 2008; He et al. 2010). Nevertheless, to the best
of our knowledge, no study has explored the use of CSP in the con-
text of intra-tumor heterogeneity or tumor phylogeny modeling.

Results

In this paper, we introduce three combinatorial formulations for
inferring tumor phylogenies via an integrative use of single-cell
and bulk sequencing data. (1) Our first formulation generalizes
(Chimani et al. 2010) by asking tominimize a weighted sum of po-
tential false negative (which are common) and false positive
(which are rare) mutation calls in genotypes of single cells, whose
correction will result in a perfect phylogeny. (2) The goal of our
more general formulation is to compute a subperfect phylogeny,
which not only requires such mutation calls to be corrected but
also needs the elimination of (at most a user defined number of)
mutations that violate ISA (e.g., due to LOH). More specifically,
this formulation asks to minimize a weighted sum of mutations
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to be corrected, given an upper bound on the number ofmutations
to be eliminated (due to ISAviolations) in order to achieve a perfect
phylogeny. Note that this problem differs from that of the “maxi-
mum character compatibility” problem, which aims to identify
themaximumnumber ofmutations forwhich a perfect phylogeny
is possible. (3) Our most general formulation has additional con-
straints imposed by the use of variant allele frequencies (VAFs) of
single nucleotide variants (from regions not affected by copy num-
ber aberrations). VAFs of such mutations can be estimated from
bulk sequencing data (as a proxy to the cellular prevalence of a giv-
en mutation). These lineage constraints impose ancestor-descen-
dant dependencies among mutation pairs (e.g., the prevalence of
an ancestral mutation cannot be lower than that of a descendant)
or triplets (e.g., the prevalence of an ancestral mutation cannot be
lower than the sumof two descendant siblings) and improve infer-
ence accuracy. Our formulation allows for one or more samples
from the same tumor to be bulk-sequenced independently; each
such sample introduces additional lineage constraints that need
to be satisfied, within a user-defined error tolerance. For this for-
mulation, eliminating “potential ISA violating mutations” is espe-
cially important since the cellular prevalence values could be
incorrectly estimated. In fact even VAFs could be incorrectly esti-
mated due to undetected copy number alterations. For example,
a copy number gain impacting the allele including the mutation
would incorrectly increase its VAF and that impacting the other al-
lele would have the opposite effect. The incorrect VAF estimates
may contradict the SCS data, leading to incorrect tumor phyloge-
nies.We describe computational solutions to each of the three for-
mulations to address problems of varying complexity and data
availability (i.e., some data sets have no ISA violations and some
do not come with matching bulk sequencing data).

We name our general formulation and the resulting program
PhISCS (Phylogeny of tumors using Integrated bulk and Single-Cell
Sequencing data), and offer two options: (1) PhISCS-I expresses
our formulation in the form of an ILP and efficiently solves it by
the use of the Gurobi Optimizer; and (2) PhISCS-B expresses our
formulation in the form of a Boolean CSP and solves it by the
use of open source solvers for wMax-SAT such as MaxHS, often
more efficiently than PhISCS-I.

Many of the available tools for studying intra-tumor hetero-
geneity formulate the problem as an ILP or quadratic integer pro-
gramming (QIP) and solve it via commercial tools such as Gurobi
or CPLEX. Our CSP formulation (specifically in wMax-SAT) is the
first to express a tumor phylogeny reconstruction problem combi-
natorially but in a form other than ILP/QIP. Additionally, unlike
most of the available alternatives, PhISCS has the ability to inte-
grate single-cell and bulk sequencing data. Furthermore, recent
studies suggest that ISA, that forms the basis for most of the above
tools, could be violated in tumor phylogenies (Kuipers et al. 2017;
Zafar et al. 2017), making it impossible to establish a perfect phy-
logeny. PhISCS addresses this issue by eliminating (a small number
of) mutations that violate ISA or have incorrect VAF estimates,
with a cost reflected in the objective, and solves the tumor phylog-
eny reconstruction problem for both simulated and real datamore
efficiently and more accurately than the available alternatives, in-
cluding B-SCITE. (In order to simplify presentation of the model
and results, we treat losses of reference allele and copy number
gains [of any of the two alleles] as a type of ISA violation.)

Our final contribution is on assessing the (dis)similarity be-
tween two tumor phylogenies, typically between G, the ground
truth tree, and T, the tree inferred by any method. Commonly
used measures of similarity between tumor phylogenies such as

lineage consistency and nonlineage consistency (used by Malikic
et al. 2015 and others), are defined based on the proportion ofmu-
tation pairs with the same lineage relationship in the two trees and
fail to capture fundamental topological differences between simu-
lated ground truth and inferred trees, especially of different levels
of granularity (Karpov et al. 2019). Clustering accuracy used by
AncesTree (El-Kebir et al. 2015) and coclustering accuracy used
by B-SCITE (Malikic et al. 2019) suffer from the same problem as
well (Karpov et al. 2019).

An alternative to the above measures used in the phyloge-
netics literature is the Robinson-Foulds (RF) distance, which can
be thought as the number of single edge cut partitionings of one
tree that could not be obtained (by a single edge cut) in the other.
However, RF distance cannot be robustly applied to tumor phylog-
eny comparisondue to thehigh falsenegative rates observed in sin-
gle-cell sequencing. (The relocation of only one single-cell as a
result of the high false negative rate may result in very high RF
distance.) As a result, RF distance is not commonly used in tumor
evolution studies (with the exception of Zafar et al. 2017); never-
theless, we demonstrate that, even under the RF measure, PhISCS
exhibit superior performance to the alternatives.

In order to overcome the limitations of all above measures, it
is appealing to use the standard tree edit distance (TED) (Zhang
et al. 1992) and its derivatives. Even though TED is NP-hard to
compute for unordered trees, there are some (worst-case exponen-
tial-time) algorithms that work well in practice for reasonably
small trees. However, TED is defined only for trees where each
node has a single label. Here, we show how to generalize TED for
tumor phylogenies where each node may have more than one la-
bel (mutation) but each label is unique to a specific node.

Aswill be shown, the resulting tumor phylogeny tree edit distance
measure (TPTED) captures topological (dis)similarities between
tumor phylogenies. Additionally, the recently introduced multila-
beled tree dissimilarity measure, MLTD, is less general than TPTED
but has the advantage of being polynomial-time computable
(Karpovet al. 2019). Furthermore, it can still capture thedifferences
between tumor phylogenies of different granularities accurately
in all our simulations. We also consider its dual, multilabeled tree
similarity measure, MLTSM, to compare tumor phylogenies.

In what follows, we first demonstrate the comparative perfor-
mance of PhISCS against available tools on simulated data under
various parameter settings. Then, we present an application of
PhISCS on two real SCS data sets.

Results on simulated data

In order to assess PhISCS against alternative methods, we first
benchmarked it on simulated data by using three distinctmeasures
of accuracy. As will be seen, PhISCS outperforms all available alter-
natives on simulated data with respect to all measures of accuracy.

Below, we first provide a running time analysis for PhISCS,
primarily for the purpose of identifying its fastest variant. Then,
we briefly describe the measures we used to assess PhISCS results
in comparison to alternative methods. (A detailed description of
these measures as well as how we generate our simulated data
can be found in the Supplemental Material.) We finally demon-
strate how well PhISCS performs against the alternatives based
on these measures using various simulated data.

Comparative running time analysis of PhISCS

We start with a running time comparison between PhISCS-B and
PhISCS-I. There are a number of available constraint satisfaction
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software tools that could be used for PhISCS-B. In order to identify
the best performing CSP solver, we evaluated the top-performing
tools from the 2017 Max-SAT competition (http://mse17.cs
.helsinki.fi/index.html) on simulated data for the limited ver-
sion of the problem where no ISA violations are allowed and no
bulk sequencing data used. The competition has both unweighted
and weighted tracks. The three top-performingMax-SAT solvers in
the weighted competition were MaxHS, QMaxSAT, andMAXINO.
In addition, two other available tools, CPLEX/ILOG by IBM
Research and Z3 by Microsoft Research have been benchmarked
by the competition organizers. Among these tools, CPLEX/ILOG
consistently performed the worst in Max-SAT; this was our experi-
ence as well. Additionally CPLEX/ILOG is commercial; as a result,
we do not present results obtained by using this tool. A compari-
son of the running times of PhISCS-B implementations using Z3,
MaxHS, and MAXINO Max-SAT solvers are provided in Table 1.
This table also includes the results by the top-performing ILP solv-
er, that is, Gurobi, for PhISCS-I.

As demonstrated in Table 1, PhISCS-B outperforms PhISCS-I
with respect to running time in all cases. Among theMax-SAT solv-
ers we tested, MAXINO performed the best, typically terminating
in a few seconds. The only exceptions are instances with four sub-
clones and higher false negative error rates. However, even in these
computationally difficult cases,MAXINO terminates (within a giv-
en time limit) onmore instances than the other tools (with one ex-
ception), which in part explains its higher average running time
compared to the other tools (as the running time averagewas taken
over terminated instances). While the average running time of Z3
andMaxHS is higher in comparison toMAXINO, they still perform
significantly better than the Gurobi implementation of PhISCS-I.
Overall, this demonstrates that PhISCS-B provides a viable alterna-
tive to PhISCS-I as well as other existing tumor phylogeny infer-
ence approaches that are based on ILP solvers, not only because
it is faster but also because it is based on open sourceMax-SAT solv-
ers rather than commercial ILP solvers.

Measuring accuracy in tree inference

In order to assess the (dis)similarity between a simulated ground
truth tree, G, and the tree inferred by any one of the methods, T,

we employ three measures, each with distinct properties. Perhaps
the natural way to compare tumor phylogenies is through the
use of “generalized” tree edit distance. Given two rooted, unor-
dered, and node-labeled trees, TED is defined as the minimum
number of edit operations (insertion, deletion, and substitution of
nodes, and thus their labels) to transform one tree to the other
(Zhang et al. 1992; Zhang 1993). Although TED is a natural mea-
sure to assess the similarity between two tumor phylogenies, it is
NP-hard to compute. Furthermore, it is defined for trees where
each node has a single label. Belowwe showhow to extend the no-
tion of TED in two distinct ways for measuring tumor phylogeny
(dis)similarity.

Multilabeled tree similarity measure

In order to address the intractability of TED, a newMLTDmeasure
modifies TED for multilabeled trees, where each node may have
more than one label but each label is unique to a particular
node, as per the tumor phylogenies satisfying ISA (Karpov et al.
2019). Specifically, MLTD is defined as the minimum number of
label (i.e., mutation) deletions, in addition to an arbitrary number
of empty leaf deletions and vertex expansions, applied in any or-
der to transform each of the two trees to reach a maximum size
common tree. MLTD is computable in polynomial time and ad-
mits efficient practical implementations. In this paper, we use its
“dual,” the multilabeled tree similarity measure, which is defined
as the size of themaximumcommon tree of the two tumor phylog-
enies. To facilitate interpretation of the results, each of the values
of MLTSM shown in the figures is normalized by dividing it by the
larger number of mutations present in the two trees compared.

Tumor phylogeny tree edit distance

Even though TED is NP-hard to compute, there are some algo-
rithms (with worst case exponential running time) with good per-
formance on small trees encountered in practice, for example, in
RNA-structure comparison (Mori et al. 2012). These algorithms
can be used to compare PhISCS results with the simulated ground
truth trees since PhISCS with (bulk sequencing data) produces
trees with a single label per node. Note that there are a number
of methods that can produce phylogenies with more than one

Table 1. Comparison of running times of PhISCS-B implementations by the use of top-performing CSP solvers from the Max-SAT competition

SC Solver

FN=0.05 FN=0.10 FN=0.15 FN=0.25

# Inst.
solved

Avg. time
(sec)

# Inst.
solved

Avg. time
(sec)

# Inst.
solved

Avg. time
(sec)

# Inst.
solved

Avg. time
(sec)

4 ILP (Gurobi) 10 413 10 1551 5 1869 2 5713
Z3 10 29 10 59 8 101 5 347
MaxHS 10 39 8 74 9 472 4 5640
MAXINO 10 4.6 10 19 8 1417 6 26,795

7 ILP (Gurobi) 10 98 10 163 10 110 10 173
Z3 10 19 10 28 10 21 10 36
MaxHS 10 20 10 29 10 29 10 57
MAXINO 10 2.8 10 3.8 10 3.4 10 6.5

10 ILP (Gurobi) 10 56 10 95 10 57 10 71
Z3 10 19 10 28 10 24 10 39
MaxHS 10 19 10 27 10 25 10 49
MAXINO 10 2.7 10 3.3 10 2.2 10 3.9

Results of the top-performing ILP (Gurobi) solver that was used to run PhISCS-I are also included. All results are based on the formulation that accepts
SCS data as the input and does not allow ISA violations. All results are obtained on a single core with a time limit of 24 h. The number of instances
solved within this limit is also reported. Average running times over terminated instances are shown, rounded to the nearest integer, except for the
cases where the average is lower than 10 sec. Inst.: instance, SC: number of subclones, FN: false negative rate.
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label per node; as a result, it is not always possible to use TED for
tumor phylogeny comparison. Thus, we extended TED to a
meta-tree edit distance measure that we call tumor phylogeny
tree edit distance (see Supplemental Material for a description).

TED/TPTED differs from MLTD in the following key issue:
Given two tumor phylogenies T and G, MLTD corresponds to
the minimum number of label deletions (and implied
node contractions) in T,G, so that what remains from them are
identical trees. TED/TPTED, on the other hand, is the minimum
number of leaf or internal node label deletions to achieve
the same. Naturally TED(T,G), TPTED(T ,G) ≤ MLTD(T ,G). Any
permutations of edit operations to “convert” T to G within the
realm of MLTD(T,G) are valid for TED(T,G)/TPTED(T,G), but
some permutations of edit operations within the realm
of TED(T,G)/TPTED(T ,G) would not be valid for MLTD(T,G).

Robinson-Foulds distance

Oneof themethods thatwe compare PhISCS against is SiFit, which
reports cell lineage trees. In order to compare the twomethods, we
use the RF distance used by the original SiFit publication by Zafar
et al. (2017).

Comparing the accuracy of PhISCS and alternative methods

We compared PhISCS against three published methods for single-
cell data analysis, namely SiFit, SCITE, and B-SCITE. We were not
able to compare PhISCS against OncoNEM since on most input
matrices it terminated with an error. Furthermore, no comparison
with ddClonewasmade since it does not infer tumor phylogenies.

Note that PhISCS-B and PhISCS-I produce highly similar re-
sults with the same value of the objective in all cases and slight dif-
ferences in the resulting genotype corrected matrices Y. These
slight differences are a consequence of the existence of multiple
optimal solutions in some of the cases. All results presented in
this section are obtained by taking the average over 10 simulations
we generated for each combination of parameters. In all simula-
tions, false positive and missing entries rates were set to 0.0001
and 0.05, respectively. In Figures 1–4 and 6, the minimum subclo-
nal cellular prevalencewas set to 5%. For each of the figures, values
of other parameters are specified in the caption. We use a similar
approach for generating simulated data as in Malikic et al. (2019)
(see Supplemental Material for more details).

We first compared PhISCS against SiFit (Zafar et al. 2017).
Note that as SiFit reports cell lineage trees, Zafar et al. (2017)
used a normalized version of the RF distance as a measure of
its accuracy; this was also the measure we used in our compari-
sons. For enabling this comparison, prior to computing the nor-
malized RF distance, we convert the ground truth tree and tree
inferred by PhISCS to cell lineage trees. In doing this conver-
sion, we use the strategy used in Jahn et al. (2016). We present
our comparison results between the two methods in Figure 1
which demonstrates that PhISCS outperforms SiFit across all of
the simulation settings. These results also indicate that the addi-
tion of VAF constraints, derived even from a single bulk sample,
can improve tree reconstruction accuracy. Note that the RF dis-
tance is not a good measure for comparing tumor phylogenies
derived from single-cell genomic sequencing, which suffer
from high sequencing noise: Given a ground truth tree with
two distinct clones with many cells, the misplacement of only

A

B

Figure 1. Comparison of PhISCS with SiFit based on the (normalized) Robinson-Foulds distance. (A) Results for the case where ISA violations are allowed
in PhISCS (SiFit, by default accounts for possible ISA violations), but only SCS data is used as the input. (B) Results for the case where ISA violations are al-
lowed in PhISCS and both single-cell and bulk data (with coverage 10,000×) used as its input (SiFit does not support the use of bulk data). In all simulations,
100 single cells were sampled from 10 subclones harboring a total of 40 mutations. Only one bulk sample was used in B, potentially limiting the relative
advantage of PhISCS by its use of bulk data. Nevertheless, the normalized RF distance between PhISCS inferred tree and the ground truth is reduced by the
use of bulk data in all settings. (Note that “ISA” on the x-axes denotes the number of simulated ISA violating mutations.)
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one single-cell in the inferred tree due to noise can result in a
very high RF distance.

Next, we present the results of PhISCS with respect to the ge-
neral tree (dis)similarity measures. Figure 2 demonstrates the per-
formance of PhISCS based on MLTSM in comparison to SCITE.
In particular, Figure 2A depicts the results of PhISCS on single-
cell data under an infinite sites model. We observe that PhISCS
and SCITE have comparable performance in this case. Then, in
Figure 2B, we focus on the case with ISA violations allowed in
PhISCS but without the use of bulk sequencing data. We observe
that the results of PhISCS improve in comparison to the previous
case, and overall, it has a slightly better performance compared
to SCITE. Finally, whenboth single-cell and bulk data are available,
PhISCS improves its accuracy substantially, as can be seen in Figure
2C, and outperforms SCITE.

Although ourMLTD and its dualMLTSM are quickly comput-
ed, they may not capture all aspects of topological differences be-
tween tumor phylogenies. In Figure 3, we present comparative
performance results of PhISCS with respect to the TED/TPTED
measure, which is hard to compute but is more general. In partic-
ular, Figure 3A presents the results for the case where no bulk se-
quencing data is available and no ISA violations are allowed
when running PhISCS. Results for the case where the same set of
data is used as the input, but allowing ISA violations, are provided
in Figure 3B. Figure 3C presents the results for the case of integra-
tive use of single-cell and bulk data in PhISCS, while allowing the
existence of mutations for which ISA is violated. As can be ob-
served, PhISCS and SCITE have comparable performance for the
first case (we suspect that most of the differences are due to
MCMCnot converging to an optimal solution in SCITE); however,
PhISCS significantly benefits from the use of bulk data, outper-
forming SCITE in all simulations.

We also compared the performance of PhISCS with SCITE
when multiple bulk sequencing samples are available, through
the use of both MLTD and its dual MLTSM measures. Results of
these comparisons are shown in Figure 4. As can be seen, the per-
formance of PhISCS improves with the increasing number of avail-
able bulk samples, suggesting that it can successfully exploit VAF
values from multiple bulk samples when such samples are avail-
able. Note that these results are based on simulations with a higher
number of mutations (100), higher number of subclones (15),
higher number of ISA violations (up to 5), and lower bulk sequenc-
ing coverage (5000×), also demonstrating that PhISCS accuracy
does not deteriorate with increasing scale and complexity of the
input data. Similar results are obtained when simulated trees
have either one or twomutations gained at each node (in the latter
case, at least one of the two mutations must belong to the set of
mutations for which ISA is violated). Results of these comparisons
are presented in Figure 5.

We finally compared PhISCS against B-SCITE, which aims to
maximize the joint likelihood of single-cell and (multiple) bulk
data samples, and as such, is similar to PhISCS. However, because
it is based on anMCMC search as per SCITE, it cannot provide any
optimality guarantees. Furthermore, while the bulk sequencing
data is used to derive hard constraints for PhISCS, they contribute
only to the objective function in B-SCITE. The simulated data we
used for comparing PhISCS and B-SCITE (see Supplemental
Material) introduce CNA impacted mutations in addition to those
that violate ISA. The performance of PhISCS in comparison to B-
SCITE is presented in Figure 6. As can be seen, PhISCS is quite ro-
bust to copy number alterations, especially in comparison to B-
SCITE, and outperforms it in most of the simulation settings.

Results on real sequencing data

In order to further demonstrate its utility, we applied PhISCS to
two real SCS data sets from recent studies. Both data sets provide
additional bulk sequencing data with VAF values.

Colorectal cancer with liver metastasis

We first tested PhISCS on a CRC2 patient from Leung et al. (2017)
(note that in Leung et al. 2017, this patient is sometimes also la-
beled as CO8). After data preprocessing using the same steps as
in B-SCITE (see Supplemental Material; Malikic et al. 2019), we
were left with a single-cell data matrix containing mutation pro-
files of 86 single cells across 25 mutated loci. (See Supplemental
Material and, in particular, Supplemental Fig. S1 for results of
PhISCS on this data set when no such filtering is performed.)

In the original study (Leung et al. 2017), detailed copy num-
ber profiling of primary and metastatic tumor samples was per-
formed, revealing that most of the mutated loci are nondiploid
and fall into genomic regions affected by copy number gains. For
this reason, we opted not to use VAF-derived constraints and to
run PhISCS using only SCS data. An observation to be made here
is that copy number gains are usually not expected to be very chal-
lenging for the single-cell data-only version of PhISCS. Namely,
the presence/absence status of mutation in a cell is not affected
by copy number gains overlapping with the mutation’s locus. In
fact, if a gain results in an increased number of copies of a variant
allele, this can even be potentially beneficial and reduce allelic
dropout (since such an event would providemore startingmaterial
for the PCR amplification step that is typically performed prior to
DNA sequencing).

We ran PhISCS using single-cell data, first without consider-
ing any ISA violations (the output shown in Fig. 7A), and then al-
lowing ISA violating mutation elimination (the output shown in
Fig. 7B). The latter reported a solution eliminating mutation in
gene ATP7B.

After completing the above analysis, we obtained VAFs from
the matching bulk data for both primary and metastasis samples.
The average coverage of bulk data at the sites of interest is
100.92× (primary) and 110.60× (metastasis). As shown in Figure
7A, several mutations have one or both VAFs above 0.50. In addi-
tion, there are also many pairs of mutations where mutation with
lower VAF is placed above the mutation with higher VAF. Both of
these are expected and can in most cases be attributed to the pres-
ence of copy number aberrations present in the data or variance
due to the depth of sequencing. Onemajor exception is mutations
in genes ATP7B and NR4A3 and their placement with respect to
themutation in FUS. Namely, in themetastatic sample, mutations
in ATP7B and NR4A3 have VAFs of 0.03 and 0.02, which is signifi-
cantly lower than 0.29, that is, the VAF of mutation in FUS, which
is placed below these two genes in the tree shown in Figure 7A.
While, in theory, these, as well as other similar discrepancies,
can be explained by copy number events (e.g., a massive gain of
variant allele in FUS in the metastatic sample), we do not see evi-
dence for the existence of such events in bulk data read counts
(where coverage of these mutations is in the range from 129 to
223) or in Figure 5D in Leung et al. (2017) (where copy number
profiling of primary and metastatic tumors was performed, sug-
gesting the existence of three or four copies of regions harboring
these three mutations). Furthermore, an identical relative order
of these mutations can be found in the original study (Leung
et al. 2017), which implies an enormous false positive rate in met-
astatic cells for the mutation in FUS. More precisely, out of 20
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single cells (all metastatic) where presence of mutation was report-
ed, 10 needed to be altered 1→0 during tumor phylogeny infer-
ence, implying a false positive rate of 50% for this mutation.

Such a high false positive rate cannot be attributed to sequencing
artifacts as no false positive for this mutated position was reported
in any of the 137 primary cells sequenced. For some of the

A

B

C

Figure 2. Comparison of PhISCSwith SCITE based on normalizedMLTSM. (A) NormalizedMLTSM values when no ISA violations are allowed and no bulk
data used in PhISCS. (B) NormalizedMLTSM values when ISA violations are allowed in PhISCS but bulk data is not part of the input. (C) NormalizedMLTSM
values when PhISCS employs both ISA violations and VAFs derived from the bulk data. In each case, 100 single cells were sampled and the total number of
simulated mutations was set to 40. In C, one bulk sample was used and coverage of bulk data was set to 10,000×. SC and ISA, respectively, denote the
number of subclones and the number of simulated mutations for which ISA is violated. These plots illustrate that PhISCS has comparable performance
to SCITE in cases where only SCS data is used; however, the additional use of bulk data substantially improves the performance of PhISCS over SCITE.
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mutations, the false positive rate reported by SCITE is even higher
(e.g., mutation in gene PTPRDwas originally reported in 13 single
cells, and 10 of these mutation calls were estimated as false posi-
tives in the solution inferred by SCITE). Additionally, SCITE infers

a tumor phylogeny nearly identical (with a minor difference) to
the one discussed above.

On the other hand, the tree inferred by PhISCS while allow-
ing ISA violations (Fig. 7B), even though the bulk sequencing

A

B

C

Figure 3. Comparison of PhISCS with SCITE based on TPTED dissimilarity measure. (A) TPTED values for SCS data when no ISA violations are allowed. (B)
TPTED values when ISA violations are allowed in PhISCS. (C) TPTED values when ISA violations are allowed in PhISCS and both single-cell and bulk data are
used as the input. In each case, 100 single cells were sampled and the total number of simulated mutations set to 40. In C, one bulk sample was used and
coverage of bulk datawas set to 10,000×. SC and ISA, respectively, denote the number of subclones and the number of simulatedmutations for which ISA is
violated. As our results illustrate, PhISCS has a comparable performance to SCITE in the cases when only SCS data is available; however, the addition of bulk
sequencing data improves the performance of PhISCS substantially.
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data and thus VAF values were not used, includes no VAF inconsis-
tencies that cannot be explained by the observed copy number
events and/or variance in VAF values due to depth of coverage.
Furthermore, this solution implies no mutation loci with elevated
false positive mutation calls, and the substantial decrease in the
false positive calls are not compensated by any increase in the false
negative calls.

From a biological perspective, looking into the timing ofmet-
astatic seeding, the solution reported in Figure 7A suggests two dis-
tinct metastatic seeding events: one occurring via cells leaving the
primary site at thenode labeledwithAPC_2 and seeding themetas-
tasis-specific subtree rooted at LAMB4, and another occurring
when cells from the node labeled with ATP7B leave the primary
site and seed the metastasis-specific subtree rooted at NR4A3. In
contrast, the tree reported in Figure 7B requires only a single meta-
static seeding event that introduces the metastasis-specific subtree
rooted at FUS. Here, by metastasis-specific subtree, we refer to the
subtree consisting solely ofmutationspresent only in themetastat-
ic sample. Note that the nonzero VAF value in the primary sample
for mutations TSHZ3 and F8 provides some signal for the possible
presence of these mutations in this sample. However, this signal
is very likely a consequence of sequencing noise as, for each of
the two mutations, there is only a single read supporting the vari-
ant allele. In addition, these mutations were not reported in any
of the sequenced single cells extracted from the primary tumor.

In conclusion, in comparison to the results obtained assum-
ing the infinite sitesmodel, the tree inferred by PhISCS by allowing
ISA violating mutation elimination, better explains both single-
cell and bulk data, while requiring only a single metastatic seeding
event, demonstrating the importance of this feature of PhISCS in
tumor phylogeny reconstruction.

Childhood acute lymphoblastic leukemia

The second data set that we tested PhISCS on is obtained from an
acute lymphoblastic leukemia (ALL) study where both single-cell
and bulk sequencing data are available (Gawad et al. 2014). We fo-
cused on the second patient from this study for which single-cell
data provides a strong signal for the existence of multiple sub-
clones with a nonlinear tree topology. The single-cell data matrix
used to run PhISCS consists of 16 mutations and 102 single cells
(see Supplemental Material). The estimated FN rate for this data
set is 0.181749 (Gawad et al. 2014). The trees inferred by SCITE
and B-SCITE (Malikic et al. 2019), by the use of SCS data only
and by the integrative use of SCS and bulk sequencing data, respec-
tively, with no allowance for ISA violations (see Fig. 8), are gener-
ally in agreement with the tree topology published in the
original study. However, they differ in the placement of the muta-
tions in genes RRP8 and CMTM8: The VAFs of these mutations do
not agree with their placement by SCITE whereas their relative

A

B

Figure 4. Comparison of PhISCS with SCITE on simulated data with multiple bulk samples and larger number of subclones and mutations. In each case,
10 distinct trees of tumor evolution were generated with 15 subclones and 100 mutations (SNVs). The number of cells was set to 100, while the depth of
coverage for bulk data was set to 5000×. A compares the two tools with respect to the MLTD dissimilarity measure, while B compares them with respect to
its dual MLTSM similarity measure (normalized values of MLTSM are shown in the figure). On the x-axes, h, fn, and ISA, respectively, denote the number of
bulk samples, false negative rate of single-cell data, and the number of simulated mutations for which ISA is violated.
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D

Figure 5. Comparison of PhISCSwith SCITE on simulated datawhere either one or twomutations are acquired at each node (in the latter case, one of the
twomutations is an ISA violating mutation). Ten distinct trees of tumor evolution with either 20 mutations (i.e., s=21,m=20) or 40 mutations (i.e., s=41,
m=40) were generated and 100 single cells sampled in each case. The false negative rate of single-cell data was set to 0.15. The depth of coverage for bulk
data was set to 10,000×, and the minimum cellular prevalence of individual nodes was set to 3% form=20 and 2% form=40. A and C, respectively, show
MLTD (dissimilarity) and normalized MLTSM (similarity) measure where ISA violations are allowed, but only SCS data was used as the input. B and D show,
respectively, MLTD (dissimilarity) and normalized MLTSM (similarity) measure where ISA violations are allowed and both single-cell and bulk data are used
as the input. On the x-axes, h, m, and ISA, respectively, denote the number of bulk samples, the total number of simulated mutations, and the number of
simulated mutations for which ISA is violated.
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Figure 6. Comparison of PhISCS and B-SCITE according to MLTD and its dual MLTSM similarity measure (normalized values of MLTSM are shown in the
figure). In each case, 10 trees of tumor evolution with seven subclones and 40 mutations were simulated and 100 single cells were sampled. Depth of cov-
erage for bulk data was set to 5000×. More details about generating these simulations are provided in the Supplemental Material. A and B show MLTD
(dissimilarity) between inferred and ground truth trees for cases where three SNVs fall into regions having copy number 3 (A) or 4 (B) in all cancerous cells
(i.e., clonal copy number gains 1 or 2 copies of genomic region harboring SNV). C andD shownormalizedMLTSM (similarity) between inferred and ground
truth trees for cases where three SNVs fall into regions having copy number 3 (C) or 4 (D) in all cancerous cells. On the x-axes, h, fn, and ISA, respectively,
denote the number of bulk samples, false negative rate of single-cell data, and the number of simulated mutations for which ISA is violated.
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presence/absence in single cells contra-
dicts their placement with B-SCITE.

The results of PhISCS on this data
set, using VAFs and allowing the elimina-
tion ofmutations, are presented in Figure
9. In this topology, the VAF values do not
present a contradiction, a highly desir-
able feature when the VAF values are
measured reasonably accurately. For ex-
ample, the use of VAFs by PhISCS places
the mutation in FGD4 higher in the
tree, as it should be. In addition,
PhISCS’s ability to eliminate mutations
with contradictory VAF values and pres-
ence in SCS data removes the inconsis-
tencies in the tumor phylogeny. For
example, CMTM8 has a mutation with a
high VAF value that contradicts its lower
subclonal placement by SCITE in Figure
8. However, in comparison to RRP8, it ap-
pears in 20 fewer single cells (out of 38).
The discrepancies between the VAFs of
mutations in CMTM8 and RRP8 and frac-
tions of single cells harboring these mu-
tations are possibly a result of an

undetected copy number gain on the
nonvariant allele for RRP8 or another un-
detected copy number gain on the vari-
ant allele for CMTM8; such copy
number gains would result in a lower
VAF estimate for RRP8 or, respectively, a
higher one for CMTM8. The above obser-
vations point out that PhISCS’s ability to
identify mutations that have been sub-
ject to undetected CNAs, combined
with its ability to integrate VAFs with
SCS data, can help identify previously
underexplored copy number aberrations
(especially through targeted platforms,
where CNA calls could be unreliable) or
notice inconsistencies in CNV calls.

Discussion

PhISCS is a novel combinatorial ap-
proach for inferring tumor phylogenies
via an integrative use of single-cell and
bulk sequencing data. PhISCS offers two
options: PhISCS-I expresses our formula-
tion in the form of an ILP and solves it
via the Gurobi Optimizer, and PhISCS-B
expresses it in the form of a Boolean
CSP and solves it via open source wMax-
SAT solvers suchasMaxHS,oftenmore ef-
ficiently thanPhISCS-I. (As such, PhISCS-
B is the first to express the combinatorial
tumor phylogeny reconstruction prob-
lem in a form other than ILP/QIP.)
PhISCS is the firstmethod for tumor phy-
logeny inferenceby integrated analysis of

A B

Figure 7. Inferred tumor phylogeny for CRC2 (CO8) patient from Leung et al. (2017) by PhISCS
through the use of single-cell data only: (A) without allowingmutation elimination; (B) with allowingmu-
tation elimination. For each mutation, VAFs derived from bulk data are provided next to the gene label.
The first number (colored in blue) represents VAF in the primary tumor and the second number (colored
in red) represents VAF in themetastasis. Genes SPEN and APC harbormultiple mutations. SPEN_1 denotes
mutation at position Chr 1, 16,258,997; SPEN_2, mutation at Chr 1, 16,202,934; APC_1, mutation at Chr
5, 112,164,646; and APC_2, mutation at Chr 5, 112,175,328. Coloring of nodes in A is motivated by the
coloring used in Figure 6 in Leung et al. (2017). In this coloring, blue and purple nodes represent muta-
tions specific to the primary site, whereas nodes colored in pink and orange represent mutations specific
to two distinct metastases. Red edges represent metastatic seeding events. Coloring in B is equivalent to
the coloring in A.

A B

Figure 8. Inferred tumor phylogeny for Patient 2 from Gawad et al. (2014) with (A) SCITE and (B) B-
SCITE. The coloring of the trees is motivated by the colors used for SCITE and B-SCITE in the previous
figures. B-SCITE’s use of VAFs alter the tree topology by moving the mutation in CMTM8 higher up in
the tree. B-SCITE also reorders the mutations in genes in the linear topology identified by SCITE rooted
at FGD4 —primarily according to their VAFs.
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single-cell and bulk sequencing data while allowing ISA violations.
Based on three measures of tumor phylogeny (dis)similarity be-
tween the ground truth and inferred tree, we have shown by simu-
lations and real data that PhISCS is not only veryefficient but is also
more accurate than the available alternatives.

One limitation of PhISCS is that it assumes doublets have
been eliminated in a preprocessing step; since the doublet rate is
being reduced significantly through newer technologies and im-
proved library preparation, we do not expect this to be an impor-
tant limitation, especially in the analysis of newly generated data.

Methods

We start describing the algorithmic underpinnings of PhISCS by
formulating integrative tumor phylogeny reconstruction as a com-
binatorial optimization problem.We first focus on two special cas-
es of the problem for the instance in which only single-cell
sequencing data is available: (1) a special casewhere the ISA cannot
be violated; and (2) the case where ISA can be violated. We then
describe the general integrative problem where both bulk and
SCS data are available. We present solutions for this problem in
the form of a novel integer linear program as well as a constraint
satisfaction problem (CSP).

PhISCS-I for tumor phylogeny inference via SCS data

with no ISA violations allowed

SCS data input to PhISCS is given in a form of ternarymatrix Iwith
n rows and m columns, where columns represent mutations and

rows represent genotypes of single cells observed in a single-cell se-
quencing experiment. For a given entry, I(i, j) = 0 indicates the ab-
sence, I(i, j) = 1 indicates the presence, and I(i, j) = ? indicates the
lack of knowledge about absence or presence (i.e., missing entry)
of a mutation j in a cell i.

We ask to find the minimum weighted number of bit flips
(typically from0 to 1 and rarely from1 to 0) and bit assignments (as-
signing a 0 or 1 to an entry with value ?), where bit assignments are
not a part of the objective, such that the resultingmatrix provides a
Perfect Phylogeny (PP). We recall that a binary matrix is a PP if the
three-gametes rule holds, that is, for any given pair of columns (mu-
tations), there are no three rows (cells) with configuration (1, 0), (0,
1), and (1, 1). Bit flipping in the input matrix I is essential to build-
ing a PP, as some mutation inferences in I are false positives and
some mutations are not indicated in I (false negatives), as they
do not have sufficient read support in sequenced single cells. We
name any pair of mutations and triplet of cells violating the
three-gametes rule as a conflict and refer to the PP matrix also as
a conflict-free matrix.

To allow correction of noisy genotypes in I (i.e., bit flips and
bit assignments), for each cell i and mutation j, we introduce a bi-
nary variable Y(i, j) which denotes the (unknown) true status (i.e.,
absence or presence) of the mutation j in the cell i. If α and β, re-
spectively, denote false positive and false negative error rates of
single-cell data, we have

P(I i, j
( ) = 0|Y i, j

( ) = 0) = 1− a( ) P(I i, j
( ) = 0|Y i, j

( ) = 1) = b
P(I i, j

( ) = 1|Y i, j
( ) = 0) = a P(I i, j

( ) = 1|Y i, j
( ) = 1) = 1− b

( )
.

(1)

Assuming that the mutated loci are independent and that the
missing entries in I are noninformative (i.e., bit assignments are
not part of the objective), we define the likelihood of an arbitrary
conflict-free matrix Y as

P(I|Y) =
∏

(i,j)[S

P(I(i, j)|Y(i, j)) (2)

whereS is the set of all pairs of integers (i, j) such that 1≤ i≤n, 1≤ j
≤m and I(i, j)∈ {0, 1}.

Here, our goal is to find a conflict-free matrix Y such that the
likelihood P(I|Y) defined in Equation 2 is maximized.

Now, observe that Equation 1 can be rewritten as

P(I(i, j) = 0|Y(i, j)) = (1− a)1−Y(i,j) · bY(i,j) = (1− a) · b

1− a

( )Y(i,j)

,

P(I(i, j) = 1|Y(i, j)) = a1−Y(i,j) · (1− b)Y(i,j) = a · 1− b

a

( )Y(i,j)

,

(3)

and our objective is equivalent to maximizing the logarithm of
P(I|Y), which can be expressed as

∑

(i,j):I(i,j)=0

log (1− a)+ log
b

1− a
Y(i, j)

[ ]

+
∑

(i,j):I(i,j)=1

log (a)+ log
1− b

a
Y(i, j)

[ ]
. (4)

In order to enforce that matrix Y satisfies the three-gametes rule,
for each pair of mutations (p, q), we first introduce variables B(p,
q, a, b), for each (a, b)∈ {(0, 1), (1, 0), (1, 1)}. The variable B(p, q,
a, b) is set to 1 if there exists row r such that Y(r, p) = a and Y(r, q)

Figure 9. Inferred tumor phylogeny for Patient 2 from Gawad et al.
(2014) through the joint use of bulk and SCS data while allowing ISA vio-
lations. The topology of the tree and themutational placements are similar
to that of B-SCITE in Figure 8 with the key difference that three mutations
are now eliminated by PhISCS: RRP8 and CMTM8 are eliminated due to in-
consistent VAF and SCS data; CMTM8 has a similar SCS profile to INHA but
has a significantly higher VAF. It also has a higher VAF than RRP8 but ap-
pears in 20 fewer cells. In addition, the mutation in RIMS2 is eliminated
by PhISCS as per the figure. Evidence for ISA violations in this gene has
been reported earlier (Kuipers et al. 2017).
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= b. This property of matrix B is guaranteed by adding the follow-
ing constraints for all 1≤ i≤n and 1≤ p, q≤m:

Y(i, p)+ Y(i, q)− B( p, q, 1, 1) ≤ 1 (5)

− Y(i, p)+ Y(i, q)− B( p, q, 0, 1) ≤ 0 (6)

Y(i, p)− Y(i, q)− B( p, q, 1, 0) ≤ 0. (7)

Now, adding constraints

B( p, q, 0, 1)+ B( p, q, 1, 0)+ B( p, q, 1, 1) ≤ 2 (8)

for all 1≤ p, q≤m suffices to ensure that the three-gametes rule
holds for matrix Y.

The problem defined above represents an instance of ILP and
can be solved using any of the standard ILP solvers.

Allowing ISA violations in PhISCS-I

As we have already discussed in the Introduction, recent evidence
suggests that the ISA might be violated for a subset of mutations
in the input data. To account for this, we introduce a more gene-
ral version of what we discussed in the previous section, where
we allow elimination (i.e., deletion from the input matrix) of a giv-
en (maximum) number of mutations which do not satisfy ISA;
the remaining mutations, after genotype corrections, are expect-
ed to satisfy PP. In order to achieve this, for each mutation q, we
introduce binary variable K(q) which is set to 1 if and only if mu-
tation q is among eliminated mutations. To exclude eliminated
mutations from the three-gametes rule, we do not require
mutational pairs (p, q), where at least one of p and q is among
eliminated mutations, to fulfill this rule. Therefore, we modify
constraint (8) from the integer linear program described above
by replacing it with

B( p, q, 0, 1)+ B( p, q, 1, 0)+ B( p, q, 1, 1) ≤ 2+ K(p)+ K(q). (9)

The objective defined in Equation 4 is also modified so that the
eliminated mutations do not contribute to the objective score.
This leads to the following objective to handle the case allowing
ISA violations:

∑

(i,j):I(i,j)=0

(1− K(j)) · log (1− a)+ log
b

1− a
Y(i, j)

[ ]

+
∑

(i,j):I(i,j)=1

(1− K(j)) log (a)+ log
1− b

a
Y(i, j)

[ ]
. (10)

All other constraints used previously in the limited version of
the problem are preserved. Note that the above objective con-
tains quadratic terms (of the form K( j)Y(i, j)) which can be
transformed to linear variables using standard linearization
techniques. One can observe that mutation elimination never
decreases data likelihood, hence the global optimum in the
above maximization problem is achieved when all variables K
are set to 1. However, in real applications, we expect only a lim-
ited number of ISA violating mutations and therefore set the
upper bound kmax on the number of eliminated mutations,
which is implemented by the addition of the following con-
straint

∑m

q=1

K(q) ≤ kmax, (11)

where kmax is an empirically estimated constant. It is also pos-
sible to computationally estimate kmax (see Supplemental
Material for details).

Additional ILP constraints to integrate VAFs derived from bulk

sequencing data into PhISCS-I

Now,we showhowto integrate SCSdatawithbulk sequencingdata
—specifically the VAF of eachmutation we consider—through ad-
ditional linear constraints. These constraints will only apply to the
set of single nucleotide variants from the regions not affected by
copy number aberrations. Suppose that a particular SNV, denoted
M, satisfies the above requirement; let v and r, respectively, denote
the number of reads supporting the variant and the reference allele
at the genomic locusofM. TheVAFofM is typicallydefinedas v/(v+
r). Since we are interested in cellular prevalence rather than the VAF
below, we define vaf(M) = 2v/(v + r). (Cellular prevalence repre-
sents the expected fraction of cells in the sample that harborM.)

Before defining constraints related to VAFs, we first define the
root node via a new row, indexed by 0, that represents the genotype
of a healthy cell. We also add a new column, indexed by 0, and as-
sociated nullmutationM0which representsmutation specific to the
normal cell or, in other words, a germline SNP present in all cells.
We set I(t, 0) = 1 for t=0, 1…, n and I(0, p) = 0 for p=1, 2, …, m.
We also set vaf(M0) = 1 and do not allow elimination of M0.
Matrices B and Y are also expanded in an obvious way by allowing
mutational indices to be equal to0. The remainderof the tree topol-
ogy is imposed through additional constraints that specify ances-
tor-descendant relationships in a consistent manner across all
nodes.

1. Wemust satisfy the following constraints: (i) K(0) = 0, (ii) Y(t, 0)
= 1 for t=0, 1, …, n, and (iii) Y(0, p) = 0 for p=1, 2, …, m.

2. If a mutation p is an ancestor of a mutation q and ISA holds for
both p and q, then the true cellular prevalence of p is expected to
be greater than or equal to the true cellular prevalence of q.
Since vaf(p) and vaf(q) reflect cellular prevalences as discussed
above, we expect that, in the implied evolutionary tree,
vaf(p)(1+ d) ≥ vaf(q), where δ is some positive constant which
allows for the noise typically present in the observed VAFs. In
order to incorporate VAFs in our model, we introduce binary
function a, such that a(p, q) = 1 only if p is an “ancestor” of q.
By definition, we set a(p, p) = 0 for all p∈ {0, 1, …, m}. The con-
straints that we need to introduce are thus as follows:
a. For any pair of distinct mutations p, q, we must satisfy the

following two constraints to ensure that (i) only one of
them could be the ancestor of the other, and (ii) if there is
a cell in which they appear together, then one must be the
ancestor of the other:

a( p, q)+ a(q, p) ≤ min {1− K(p), 1− K(q)}
a( p, q)+ a(q, p) ≥ B( p, q, 1, 1)− K(p)− K(q)

(12)

(we remind the reader that, for any mutation r, K(r) = 1
indicates that the column r in input matrix I has been
eliminated).

b. Each noneliminated mutation q different from null muta-
tion must have at least one ancestor. This is ensured by add-
ing the following constraint:

∑m

p=0

a( p, q) ≥ 1− K(q). (13)

On the other hand, a null mutation has no ancestors,
so we set a(p, 0) = 0 for all p∈ {0, 1, …, m}.

c. Consider twononeliminatedmutations p and q. If a(p, q) = 1,
then in genotype corrected output matrix Y, the column p
should dominate the column q, that is, for each cell/row r,
if the entry for p is 0, then the entry for q should also be
0. In other words, there should not exist row r such that
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Y(r, p) = 0 and Y(r, q) = 1, which is equivalent to B(p, q, 0, 1) =
0. To ensure this, for all pairs of mutation (p, q), we add the
following constraint:

a( p, q) ≤ 1− B( p, q, 0, 1). (14)

d. If, for two noneliminated mutations p and q, matrix Y con-
tains a cell in which p is present and q is absent (i.e., there
exists i such thatY(i, p) = 1 andY(i, q) = 0, which is equivalent
to B(p, q, 1, 0) = 1), as well as a cell where both p and q are pre-
sent (i.e., there exists j such that Y( j, p) = 1 and Y( j, q) = 1,
which is equivalent to B(p, q, 1, 1) = 1), then pmust be an an-
cestor of q (i.e., a(p, q) = 1). In order to ensure this, for all pairs
of mutations (p, q), we add the following constraints:

a( p, q) ≥ B( p, q, 1, 0)+ B( p, q, 1, 1)− 1− K(p)− K(q).

(15)

e. For some small user-defined error tolerance value δ>0
that accounts for variation in sequencing coverage, if
vaf(q) . vaf(p)(1+ d) then a(p, q) = 0; in other words, for ev-
ery pair of mutations p and q we must satisfy

a( p, q) · vaf(p) · (1+ d) ≥ a( p, q) · vaf(q). (16)

If more than one sample from the same tumorwith (in-
dependent) bulk sequencing data is available, we will have
to satisfy the VAF constraints imposed by all of them. Let
vafℓ(p) denote vaf(p) in sample ℓ. Then, for each pair of mu-
tations p and q such that vafℓ (q) . vafℓ (p)(1+ d) we must
satisfy: a(p, q) = 0; that is, for each sample ℓ:

a( p, q) · vafℓ(p) · (1+ d) ≥ a( p, q) · vafℓ(q) (17)

f. For all triplets of mutations p, q, r, we must ensure that, if
a(p, q) = 1 and a(q, r) = 1, then a(p, r) = 1:

∀p, q, r: a( p, r) ≥ a( p, q)+ a(q, r)− 1. (18)

3. Now, we can describe our constraint for every triplet of distinct
mutations p, q, and r, such that p is an ancestor of q and r but
q and r do not have an ancestor-descendant relationship (i.e.,
a(p, q) = a(p, r) = 1 and a(q, r) = a(r, q) = 0).

vaf(p) · (1+ d) ≥ vaf(q) · [a( p, q)− a(r, q)− a(q, r)]

+ vaf(r) · [a( p, r)− a(r, q)− a(q, r)]. (19)

If again, multiple samples with (independent) bulk se-
quencing data are available, we have to satisfy the triple-VAF
constraint for each sample ℓ, that is, for each triplet of muta-
tions p, q, r:

vafℓ(p) · (1+ d) ≥ vafℓ(q) · [a( p, q)− a(r, q)− a(q, r)]

+ vafℓ(r) · [a( p, r)− a(r, q)− a(q, r)]. (20)

Note that the above triple-VAF constraint does not fully utilize
the information provided by VAFs, for example, in case a parent
mutation has three distinct children whose total VAFs should, in
principle, not exceed that of the parent. It is possible to generalize
the triple-VAF constraint to any number of children (see
Supplemental Material). Nevertheless, we still recommend the
use of the triple-VAF constraint instead of this general-VAF con-
straint (even though this choice may, in principle, produce trees
that violate the general-VAF constraint) since the two sets of con-
straints do not seem to produce different trees in practice.

Furthermore, the general-VAF constraint is quadratic and thus
slows down PhISCS.

PhISCS-B for tumor phylogeny inference via SCS data

We first show how to reduce the ILP formulation of PhISCS where
only single-cell data is used as the input and nomutation elimina-
tion allowed to a wMax-SAT problem. For each input entry I(i, j),
1 ≤ i ≤ n, 1 ≤ j ≤ m,we introduce a Boolean variable Y(i, j) which
represents the true state of mutation j in cell i. Our goal is to find
the assignment of values to variables Y(i, j) such that the resulting
matrix Y is conflict-free and the objective defined below is maxi-
mized. In order to enforce that Y is conflict-free matrix, we use a
set of additional Boolean variables B(p, q, a, b) (analogous to binary
variables used in earlier sections) that need to satisfy the following
hard constraints (the constraints that need to be satisfied):

¬(Y(i, p) ^ Y(i, q) ^ ¬B( p, q, 1, 1))
¬(¬Y(i, p) ^ Y(i, q) ^ ¬B( p, q, 0, 1))
¬(Y(i, p) ^ ¬Y(i, q) ^ ¬B( p, q, 1, 0))
¬(B( p, q, 0, 1) ^ B( p, q, 1, 0) ^ B( p, q, 1, 1)).

(21)

We can now define our objective as satisfying all the hard con-
straints with alterations on the input matrix I with maximum
probability, where each alteration (indicating a false positive or
false negative) is independent. This objective corresponds to the
minimizing the (weighted) number of flipped entries in the solu-
tionmatrixY in comparison to I, or, for the purpose of formulating
the problem as an instance of wMax-SAT, maximizing the weight-
ed sum of the following “soft” constraints (for all i, j, s.t. I(i, j)≠ ?
originally):

if I(i, j) = 0 weight for Y(i, j) is: log
b

1− a

if I(i, j) = 1 weight for Y(i, j) is: log
1− b

a
.

(22)

Note that, in order to get exactly the same objective value as
in objective defined in Equation 4, we need to add constant terms
from Equation 4 to the objective defined in Equation 22.
Alternatively, after solving for matrix Y, we can compute P(I|Y)
by the use of formula given in Equation 2.

We now show how to account for ISA violations: For
each column j∈ {1, 2, …, m} we introduce a Boolean variable K( j)
that is set to 1 if and only if column j is eliminated (i.e., mutation
corresponding to column j is not considered as a part of the
output).

Analogously as in the ILP formulation, we allow at most kmax

columns to be eliminated,where kmax is a user-defined constant. In
order to ensure that no more than kmax of variables K(1), K(2), …,
K(m) are set to1, for eachpossible (kmax+1)-tuple (i1, i2, . . . , ikmax +1)
of integers such that 1 ≤ i1 , i2 , . . . , ikmax +1 ≤ m, we add the
following hard clause

¬(K(i1) ^ K(i2) ^ . . . ^ K(ikmax+1)) (23)

to our model.
Now, for any eliminated column p, we do not have to check

whether it is in conflict with any other column q or vice versa.
Therefore, for each pair (p, q) of columns, we replace the last con-
straint in 21 above with the following:

¬(¬K(p)^¬K(q)^ B( p, q, 0, 1)^ B( p, q, 1, 0)^ B(p, q, 1, 1)). (24)

To get the objective equivalent to Equation 10, for each pair of cell i
and mutation j, we introduce a binary variable X(i, j) and add the
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following hard constraint:

(¬Y(i, j)_¬K(j)_X(i, j))^ (Y(i, j)_¬X(i, j))^ (K(j)_¬X(i, j)) (25)

and transform Equation 10 to an instance of wMax-SAT where the
goal is to maximize weighted sum of the following “soft” con-
straints (for all i, j, s.t. I(i, j)≠ ?):

if I(i, j)= 0weight for ¬K(j) is: log(1−a)

if I(i, j)= 1weight for¬K(j) is: log(a)

if I(i, j)= 0weight for X(i, j) is: − log
b

1−a

if I(i, j)= 1weight forX(i, j) is: − log
1−b

a

if I(i, j)= 0weight for Y(i, j) is: log
b

1−a

if I(i, j)= 1weight forY(i, j) is: log
1−b

a
.

(26)

Additional Boolean constraints to integrate VAFs derived from

bulk sequencing data into PhISCS-B

In order to integrate information derived from bulk sequencing
data, represented in the form of VAFs of the given set ofmutations,
we explicitly impose a tree structure on the output matrix Y
through the use of a number of Boolean constraints.

The Boolean constraints below start by defining the root node
via a new row, indexed by 0, that represents the genotype of a nor-
mal cell. We also add a new column, indexed by 0, and associated
null mutation M0 which represents a mutation specific to the nor-
mal cell or, in other words, a germline SNP present in all cells.
We set I(t, 0) = 1 for t=0, 1…, n and I(0, p) = 0 for p=1, 2, …, m.
We also set vaf(M0) = 1 and do not allow elimination of M0. The
remainder of the tree topology is imposed through additional con-
straints that specify ancestor-descendent relationships in a consis-
tent manner across all nodes:

1. We must satisfy the following constraints which can easily be
converted into Boolean expressions: (i) K(0) = 0, (ii) Y(t, 0) = 1
for t= 0, 1, …, n, and (iii) Y(0, p) = 0 for p=1, 2, …, m.

2. If a mutation p is an ancestor of mutation q in the implied evo-
lutionary tree, then vaf(p) ≥ vaf(q) within some relatively small
error tolerance. In order to employ VAFs using the above con-
straints between mutational pairs, we introduce Boolean func-
tion a such that a(p, q) = 1 if and only if p is an ancestor of q.
The hard constraints that need to be imposed on a are as
follows:
a. For all pairs of distinctmutations p and q, where both p and q

are different from null mutation, we must satisfy

a( p, q) _ a(q, p) ⇒ ¬K(p) ^ ¬K(q)
¬[(a( p, q) ^ a(q, p))]

B( p, q, 1, 1) ⇒ a( p, q) _ a(q, p).

(27)

b. For each noneliminated mutation q different from null mu-
tation, we must make sure that it has an ancestor mutation
(which could be null mutation). This is achieved by impos-
ing the following constraint:

_
∀p=q

a( p, q)
( )

_ K(q). (28)

c. Consider two noneliminatedmutations p and q. If a(p, q) = 1,
then in genotype corrected output matrix Y, the column p
should dominate the column q, that is, for each cell/row r,
if the entry for p is 0 then the entry for q should also be

0. In other words, there should not exist row r such that Y
(r, p) = 0 and Y(r, q) = 1, which is equivalent to B(p, q, 0, 1) =
0. To ensure this, for all pairs of mutation (p, q), we add
the following constraint:

¬a( p, q) _ ¬B( p, q, 0, 1) _ K(p) _ K(q). (29)

d. If, for two noneliminated mutations p and q, matrix Y con-
tains cells in which p is present and q is absent (i.e., there ex-
ists i such thatY(i, p) = 1 andY(i, q) = 0, which is equivalent to
B(p, q, 1, 0) = 1), aswell as cells where both p and q are present
(i.e., there exists j such that Y( j, p) = 1 andY( j, q) = 1, which is
equivalent to B(p, q, 1, 1) = 1), then pmust be the ancestor of
q (i.e., a(p, q) = 1). In order to ensure this, for all pairs of mu-
tations (p, q), we add the following constraints:

(B( p, q, 1, 0) ^ B( p, q, 1, 1)) ⇒ (a( p, q) _ K(p) _ K(q)). (30)

e. For some small user-defined error tolerance value δ>0 that
accounts for variation in bulk sequencing coverage, if
vaf(q) . vaf(p) · (1+ d), then a(p, q) = 0; in other words, for
each pair of mutations p and q for which a(p, q) = 1, we
must satisfy vaf(p) · (1+ d) ≥ vaf(q). In order to express this
as a Boolean constraint, we introduce a new Boolean func-
tion Pvaf(p, q) defined for all pairs of mutations p and q (as
a part of the input specification) as follows:

Pvaf(p, q) = 1, if vaf(p) · (1+ d) ≥ vaf(q)

= 0, otherwise. (31)

Then, the constraint that must be satisfied for each
pair of mutations p and q is

a( p, q) ⇒ Pvaf(p, q). (32)

If more than one sample from the same tumor with
(independent) bulk sequencing data is available, we will
have to satisfy the VAF constraints imposed by all of
them. Specifically, let vafℓ(p) denote vaf(p) in sample ℓ.
Then, for each pair of mutations p and q, Pvaf(p, q) = 1
only if vafℓ (p) · (1+ d) ≥ vafℓ (q) for all samples ℓ, and
Pvaf(p, q) = 0, otherwise.

f. For all triplets ofmutations p, q, r, wemust ensure that, if a(p,
q) = 1 and a(q, r) = 1, then a(p, r) = 1

∀p, q, r: a( p, q) ^ a(q, r) ⇒ a( p, r). (33)

3. For all triplets of distinct mutations p, q, and r such that p is an
ancestor of q and r but q and r do not have an ancestor-descen-
dent relationship (i.e., they belong to different lineages in the
tree), we must satisfy vaf(p) · (1+ d) ≥ vaf(q)+ vaf(r). In order
to express this as a Boolean constraint, we introduce yet another
Boolean function Tvaf(p, q, r) defined for all triplets of muta-
tions p, q, r (as a part of the input specification) as follows:

Tvaf(p, q, r) = 1, if vaf(p) · (1+ d) ≥ vaf(q)+ vaf(r)

= 0, otherwise. (34)

Then, the constraint that must be satisfied for all muta-
tions p, q, r is

[a( p, q) ^ a( p, r) ^ ¬a(q, r) ^ ¬a(r, q)] ⇒ Tvaf(p, q, r). (35)

If multiple samples from the same tumor with (indepen-
dent) bulk sequencing data are available, we will have
Tvaf(p, q, r) = 1 if vafℓ (p) · (1+ d) ≥ vafℓ (q)+ vafℓ (r) for all ℓ.
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Software availability

PhISCS is available at https://github.com/sfu-compbio/PhISCS
and as Supplemental Code.
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