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Abstract: Acute myeloid leukemia (AML) is characterized by an increasing number of clonal myeloid
blast cells which are incapable of differentiating into mature leukocytes. AML risk stratification is
based on genetic background, which also serves as a means to identify the optimal treatment of indi-
vidual patients. However, constant refinements are needed, and the inclusion of significant measure-
ments, based on the various omics approaches that are currently available to researchers/clinicians,
have the potential to increase overall accuracy with respect to patient management. Using both
nontargeted (label-free mass spectrometry) and targeted (multiplex immunoassays) proteomics, a
range of proteins were found to be significantly changed in AML patients with different genetic
backgrounds. The inclusion of validated proteomic biomarker panels could be an important factor
in the prognostic classification of AML patients. The ability to measure both cellular and secreted
analytes, at diagnosis and during the course of treatment, has advantages in identifying transforming
biological mechanisms in patients, assisting important clinical management decisions.

Keywords: acute myeloid leukemia; biomarkers; immunoassay; mass spectrometry; proteomics

1. Introduction

Acute myeloid leukemia (AML) is a highly heterogenous disease of the blood and
bone marrow, characterized by the uncontrolled proliferation of cells from the myeloid
lineage [1]. AML is the second most common form of leukemia in adults, and accounts
for approximately 1% of new cancer diagnoses [2]. The majority of patients, following
intensive chemotherapy, achieve complete remission; however, AML remains a highly fatal
disease, with a disheartening five-year survival rate of ~24% [3]. The high fatality of this
disease is attributed to the presence of primary resistance in a subset of patients and a high
relapse rate with therapy-resistant disease following complete remission [4].

According to the French-American-British (FAB) system, there are eight types of AML
(M0–M7), each with precise morphological characteristics and differentiation stages [5]. The
more recent World Health Organization (WHO) classification considers clinical features,
morphology, immunophenotyping, cytogenetics, and molecular genetics [6].

Cytogenetic abnormalities, including chromosomal translocations, deletions, and du-
plications, in addition to molecular mutations, such as mutations in the nucleophosmin-1
(NPM-1) or FMS-like tyrosine kinase 3 (FLT3) genes, are powerful prognostic markers in
AML. In 2017, European LeukemiaNet (ELN) published revised recommendations to aid

Proteomes 2021, 9, 42. https://doi.org/10.3390/proteomes9040042 https://www.mdpi.com/journal/proteomes

https://www.mdpi.com/journal/proteomes
https://www.mdpi.com
https://orcid.org/0000-0002-1808-5335
https://orcid.org/0000-0001-7681-8675
https://orcid.org/0000-0002-3987-1693
https://orcid.org/0000-0002-4324-8706
https://doi.org/10.3390/proteomes9040042
https://doi.org/10.3390/proteomes9040042
https://doi.org/10.3390/proteomes9040042
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/proteomes9040042
https://www.mdpi.com/journal/proteomes
https://www.mdpi.com/article/10.3390/proteomes9040042?type=check_update&version=1


Proteomes 2021, 9, 42 2 of 20

the interpretation of genetic abnormalities for risk stratification in AML [7,8]. The ELN
recommendations stratify patients into three prognostic categories; “favorable”, “interme-
diate” or “adverse”, based on the genetic profile of patients. These recommendations are
used to determine the risk of chemoresistance, a key factor in determining the best course
of treatment for patients, as the benefit of highly intensive chemotherapy may outweigh the
potential therapy-induced toxicities in patients with “intermediate” or “adverse” risk [8,9].

Despite many clinicians adopting this method of risk stratification, the crucial factors
involved in relapse and chemoresistance have yet to be identified, with several studies
proposing additional prognostic markers which may improve the prognostic value of the
ELN recommendations [10–12]. Furthermore, the risk of relapse with therapy-resistant
disease in patients with “favorable” risk remains relatively high, i.e., occurring in 30–35% of
cases [8]. The high recurrence rate and aggressiveness of this disease heightens the need for
an expansion of current biomarkers to improve prognostic classification, risk assessment
and therapeutic decision-making in AML.

Advances in high-throughput proteomic techniques, especially in the area of mass
spectrometry, has pushed proteomics to the forefront of current efforts in the discovery of
novel clinically relevant biomarkers [13]. Analyzing the proteomic profile of AML patients
has led to the identification of various potential therapeutic targets and candidate protein
biomarkers to predict AML relapse and therapeutic efficiency [14–17].

In this study, we compared the proteomic profiles of clinical AML cells from favorable
(group 1), intermediate (group 2) and adverse (group 3) risk patients based on the ELN
recommendations to identify specific proteins associated with each risk group. Further
proteomic analyses of the matched AML serum samples were conducted to identify and
quantify cytokine levels between the three risk groups. The proteomic profiling of the ELN
based risk groups facilitated the identification of differential protein levels between risk
groups, thus, improving our current understanding of AML prognosis and identifying
potential biomarkers to aid prognostic classifications in AML.

2. Materials and Methods
2.1. Clinical Samples

Matching Peripheral Blood (PB) and bone marrow (BM) patient samples were collected
at the same time after receipt of written informed consent from the Helsinki University
Hospital Comprehensive Cancer Center (Helsinki University Hospital Ethics Committee,
decision number 3613/06.01.05.01.00/2014) and in compliance with the Declaration of
Helsinki. In total, 41 samples from AML patients were collected. The patient characteristics
are presented in Table 1. Cytogenetic and molecular genetic data were available for all
patients, and genetic group (favorable, intermediate, and adverse) was defined according to
the European LeukemiaNet. Mononuclear cells (MNCs) were isolated from the BM samples
by Ficoll density gradient centrifugation (GE Healthcare, Little Chalfont, UK). MNCs were
viably cryopreserved in 10% DMSO and 90% fetal calf serum until further analysis.
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Table 1. Patient Data including gender, age at diagnosis, risk classification, diagnosis type and percentage (%) blasts in bone
marrow (BM). DEK-NUP214: fusion gene created by the translocation occurring between specific introns in the gene DEK
on chromosome 6 and the gene NUP214 on chromosome 9. NOS: Not otherwise specified.

Sample ID Gender Diagnosis Age Risk Class Diagnosis Type % Blasts in BM

1 Female 46.4 1 9871 Ac. myelomonocytic leuk. w abn. mar.
eosinophils 50

2 Female 35.3 1 9896 Acute myeloid leukemia, t(8;21)(q22;q22) 60

3 Male 21.6 1 9896 Acute myeloid leukemia, t(8;21)(q22;q22) 40

4 Female 67.3 1 9861 Acute myeloid leukemia 75

5 Female 68.8 1 9861 Acute myeloid leukemia n/a

6 Male 16.8 1 9896 Acute myeloid leukemia, t(8;21)(q22;q22) 26

7 Female 55.5 1 9873 Acute myeloid leukemia without maturation 90

8 Female 44.8 1 9861 Acute myeloid leukemia 65

9 Female 53.5 1 9874 Acute myeloid leukemia with maturation 20

10 Male 72.8 1 9861 Acute myeloid leukemia n/a

11 Female 48.7 1 9891 Acute monocytic leukemia 8

12 Male 76.9 2 9861 Acute myeloid leukemia n/a

13 Female 62.9 2 9874 Acute myeloid leukemia with maturation 30

14 Male 56.5 2 9861 Acute myeloid leukemia 23

15 Female 63.8 2 9861 Acute myeloid leukemia 70

16 Female 78.1 2 9891 Acute monocytic leukemia 60

17 Female 24.3 2 9861 Acute myeloid leukemia 63

18 Male 67.3 2 9895 Acute myeloid leuk. with multilineage dysplasia 37

19 Female 48.6 2 9873 Acute myeloid leukemia without maturation 60

20 Male 72.6 2 9874 Acute myeloid leukemia with maturation 33

21 Male 16.5 2 9891 Acute monocytic leukemia 80

22 Female 62.9 2 9861 Acute myeloid leukemia 22

23 Female 61.5 2 9891 Acute monocytic leukemia 40

24 Female 66.7 2 9897 Acute myeloid leukemia, 11q23 abnormalities 15

25 Male 57 2 9874 Acute myeloid leukemia with maturation 42

26 Female 35.4 2 9920 Therapy-related acute myeloid leukemia, NOS 95

27 Female 68.2 2 del(9q)w23 60

28 Female 76.6 3 9873 Acute myeloid leukemia without maturation 91

29 Female 54.3 3 9867 Acute myelomonocytic leukemia 12

30 Male 28.6 3 9891 Acute monocytic leukemia 45

31 Male 66.7 3 9873 Acute myeloid leukemia without maturation 85

32 Female 52 3 9896 Acute myeloid leukemia, t(8;21)(q22;q22) 91

33 Female 21.8 3 9873 Acute myeloid leukemia without maturation 79

34 Male 44.6 3 9873 Acute myeloid leukemia without maturation 73

35 Female 71.1 3 9873 Acute myeloid leukemia without maturation 70

36 Female 39.7 3 9891 Acute monocytic leukemia 40

37 Male 40.6 3 9861 Acute myeloid leukemia 85

38 Female 59.4 3 9865 Acute myeloid leukemia with t(6;9)(p23;q34)
DEK-NUP214 85

39 Male 77.7 3 9895 Acute myeloid leuk. with multilineage dysplasia 16

40 Male 62.5 3 9727 Precursor cell lymphoblastic lymphoma, NOS 91

41 Female 64.7 3 9920 Therapy-related acute myeloid leukemia, NOS 65
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2.2. Sample Preparation for Mass Spectrometry

BM aspirate cells were lysed in an SDT-lysis buffer (4% SDS, 100 mM Tris/HCl,
100 mM DTT, pH 7.6) using 1:10 sample to buffer ratio and heated at 95 ◦C for 3–5 min.
DNA was sheared by sonication to reduce the viscosity of the sample. Before starting
sample processing, the lysate was clarified by centrifugation at 16,000× g for 5 min. A Pierce
660 nm protein assay system was used to determine protein concentration. Suspensions
were then buffer exchanged using the filter-aided sample preparation (FASP) method in a
buffer containing 8 M urea/50 mM NH4HCO3/0.1% ProteaseMax. After reduction with
dithiothreitol and iodoacetic acid-mediated alkylation, a double digestion was performed
using Lys-C (for 4 h at 37 ◦C) and trypsin (overnight at 37 ◦C) on 5 µg of BM aspirate protein.
Digested samples were desalted prior to analysis using C18 spin columns (ThermoFisher
Scientific, Hemel Hempstead, UK), dried through vacuum centrifugation and resuspended
in mass spectrometry loading buffer (2% acetonitrile (ACN), 0.05% trifluoroacetic acid
(TFA) in LC-MS grade water). Peptides were vortexed, sonicated and briefly centrifuged at
14,000× g and the supernatant transferred to mass spectrometry vials for label-free liquid
chromatography mass spectrometry (LC-MS/MS).

2.3. Label-Free Liquid Chromatography Mass Spectrometry

First, 500 ng of each digested sample was loaded onto a Q-Exactive high-resolution
accurate mass spectrometer connected to a Dionex Ultimate 3000 (RSLCnano) chromatogra-
phy system (ThermoFisher Scientific, Hemel Hempstead, UK). Sample loading was carried
out by an auto-sampler onto a C18 trap column (C18 PepMap, 300 µm id × 5 mm, 5 µm
particle size, 100 Å pore size; Thermo Fisher Scientific). The trap column was switched
on-line with an analytical Biobasic C18 Picofrit column (C18 PepMap, 75 µm id × 50 cm,
2 µm particle size, 100 Å pore size: Dionex). Peptides were eluted over a 65 min binary
gradient [solvent A: 2% (v/v) ACN and 0.1% (v/v) formic acid in LC-MS grade water and
solvent B: 80% (v/v) ACN and 0.1% (v/v) formic acid in LC-MS grade water]: 3% solvent B
for 5 min, 3–10% solvent B for 5 min, 10–40% solvent B for 30 min, 40–90% solvent B for
5 min, 90% solvent B for 5 min and 3% solvent B for 10 min. The column flow rate was
set to 0.3 µL/min. Data were acquired with Xcalibur software (Thermo Fisher Scientific).
The mass spectrometer was externally calibrated and operated in positive, data-dependent
mode. A full survey MS scan was performed in the 300–1700 m/z range with a resolution
of 140,000 (m/z 200) and a lock mass of 445.12003. Collision-induced dissociation (CID)
fragmentation was carried out with the fifteen most intense ions per scan and at 17,500
resolution. Within 30 s a dynamic exclusion window was applied. An isolation window of
2 m/z and one microscan were used to collect suitable tandem mass spectra.

2.4. Protein Identification and Quantification

Data analysis, processing and visualization for urine protein identification and label-
free quantification (LFQ) normalization of MS/MS data was performed using MaxQuant
v1.5.2.8 (http://www.maxquant.org) (accessed on 4 March 2019) and Perseus v.1.5.6.0
(www.maxquant.org/) (accessed on 8 March 2019) software. Differential protein expression
patterns in the AML (favorable, intermediate, and adverse prognostic groups) proteomes
were initially identified using MaxQuant software and the Andromeda search engine to
explore the detected features against the UniProtKB/SwissProt database for Homo sapien.
The following search parameters were used: (i) first search peptide tolerance of 20 ppm,
(ii) main search peptide tolerance of 4.5 ppm, (iii) cysteine carbamidomethylation set as a
fixed modification, (iv) methionine oxidation set as a variable modification, (v) a maximum
of two missed cleavage sites and (vi) a minimum peptide length of seven amino acids.
The false discovery rate (FDR) was set to 1% for both peptides and proteins using a target-
decoy approach. Relative quantification was performed using the MaxLFQ algorithm.
The “proteinGroups.txt” file produced by MaxQuant was further analyzed in Perseus.
Proteins that matched to the reverse database or a contaminants database or that were only
identified by site were removed. The LFQ intensities were log2 transformed, and only

http://www.maxquant.org
www.maxquant.org/
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proteins found in all seven replicates in at least one group were used for further analysis.
Data imputation was performed to replace missing values with values that simulate signals
from peptides with low abundance chosen from a normal distribution specified by a
downshift of 1.8 times the mean standard deviation of all measured values and a width of
0.3 times this standard deviation. A two-sample t-test was performed using p < 0.05 on data
post imputation, to identify statistically significant differentially abundant proteins. The
freely available software package PANTHER (http://pantherdb.org/) (accessed on 4 April
2019), was used to identify protein classes and characterize potential protein interactions,
respectively. Statistical overrepresentation tests (PANTHER GO-Pathway) of protein sets
were performed using the PANTHER database (http://PANTHERdb.org/) (accessed on
6 April 2019). Protein lists were uploaded in gene symbol format, and default whole
genome lists from the appropriate species were used as reference [18]. To analyze statistical
significance, Fisher’s exact test with Benjamini–Hochberg False Discovery Rate correction
(FDR) was applied [19].

2.5. Luminex Assay

Blood samples were evaluated using panels of analytes on the Luminex xMAP tech-
nology bead-based multiplexed immunoassay system. Panel 1 (L1CAM, CA9, Mesothelin,
Midkine, Hepsin, Kallikrein 6, TGM2, ALDH1A1, EpCAM and CD44). Panel 2 (EGF,
Eotaxin, G-CSF, GM-CSF, IFNα2, IFNγ, IL-10, IL-12p40, IL-12p70, IL-13, IL-15, IL-17A,
IL-1RA, IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IP-10, MCP-1, MIP-1α, MIP-1β,
TNFα, TNFβ and VEGF). Panel 3 (eotaxin-2, MCP-2, BCA-1, MCP-4, I-309, IL-16, TARC,
6CKine, eotaxin-3, LIF, TPO, SCF, TSLP, IL-33, IL-20, IL-21, IL-23, TRAIL, CTACK, SDF-
1α+β, ENA-78, MIP-1d and IL-28A). Samples were run in duplicate, along with blanks,
standards, and high and low concentration controls. Fluorescent values beyond the range
of the standards were extrapolated (unless the fluorescence intensity was below that of the
blanks). Average value of duplicates was used for data analysis.

3. Results
3.1. Proteomics Profiling of Human Bone Marrow Cells

Proteomic profiles on bone marrow aspirates from “favorable”, “intermediate” and
“adverse” risk AML patients were generated using label-free mass spectrometry. Label-free
mass spectrometry was selected as the quantitative approach because of the minimal sample
processing necessary to achieve relative quantification (Supplementary Tables S1–S3). Bone
marrow samples of high quality from 41 human subjects, 15 males and 26 females, were
available for proteomics analysis. Their age ranged from 16.5 to 78.1 years with a median
of 57 years (Table 1). Group 1 had male (3), female (8) with an average diagnostic age of
48.3; Group 2, male (6), female (10) with an average diagnostic age of 57.5 and Group 3,
male (6), female (8) with an average diagnostic age of 54.3.

Comparing group 1 (favorable) to group 2 (intermediate), 18 proteins were found to
be significantly changed, with CAH1 (Carbonic anhydrase 1), 5.2-fold elevated in group 2
(p = 0.035) representing the largest abundance difference between these groups (Table 2;
Supplementary Tables S5–S7). Comparing group 2 to group 3 (adverse), 41 proteins were
found to be significantly changed, with PRKDC (protein kinase, DNA-activated, catalytic
subunit), 12-fold elevated in group 2 (p = 0.010), representing the largest abundance
difference between these groups. The highest number of statistically significant proteins
was found when comparing group 1 to group 3. In total, 64 proteins were determined to
be significantly changed between these groups, with TIF1B 7.0-fold elevated in group 3
(p = 0.027).

http://pantherdb.org/
http://PANTHERdb.org/
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Table 2. Mass spectrometry data for group 1 vs. group 2; group 2 vs. group 3 and group 2 vs. group
3 including gene name, p-value, and direction of fold-change.

Group 1 vs. Group 2

Gene Name ANOVA p-Value ↑ in Gr1
(Fold-Change)

↑ in Gr2
(Fold-Change)

UBP7 0.001 1.4

HS105 0.004 2.0

DPYL2 0.006 1.2

SRSF2 0.007 1.1

FUS 0.010 1.6

RTCB 0.012 1.4

ANM1 0.017 1.3

PSA1 0.020 1.2

HNRL1 0.020 1.1

RAB5C 0.022 1.3

SYVC 0.030 1.3

1433Z 0.032 1.2

CAH1 0.035 5.2

SPTN1 0.035 2.3

LDHA 0.043 1.3

FLNA 0.045 1.5

ANXA6 0.046 1.3

G6PD 0.048 1.8

Group 2 vs. Group 3

Gene Name ANOVA p-value ↑ in Gr2
(Fold-Change)

↑ in Gr3
(Fold-Change)

DHX9 0.000 3.4

ATPB 0.001 6.1

GSTK1 0.001 6.7

AHNK 0.004 6.5

SYNC 0.004 1.4

TCPA 0.005 2.2

1433G 0.007 1.3

CH60 0.010 2.9

VATA 0.010 2.3

PRKDC 0.010 12.0

TAGL2 0.011 1.7

RPN1 0.012 1.9

TCPH 0.013 1.7

UB2V1 0.013 1.4

PA2G4 0.016 1.1

ROA2 0.016 1.5

ATPA 0.018 5.9
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Table 2. Cont.

Group 2 vs. Group 3

Gene Name ANOVA p-value ↑ in Gr2
(Fold-Change)

↑ in Gr3
(Fold-Change)

UBA1 0.020 1.6

FUBP1 0.020 1.9

TCPG 0.020 1.6

TBB4B 0.021 4.4

FUBP2 0.022 2.8

PNPH 0.023 2.2

GSTO1 0.025 1.9

CAN1 0.026 1.5

HBB 0.029 4.7

BAX 0.029 1.9

EF2 0.030 1.4

DDX1 0.031 3.3

URP2 0.031 1.8

HBA 0.032 5.4

ESTD 0.032 1.4

HBD 0.034 8.2

ACTZ 0.038 1.9

TCPB 0.039 1.6

CBX3 0.040 1.2

TIF1B 0.043 2.8

PGM1 0.045 1.1

IF4A1 0.045 2.9

CPNS1 0.047 3.5

TCPE 0.048 1.6

Group 1 vs. Group 3

Gene Name ANOVA p-value ↑ in Gr1
(Fold-Change)

↑ in Gr3
(Fold-Change)

LA 0.001 4.1

OTUB1 0.001 2.2

CNDP2 0.001 5.3

RAN 0.001 2.5

HNRPC 0.002 4.1

HNRPQ 0.003 4.2

CH60 0.003 6.6

PRDX6 0.004 2.9

TBA1B 0.005 3.7

TERA 0.006 2.2

SET 0.006 2.2

ROA2 0.006 2.8
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Table 2. Cont.

Group 1 vs. Group 3

Gene Name ANOVA p-value ↑ in Gr1
(Fold-Change)

↑ in Gr3
(Fold-Change)

CAPZB 0.007 1.4

RCC2 0.007 2.0

ECHA 0.007 4.2

ARPC4 0.007 1.3

PTPRC 0.007 2.0

NONO 0.008 2.5

THIO 0.009 2.9

ILF3 0.011 2.0

VIME 0.011 3.5

TALDO 0.012 2.1

LDHA 0.013 2.0

TCPH 0.013 2.3

NUCL 0.014 2.8

NAGK 0.016 1.7

DHX9 0.016 4.1

PRDX4 0.016 1.0

TCP4 0.017 2.5

HS90A 0.018 1.9

ROA1 0.018 2.5

LDHB 0.019 2.6

EF1A3 0.020 2.4

FEN1 0.020 1.8

EF2 0.021 1.9

NPM 0.024 2.6

F10A1 0.025 2.4

1433Z 0.026 1.6

TIF1B 0.027 7.0

ESTD 0.028 2.1

HNRH1 0.029 2.4

LC7L2 0.030 2.1

TCPZ 0.030 1.7

GANAB 0.030 2.3

PGAM1 0.031 1.3

ACTB 0.031 1.7

PARP1 0.032 2.9

RUVB2 0.032 2.1

NPS3A 0.034 1.2

NDKB 0.034 2.2

RHOA 0.035 1.6



Proteomes 2021, 9, 42 9 of 20

Table 2. Cont.

Group 1 vs. Group 3

Gene Name ANOVA p-value ↑ in Gr1
(Fold-Change)

↑ in Gr3
(Fold-Change)

SFPQ 0.035 1.9

IF4A3 0.035 2.3

HNRPU 0.037 2.4

DLDH 0.039 2.6

RSSA 0.041 3.6

ROA3 0.042 2.4

G3P 0.042 2.8

RS3 0.042 4.5

FSCN1 0.044 1.0

RL40 0.046 1.2

PDIA3 0.049 1.7

HSP7C 0.049 1.7

TSN 0.050 1.2

3.2. Pathway Analysis

Focusing on the group 1 vs. group 3 comparison, more proteins associated with
metabolic pathways, carbon metabolism, glycolysis/gluconeogenesis and biosynthesis of
amino acids were discovered to be elevated in group 3 (Figure 1). Of the proteins identified
as significantly changed between group 1 and group 3, those involved in propanoate
metabolism, oxytocin signaling pathway, pyruvate metabolism, regulation of the actin
cytoskeleton, nucleotide-binding oligomerization domain (NOD)-like receptor signaling
pathway, tight junctions, hypoxia-inducible factor 1 (HIF-1) signaling pathway, apoptosis
and the glucagon signaling pathway were uniquely associated with group 3. Overall, the
majority of proteins were found to be significantly elevated in group 3 compared to group 1
(56 proteins vs. 8 proteins) (Figures 1–3).

The main pathways involving significantly changed proteins when evaluating all
groups focus on metabolic pathways, carbon metabolism, glycolysis/gluconeogenesis,
biosynthesis of amino acids, the pentose phosphate pathway, pyruvate metabolism and
fructose/mannose metabolism. These results indicate how primary AML samples show
variations in distinct metabolic pathway and the associated prognostic impact this may
have on clinical outcome (Figures 1–3). No pathways were found to be significant based on
pathway enrichment analysis filtered by FDR-adjusted p-value (<0.05) using the PANTHER
Classification System because of the small protein lists submitted.

3.3. Targeted Proteomics Analysis

The simultaneous measurement of different analytes from a single sample is an emerg-
ing area for achieving efficient and high-throughput detection in several applications, in-
cluding biomarker discovery. In this analysis, the Luminex platform was employed which
includes a robust workflow and overcomes sample limitation problems, thus eliminating
the need to perform parallel individual measurements using single-plex approaches. Using
antibody coated magnetic beads, panels evaluating human circulating cancer biomark-
ers and human cytokine/chemokine/growth factors were run and subsequently using
xPONENT, standard curve fitting models for quantitative analysis were generated (Supple-
mentary Table S4).

Serum samples from 41 human subjects were analyzed, with IL-17A, IL-1RA, IL-1α
and SDF-1α1β found to be significantly changed in abundance across the different risk
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groups (Figure 4). IL-17A was found to have median values of 30 pg/mL, 37 pg/mL,
and 6 pg/mL; IL-1RA 27 pg/mL, 99 pg/mL, and 60 pg/mL; IL-1α 85 pg/mL, 56 pg/mL,
and 52 pg/mL; SDF-1α1β 2 ng/mL, 10 ng/mL, and 9 ng/mL in groups 1–3 respectively.
In terms of fold-changes for these analytes between the 3 groups, the most significant
changes related to IL-17A, with a 5-fold and 6.2-fold decrease in abundance observed when
comparing group 3 with groups 1 and 2 respectively. SDF-1α1β was determined to have
a 5-fold and 4.5-fold increase in abundance in group 2 and group 3 respectively, when
compared to group 1.
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Figure 1. Pathway analysis (cells) comparing significant proteins found to be elevated in Group 1
(Gr1—favourable) and Group 3 (Gr3—adverse) when compared.
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4. Discussion

In this study, we used quantitative proteomic techniques to identify specific proteins
associated with a “favorable”, “intermediate” or “adverse” prognosis. We identified
elevated levels of metabolic-related proteins in AML cells from patients with an “adverse”
prognosis when compared with AML cells from patients with a “favorable” prognosis. A
change in the levels of several cytokines (IL-17A, IL-1RA, IL-1α and SDF-1α1β) between
the risk groups was also identified in matched AML serum samples.

The complexity and heterogeneity of AML is illustrated by its classification into
different disease subtypes based on distinct differences in genetic make-up, morphology
and clinical presentation of AML [1]. Furthermore, AML patients often display intra-
tumoral heterogeneity with molecularly distinct subclones, often present at a low frequency,
enhancing the difficulties associated with efficient biomarker discovery and limits the
efficacy of target-specific drugs [20–23]. To combat the heterogeneity of this disease,
extensive research is required to boost current efforts in biomarker discovery to facilitate
more accurate prognostic classifications and better therapeutic decisions.

Altered metabolism is a well-known hallmark of cancer associated with the repro-
gramming of metabolic activities to support a number of pro-anabolic pathways promoting
tumorigenesis and disease progression [24]. Metabolomics has emerged as an important
-omics technology in identifying novel biomarkers and therapeutic targets. Several studies
have reported dysregulation in metabolic pathways in AML [25–30]. Mutations in the gene
encoding the isocitrate dehydrogenase (IDH) enzyme involved in the tricarboxylic acid
(TCA) cycle results in the production of the oncometabolite 2-hydroxyglutarate (2HG) and
has been identified in ~6% of AML patients [31]. Analysis of AML patient serum revealed
2HG levels correlate with IDH mutational status and suggest a potential role as a prognostic,
predictive and therapeutic-monitoring biomarker in AML [32,33]. A mass-spectrometry-
based metabolomics study by Chen et al. identified a glucose metabolism prognostic
biomarker signature consisting of 6 metabolites [34]. The broadening of metabolomics
studies has resulted in various preclinical and/or clinical trials analyzing the effect of
chemotherapies targeting metabolism in AML [15,35,36].

Previous studies describing dysregulated metabolism in AML correlate with our
findings. Our studies revealed elevated metabolic-related protein levels in “adverse” risk
versus “favorable” risk clinical AML cell lysates. A total of 10 metabolic-related proteins
were elevated including peroxiredoxin-6, neutral alpha-glucosidase AB, 3-ketoacyl-CoA
thiolase (3-KAT), hydroxyacyl-CoA dehydrogenase alpha (HADHA), transaldolase, cytoso-
lic nonspecific dipeptidase, lactate dehydrogenase A and B, dihydrolipoyl dehydrogenase
and nucleoside diphosphate kinase B. Several of these metabolic proteins have previously
been investigated in AML.

3-KAT and HADHA enzymes make up part of the trifunctional protein complex
involved in catalyzing acetyl-CoA production by β-oxidation during fatty acid oxidation
(FAO) [37]. FAO was previously reported to be increased in chemo-resistant AML cells [38].
The overexpression of the FAO-related enzyme carnitine palmitoyl transferase 1A (CPT1A)
was also shown to be a predictor of poor outcome in AML [39]. Furthermore, bone
marrow adipocytes were found to promote acute monocytic leukemia (AMoL) survival
via increased FAO, determined by detecting increasing levels of HADHA following AMoL
co-culturing [40]. The FAO inhibitor, Avocatin B, was also found to possess potent anti-
AML activity [41]. When combined, these studies implicate increased FAO and elevated
FAO-related protein levels in the pathogenesis of AML.

Lactate dehydrogenase (LDH) is a well-established biomarker capable of aiding prog-
nosis in a variety of cancers including AML [42–45]. Recent studies have indicated the
potential of LDH as a prognostic marker in AML patients undergoing allogeneic hematopoi-
etic stem cell transplantation (HSCT), as well as a predictive marker of AML patient
outcome following sibling bone marrow transplant (BMT) [46,47]. Dihydrolipoyl dehy-
drogenase is a catalytic subunit of the pyruvate dehydrogenase complex, a target of the
lipoate mimetic compound CPI-613 currently being evaluated in a Phase 3 clinical trial
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in combination with other approved chemotherapeutics for the treatment of relapsed or
refractory AML [48]. Low expression levels of nm23-H2, also known as nucleoside diphos-
phate kinase B, was previously reported to be a good prognostic biomarker in AML [49].
Similarly, the overexpression of nm23-H2 was found to be associated with the “adverse”
risk group in our study.

Research in the field of oncometabolism has revealed certain metabolic alterations
as key contributors to tumorigenesis and tumor progression [50]. In AML, alterations
in several metabolic pathways such as the production of reactive oxygen species (ROS)
and increased levels of oxidative phosphorylation, have been linked to clinicopathological
features of AML including aggressive disease and chemoresistance [38,51]. A recent
study by Lo Presti et al. highlighted the strong influence of metabolic reprogramming on
AML prognosis by identifying distinct changes in the metabolic profile of leukemic cells
according to their mutational profile and stage of differentiation [52].

Future validation studies, a limitation of this study, on these elevated metabolic-
related proteins may lead to the development of a metabolism-based prognostic biomarker
signature to boost the prognostic value of current ELN recommendations. Our results
show a clear increase in the number of significantly elevated metabolic-related proteins
in the “intermediate” risk group. This risk group is the largest subset with many patients
displaying heterogenous outcomes, suggesting a need for further stratification [53]. Several
studies have identified specific genetic mutations in “intermediate” risk patients that
veer towards a more favorable outcome whereas others indicate a poor outcome [54,55].
Thus, further analysis of the dysregulated metabolic-related proteins identified in the
“intermediate” risk group and the survival outcome of the patients analyzed may reveal
interesting patterns corresponding patient prognosis.

The assessment of bone marrow remains the “gold standard” for the diagnosis and
monitoring of AML following treatment. Bone marrow biopsies are invasive and painful
procedures; therefore, considerable efforts are being made to develop less invasive means
of disease diagnosis and monitoring [56,57]. Analysis of AML patient serum provides an
easier and less intrusive method of identifying biomarkers. Our multiplex assays focused
on identifying altered chemokine/cytokine levels in AML serum samples matched to the
previously analyzed AML cells. Four interesting cytokines (IL-1RA, IL-1α, IL-17A, SDF-
1α1β) were found to be significantly dysregulated between single or multiple risk groups.

Interleukin-1 receptor antagonist (IL-1RA) is an anti-inflammatory cytokine that com-
petitively binds to the IL-1 receptor (IL-1R), inhibiting binding of IL-1α and IL-1β and
thus preventing downstream signaling cascade initiation [58]. Heterogeneous results from
previous studies imply fluctuating levels of IL-1RA in AML patient sera [59–61]. One
study reported increased, unchanged, and decreased levels of AML proliferation following
exposure to IL-1RA, which causes further confusion on the role of IL-1RA in AML [62].
Despite a significant increase in serum IL-1RA levels in the “intermediate” risk group,
additional studies are required to validate these findings.

The IL-1 cytokines, IL-1α and IL-1β, exert their pro-inflammatory effects via binding
to IL-1R. IL-1α is constitutively secreted and has been reported to possess tumor-promoting
or tumor-suppressing properties depending on the type of malignancy [63]. Despite, many
articles focusing on IL-1β in AML, studies focusing on IL-1α are lacking [64]. We report
increased serum IL-1α levels in patients with a favorable prognosis. Further studies are
required to elucidate whether IL-1α plays an anti-tumorigenic or pro-tumorigenic role in
AML to determine the prognostic relevance of high levels of this cytokine in “favorable”
risk AML.

IL-17A is a hematopoietic stimulatory cytokine mainly secreted by T helper 17 cells.
IL-17A has previously been reported to promote the proliferation of IL-17 receptor (IL-
17R)-positive AML cells through the activation of proliferative signaling pathways such
as JAK2/STAT3 [65]. IL-17A was found to be significantly decreased in the “adverse”
risk group compared to “favorable” or “intermediate” risk groups. Despite reports that
increased serum IL-17A represents a poor prognostic marker in AML, our findings may
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suggest an immuno-protective role of IL-17A in some cases, as described in other cancer
types [66–69]. Heterogeneous and contradicting results regarding serum cytokines levels
complicates the ability to accurately define these cytokines as useful biomarkers in AML.
Further studies to elucidate the lone actions and crosstalk between cytokines is required to
confidently identify a panel of serum cytokine biomarkers to aid disease monitoring and
prognostication in AML.

Stromal cell-derived factor-1 α and β (SDF-1/CXCL12) are commonly expressed cy-
tokines in various cells and tissues. CXCL12 binds to the CXCR4 receptor leading to the
activation of intracellular events such as chemotaxis, proliferation, and transcription [70,71].
CXCR4 is expressed on almost all hematological cell types including lymphocytes and
hematopoietic stem cells (HSCs). The CXCL12/CXCR4 ligand/receptor complex is asso-
ciated with tumor progression, angiogenesis, metastasis, and survival in various malig-
nancies [72–74]. CXCL12 levels has been shown to have prognostic significance in cancer,
with high levels associated with adverse outcome in esophagogastric, pancreatic, and lung
cancer; and, conversely, associated with enhanced survival in breast cancer [75].

In AML, the CXCL12/CXCR4 complex is exploited to initiate pro-survival signaling
and homing of AML blasts to the protective bone marrow niche [76,77]. The frequency of
bone marrow stromal cells secreting CXCL12 (CXCL12+) in the BM and CXCR4 expression
is increased in AML, potentially due to hypoxic conditions within the microenviron-
ment [78,79]. High CXCL12 causes a migration of CXCR4+ leukemic blasts towards the
high CXCL12 levels within the protective bone marrow niche [77,80]. The CXCR4+ stromal
cells and CXCR4+ leukemic cells create a bi-directional interaction network within the
BM resulting in the constitutive activation of proliferative and survival signaling path-
ways [79,81]. High levels of CXCL12 is suggested to promote the retention of AML-blasts
with the bone marrow microenvironment, thus, reducing the susceptibility of these blasts
to chemotherapeutics [77]. Our AML serum analysis found that CXCL12 was elevated
in “intermediate” and “adverse” risk AML patients. This finding corresponds with pre-
vious studies suggesting that high CXCR4 expression is indicative of poor prognosis in
AML [82]. Recently, researchers revealed a new CXCR4 receptor antagonist IgG1 antibody
(PF-06747143) capable of binding strongly to AML cell lines and to AML primary cells
inhibiting their chemotaxis in response to CXCL12 [83]. Monitoring of serum CXCL12
levels between the “favorable” risk group and the “intermediate” and “adverse” risk
groups represents a potential marker of disease progression in AML with higher levels
corresponding to more adverse outcomes. Blockade of the CXCL12 pathway, using a
commercially available CXCR4 antagonists such as plerixafor, may be an efficient method
of modulating AML cell proliferation and chemotherapy resistance [84]. As interpatient
variabilities are often seen in serum cytokine levels, further context-dependent studies in
relation to AML subtypes or age will improve our understanding of changing cytokine
levels in AML sera [85–87].

As our understanding of the pathophysiology mechanisms associated with AML
increases, this has directly contributed to be generation of new therapeutic approaches to
treat this malignancy. Much success has been achieved recently using inhibitors of FMS-like
tyrosine kinase 3 (FLT3), isocitrate dehydrogenase (IDH) and Bcl-2 (B-cell lymphoma 2).
Within the AML cohort, kinase 3 (FLT3) mutations are detected in approximately one-third
of patients [88]. Sorafenib is the most common FLT3 inhibitor used, with high activity
against internal tandem duplication ITD mutations instead of wild-type FLT3 and tyrosine
kinase domain (TKD) mutations [89]. Mutations in IDH1 or IDH2 are detected in approx-
imately 20% of AML patients inducing amino acid changes in conserved residues [90].
Specific IDH1 and IDH2 inhibitors include ivosidenib and enasidenib. Strategies to increase
the efficacy of these inhibitors continues, for example in combination with venetoclax [91].
Indeed, venetoclax-based combinations have improved outcomes, including both remis-
sion rates and overall survival for older patients. Combinations of venetoclax, with either
hypomethylating agents (HMA) or low dose cytarabine (LDAC), have shown promis-
ing results in clinical trials [92]. Glasdegib, a hedgehog pathway inhibitor and immune
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checkpoint inhibitors (nivolumab—PD-1 and ipilimumab—CTLA-4) are currently other
therapeutic strategies that are continually being refined with respect to the most efficacious
combination to include these therapeutic as part of [93,94]. In the near future, epigenetic
modifiers (RMDs), microRNAs and suppressor of cytokine signaling are likely to be utilized
clinically with respect to their anti-leukemia activity [95].

Many benefits exist for using a liquid biopsy for the analysis of biomarkers, with
plasma, serum and saliva routinely employed. A liquid biopsy is relatively noninvasive to
acquire and is generally a less time-consuming procedure than other approaches. Together
with soluble proteins found in biofluids, circulating tumor cells (CTCs), circulating tumor
DNA (ctDNA), and exosomes are regularly investigated because of their wide range of
clinical applications. The presence of leukemic myeloblasts in peripheral blood from AML
patients makes this biofluids especially attractive for the analysis of biomarkers, soluble or
cellular-based. An advantage of measuring soluble proteins present in peripheral blood
is that less processing of the samples needs to be completed (for examples measuring
cytokine levels by enzyme-linked immunosorbent assay (ELISA)), speeding up the diag-
nostic/prognostic test result and ultimately providing a more cost-effective methodology.

An important consideration for this study is that identifications are based on peptides
derived from canonical sequences of public databases, and subsequent validation studies
will need to take into account the complexity of associated proteoforms that may be present
(for example, splice variants and post-translational modifications (PTMs)), when designing
these studies [96].

5. Conclusions

Current clinically-used biomarkers in AML are based almost solely on genomic abnor-
malities, as outlined in the ELN recommendations [8]. The inclusion of validated proteomic
biomarkers would establish a more powerful array of factors to improve the prognostic
classification of AML patients and ensure more calculated therapeutic decisions are made
based on a patient’s prognosis and various other factors. Our study identified elevated
metabolic-related proteins associated with adverse risk in AML, supporting evidence of
the involvement of increased metabolism in AML. Several differentially expressed cy-
tokines were also identified in the sera of patients from the three risk groups. IL-17A and
IL-1RA levels were found to fluctuate across the different prognostic groups; however,
both SDF-1α1β (CXCL12) and IL-1α were consistently found to increase and decrease in
abundance, respectively, across the different groups. The consistent decrease in IL-1α in the
different prognostic groups may point to its role as an antitumorigenic protein, as reported
by others. High CXCL12 levels in intermediate and adverse risk groups were of particular
interest due to the role of this chemokine in AML pathogenesis. Therefore, further efforts
to validate CXCL12 as a prognostic biomarker are warranted. This study supports a role
for increased CXCL12 (serum levels) and increased metabolism-related proteins in the risk
profile associated with different cohorts of AML patients.
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