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ABSTRACT: Targeted protein degradation (TPD) is emerging as a
promising therapeutic approach for cancer and other diseases, with an
increasing number of programs demonstrating its efficacy in human
clinical trials. One notable method for TPD is Proteolysis Targeting
Chimeras (PROTACs) that selectively degrade a protein of interest
(POI) through E3-ligase induced ubiquitination followed by proteasomal
degradation. PROTACs utilize a warhead-linker-ligand architecture to
bring the POI (bound to the warhead) and the E3 ligase (bound to the
ligand) into proximity. The resulting non-native protein−protein
interactions (PPIs) formed between the POI and E3 ligase lead to the
formation of a stable ternary complex, enhancing cooperativity for TPD.
A significant challenge in PROTAC design is the screening of the linkers
to induce favorable non-native PPIs between POI and E3 ligase. Here,
we present a physics-based computational protocol to predict noncanonical and metastable PPI interfaces between an E3 ligase and a
given POI, aiding in the design of linkers to stabilize the ternary complex and enhance degradation. Specifically, we build the non-
Markovian dynamic model using the Integrative Generalized Master equation (IGME) method from ∼1.5 ms all-atom molecular
dynamics simulations of linker-less encounter complex, to systematically explore the inherent PPIs between the oncogene
homologue protein and the von Hippel-Lindau E3 ligase. Our protocol revealed six metastable states each containing a different PPI
interface. We selected three of these metastable states containing promising PPIs for linker design. Our selection criterion included
thermodynamic and kinetic stabilities of PPIs and the accessibility between the solvent-exposed sites on the warheads and E3 ligand.
One selected PPIs closely matches a recent cocrystal PPI interface structure induced by an experimentally designed PROTAC with
potent degradation efficacy. We anticipate that our protocol has significant potential for widespread application in predicting
metastable POI-ligase interfaces that can enable rational design of PROTACs.
KEYWORDS: non-Markovian dynamic models, Markov state models, protein−protein interface prediction, PROTAC, encounter complex

1. INTRODUCTION
Small molecule heterobifunctional degraders, exemplified by
proteolysis targeting chimeras (PROTACs), have the potential
to transform drug discovery and therapeutic interventions by
degrading proteins instead of inhibiting them.1−4 Unlike the
traditional small-molecule inhibitors that block the protein
function through occupying the active or allosteric site of the
protein of interest (POI), PROTACs can employ functional or
nonfunctional binders to target the POI, inducing its
degradation through a catalytic mechanism.5,6 This approach
provides opportunities to target many undruggable POIs that
lack well-defined small molecule binding sites for functional
blockade. A PROTAC comprises three distinct components:
warhead, linker, and E3 ligand. With the warhead binding to
the POI and E3 ligand binding to the E3 ligase, PROTAC
facilitates the proximity between the POI and the E3 ubiquitin
ligase, leading to the formation of a ternary complex. This
complex could then trigger the ubiquitination of the POI,

marking it for degradation by the cellular proteasome
machinery. Over the past two decades, significant effort has
been dedicated to investigating and designing PROTACs.7,8

However, the development of most PROTACs remains highly
empirical, involving the time-consuming synthesis and screen-
ing of libraries with various linkers between the warhead and
the E3 ligase ligand. This process aims to induce favorable
non-native protein−protein interactions (PPIs) between the
POI and E3 ligase.
Throughout the PROTAC-induced targeted protein degra-

dation (TPD), establishing specific PPI between the POI and
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E3 ligase is critical.9−12 Many degraders function by leveraging
the stabilization of preexisting but weak PPIs between POIs
and E3 ligases.11−13 Additionally, both experiments and
computational simulations reveal that PPIs of highly
productive ternary complexes exhibit noticeable dynamical
conformational heterogeneities, distinct from the static
contacts found in crystal structures.11,14−17 Previous bio-
physical and structural studies have also demonstrated that
different PROTACs, even with the same warhead and E3
ligand but different linkers, can induce distinct PPIs in ternary
complexes, leading to significant differences in degradation
efficiency.9,16−24 Therefore, investigating the complex and
dynamic non-native PPIs between the POIs and E3 ligases is
critical for understanding TPD mechanisms and guiding the
rational design of novel PROTACs. An approach with great
potential to explore all possible inherent PPIs between the POI
and E3 ligase is to study the POI-E3 ligase encounter complex

without the linker.10,25−27 The subsequent introduction of the
linker to this encounter complex is akin to adding an additional
geometric constraint.10

All-atom MD simulation offers a promising approach to
reveal metastable and dynamical PPIs between the POI and E3
ligase.10,11 It has been combined with enhanced sampling
techniques to elucidate both the kinetic and thermodynamic
properties of a PROTAC system.28 However, simulating the
formation of PPIs presents significant challenges due to the
various ways in which the POI and E3 ligase can approach each
other, as well as the conformational changes induced upon the
formation of the encounter complex. The formation and
conformational changes of encounter complex PPI interfaces
often occur on milliseconds time scales, which exceed
accessible length of the straightforward MD simulations for a
system at the size of approximately 150,000 atoms. Adding to
the complexity, there is a lack of dominant PPI, and all PPIs

Figure 1. The KRAS-VHL encounter complex system (a-d) and the workflow of the construction of the non-Markovian IGME model (e-l). (a).
The structure of the encounter complex from rigid protein docking, involving VHL (cyan) and KRAS (orange), along with the E3 ligand and two
warheads. (b-d) Chemical structures of E3 ligand (green), warhead 1 (magenta) and warhead 2 (red). (e) Generate initial conformations for the
encounter complex through rigid protein docking. (f) Perform extensive MD simulations using Folding@Home to explore the PPI interfaces of the
encounter complex. (g-h) Utilize MoSAIC community detection and spectral-oASIS algorithms to extract essential pairwise distance features for
representations of the PPI interfaces. (i) Identify the collective variables by tICA. (j) Cluster the projected MD conformations to microstates by K-
Means algorithm. The hyperparameters for (i) and (j) are tuned through cross-validation based on the GMRQ score. (k) Lump the microstates to
metastable macrostates by PCCA+ algorithm. (l) Model the transition dynamics between macrostates with IGME method.
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may potentially serve as functional ones for PROTAC
design.10 Therefore, obtaining a comprehensive understanding
of the conformational space of the encounter complex and
identifying representative PPI interfaces, along with their
equilibrium populations and transition rates between them, are
challenging.
Markov State Models (MSMs) built from extensive MD

simulations offer a potentially useful technique to address these
challenges.29−40 MSMs model dynamics through a series of
Markovian jumps among conformational states at discrete lag
times. MSMs also provide a rigorous pipeline to coarse-grain
MD conformations into a few comprehensible states according
to their dynamic metastability, facilitating the prediction of
thermodynamic and kinetic properties associated with them.
However, for MSMs to have predictive power, they must be
constructed with a sufficiently long lag time to ensure that
interstate transitions become Markovian, posing a major
challenge as the lag time is constrained by the length of
short MD simulations.,38,39,41 To address this challenge, we
recently developed an approach based on the Generalized
Master Equation (GME), called the Integrative Generalized
Master equation (IGME) method.38 IGME captures non-
Markovian dynamics by incorporating time-integrations of
memory kernel functions, offering a promising approach to
study PPIs in encounter complexes based on relatively limited
MD simulation data.
In this study, we constructed an IGME model from 2,492

MD trajectories, with an average length of 605 ns (∼1.51 ms in
total), to elucidate potential non-native PPIs between the
oncogene homologue (KRAS) protein42−45 and the von
Hippel-Lindau (VHL) E3 ligase.46,47 KRAS is the oncogene
most frequently mutated in cancer,42 and PROTAC-induced
TPD is considered as a promising approach for treating KRAS-
induced cancer.43,45 We here simulated the formations and
conformational changes of the encounter complex in the
absence of the linker, but with KRAS bound to two different
warheads and VHL bound to one ligand (Figure 1a−d). Using
our simulation and dynamic modeling protocol, we revealed six
metastable states characterized by distinct conformations of
PPI interfaces and provided the corresponding thermodynamic
and kinetic properties for each state. Based on the IGME
model, we further evaluated additional structural properties of
conformations within each state, such as the spatial proximity
of the warhead and E3 ligand and the solvent-exposed sites of
both. Consequently, we identified three metastable states that
exhibit promising PPI interfaces for future linker design.
Conformations from one of our predicted metastable states
agree well with a recent ternary crystal structure44 (with an
average interface-RMSD of 5.42 ± 3.67 Å) involving a
degrader of promising degradation efficiency. Our IGME
modeling offers a systematic and efficient approach to
legitimizing metastable PPIs in protein pairs, thereby
facilitating rational PROTAC design.

2. RESULTS AND DISCUSSIONS

2.1. Elucidating the Dynamics of KRAS-VHL Encounter
Complex Formation: IGME Outperforms MSM

We construct our IGME model from MD trajectories totaling
∼1.51 ms for studying the dynamics of the KRAS-VHL
encounter complex formation (see Figure 1 panels e-l for our
protocol). Specifically, to systematically explore the complete
ensemble of PPI interface conformations, we employ rigid

protein docking to search the preferable PPIs from various
approaching orientations, and then initiate unbiased MD
simulations from these docking poses (see Figure 1e,f and
Methods 4.1 for details). To build the 100-microstate MSM,
we initially characterize the conformations of the encounter
complex using all 25 330 internal pairwise distances between
KRAS and VHL residues, and then employ the Molecular
Systems Automated Identification of Cooperativity (MoSAIC)
algorithm48 and Spectral-oASIS algorithm49 to identify 1,500
important distances as features for subsequent analysis (see
Figures 1g,h and S2−S4). The implementation of these two
algorithms ensures that the chosen distance features adequately
represent various important collective motions around the PPI
interfaces, while also capturing the slowest dynamics effectively
(see Figures S2−S4 and Methods 4.2 for details). Sub-
sequently, we apply the time-lagged independent component
analysis (tICA)32,50 with kinetic mapping51 to project the
encounter complex conformations onto five collective variables
(CVs) (see Figure 1i) and then cluster them into 100
microstates via K-Means algorithm (see Figure 1j). The tICA-
related hyperparameters and the number of microstates are
optimized using cross-validation with the Generalized Matrix
Rayleigh Quotient (GMRQ) score52 (see Figure S5). More
details about the construction and validation of microstate
MSM are presented in Methods and Supporting Information.
To identify metastable PPIs of the KRAS-VHL encounter

complex, we lump 100 microstates into six metastable
macrostates using PCCA+53,54 and build a 6-macrostate
IGME model (see Figure 1k,l). Unlike Markovian MSMs,
IGME utilizes the GME to evolve dynamics, considering the
non-Markovian dynamics through time integrations of memory
kernel functions. Given that the relaxation time of memory
kernel functions is much shorter than the Markovian lag time
for MSMs, IGME can model dynamics between a handful of
metastable states with shorter segments of MD simulations
compared to MSMs. As shown in Figure 2a, the integrations of
memory kernels reach plateaus at around 50 ns, therefore
accurate IGME models can be constructed at the memory
kernel relaxation time τk > 50 ns. An example of such an IGME
model, constructed from MD simulation segments, each with
the length of 150 ns (τk = 70ns and an additional segment of
Lfit = 80 ns for fitting, see Methods 4.3 for details), is shown in
Figure S11c. In sharp contrast, the MSM constructed with a
much longer lag time of τ = 250 ns still predicts significantly
faster state-relaxation dynamics compared to the original MD
simulations (Figure S11c). Furthermore, the root mean
squared error (RMSE) of the MSMs’ predicted dynamics is
over an order of magnitude larger than that of the IGME
models at different lag times (see Figure 2b and the Methods
4.3 for the details of the RMSE calculations). While IGME
models consistently predict the slowest time scale and the
mean first passage time (MFPT) across a wide range of lag
times, MSMs always underestimate these values (see Figure
2c,d). We anticipate that to achieve comparable performance
with IGME models, MSMs would require a significantly longer
lag time, which is beyond the length of our MD simulations. As
shown in Figure S11a, IGME models built with a wide range of
hyperparameters: τk and Lfit robustly exhibit small RMSEs, i.e.,
below 0.1%. For the remaining sections, we choose the optimal
IGME model as the one with the smallest RMSE value
(constructed with τk = 70ns and Lfit = 80ns) to report the
thermodynamic and kinetic properties of the PPI interfaces.
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2.2. Dynamic Heterogeneity of the Encounter Complex
Associated with Diverse Metastable PPI Formation
With the optimal IGME model, we observe the PPI interfaces
of encounter complex consist of diverse non-native interaction
patterns and exhibit significant dynamical heterogeneities. As

shown in Figure 3a, the free energy landscape of PPI interfaces,
projected onto the top two CVs identified by tICA, reveal
multiple free energy basins. Each basin is associated with
distinct metastable macrostate, indicating the inherent
flexibility and diversity for the formation of the PPI interfaces
between KRAS and VHL. Our IGME model also shows that
State VI is highly populated (72.71%), while the equilibrium
populations of the other five states are all below 10% (Figure
3b). Strikingly, we observe significant different PPI interfaces
formed and stabilized by diverse chemical interactions between
different domains of KRAS and VHL in these six metastable
states (see representative structures in Figure 3e). The
transition rates between these metastable states are also
predicted by our IGME model (Figure S12). To characterize
different PPIs, we first illustrate the PPI patterns using the
residue pairwise distance maps and analyzing the distance
variance between contacting interface residues in KRAS and
VHL. As shown in Figure S14 and S15, various PPIs display
substantially different residue pairwise distance maps. Addi-
tional analysis of the contact frequency for each residue across
PPI interfaces also indicates the heterogeneity of these PPIs
(Figure S16). To further examine if there exists preference of
specific nonbonded chemical interactions to stabilize these
PPIs, we plotted the preferences of amino acid type and
interactions for PPIs formed in different macrostates (see
Figures S17 and S18). We observe that salt bridges and dipolar
interactions are present in all PPIs, through the interactions
between charged residues (e.g., Glu and Arg) and polar
residues (e.g., Gln and His). Interestingly, PPIs in States I and
IV exhibit additional hydrophobic interactions (e.g., via Leu
and Val). These observations suggest that KRAS and VHL can
form different non-native PPIs via diverse nonbonded
interactions. These metastable non-native PPIs open new
opportunities for PROTAC design.
Previous experimental and computational results have

demonstrated that it is inadequate to solely rely on the crystal

Figure 2. Non-Markovian IGME models outperform MSMs in
elucidating the dynamics of the KRAS-VHL encounter complex
formation. (a) Mean Integral of memory kernels (MIK) with different
τk for six-states model calculated from quasi-MSM (qMSM) and
IGME. (b) Root mean squared error (RMSE) of predicted transition
probability matrices with respective to MD simulations. (c) Slowest
implied time scale and (d) mean first passage time (MFPT) from
State III to State IV, calculated from IGME models and MSMs
constructed with various lag times. The error bars represent standard
deviations estimated from 50 bootstraps of the data with replacement.

Figure 3. Interpretation of non-Markovian dynamics model. (a) The free energy landscape and distribution of states visualized on the top two tICA
components. The free energy is estimated from the ultralong trajectory generated by running kinetic Monte Carlo with the microstate-MSM. Each
point represents the center of a microstate, and its color corresponds to the macrostate label. (b) Stationary populations for macrostates predicted
from the optimal IGME model. (c) The heterogeneity of each macrostate is visualized by calculating the interface-RMSD relative to the state center
for all conformations within the state. (d) The buried area of PPI surfaces within each macrostate. (e) The representative conformations for each
macrostate (selected from the microstates with the highest population).
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structure of induced ternary complex to assess PROTAC
performance. Instead, the dynamic behaviors of the ternary
complex may exert a more influential role on degradation
efficiency.9,16−24 As our simulations of the encounter complex
do not include the degrader linker, the encounter complex
exhibits much greater heterogeneity among multiple protein
domains. We next examine the structural heterogeneities
within each metastable macrostate. The visualizations of
multiple encounter complex conformations for each macro-
state (see Figure S19) and the characterization of distance
variance between contacting interface residues (see Figure
S15) illustrate the high consistency of PPI interfaces in State
I−V and significant flexibilities of interfaces in state VI. By
further using the MD conformation located at the geometric
center of each macrostate as the reference structure, we
compute the interface-RMSD among all MD conformations
within each of the six macrostates (Figure 3c). The interface-

RMSD is calculated using the formula x x( )
N i

N
i i

ref1
1

2
= ,

where xi represents the Cartesian coordinates of atoms in the
interface residues (i.e., residues with an average minimal
distance to the other protein less than 10 Å) after optimal

alignment, xi
ref denotes the reference coordinates and N is the

number of conformations. Except for the highest populated
State VI, all other 5 macrostates display moderate interface-
RMSD values which are comparable to those observed in the
dynamical simulations of other PROTAC-induced ternary
complexes.11 This observation suggests that even in the
absence of the degrader linker, KRAS and VHL can develop
dynamic cooperativity during the formation of the encounter
complex, resulting in various well-defined PPIs suitable as a
baseline for linker design. Additionally, we evaluate the stability
of the PPIs for each macrostates. Previous studies have
suggested a correlation between buried surface areas (BSA)
and experimentally measured binding affinity of the PPIs.13 We
quantify the BSAs of interfaces from different macrostates by
subtracting the solvent-accessible surface area (SASA) of the
two single proteins from the encounter complex. As shown in
Figure 3d, our analysis shows that there are no noticeable
differences in the BSA values of the six macrostates in our
IGME model. This result is consistent with the equilibrium
populations predicted by IGME, where States I−V exhibit
comparable populations.

Figure 4. Protein−protein interfaces selected for linker filtering. (a-b). Average solvent accessible surface area (SASA) depicted for (a) E3 ligand
and (b) warhead 1 molecules across all conformations within six macrostates and their respective most populated microstate. (c) The average
pairwise distances between the exposed heavy E3 ligand atoms and warhead 1 atoms (top 50% SASA) are calculated across all conformations
within six macrostates and their respective most populated microstate. Error bars represent standard deviations. Fifty randomly selected overlapping
conformations and one representative single conformation of the PPI interface are visualized for State II (d-e), State III (h-i), and State V (i-m).
The relative positions of the E3 ligand-warhead 1 and their partial chemical structures are displayed for State II (f-g), State III (j-k), and State V (n-
o).
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Conversely, although State VI has the largest overall
equilibrium population, it encompasses diverse PPI binding
modes with significantly shorter average lifetimes, making it
unsuitable for linker design. We noticed that each metastable
state spans a distinct region of varying size within the CV space
(Figure S20a) and contains PPI interface binding modes with
varying degrees of heterogeneity. We thus reported the average
lifetime of microstates belonging to each metastable state as an
indicator of the average lifetime for binding modes within each
metastable state. Specifically, we fit the residence probability
for each microstate at different lag times using the formula p(t)
=cekt and define the microstate’s lifetime as the time at which
the residence probability decays 1/e. As shown in Figure S20,
we plotted the lifetime distribution projected onto the top two
tICA CVs, and the average lifetime of microstates within each
metastable state, respectively. Interestingly, although state VI
has the largest overall equilibrium population, it contains
diverse PPI binding modes, and these modes exhibit much
shorter average lifetimes (Figure S20b). This observation
suggests that State VI is a high-entropy state with diverse,
short-lived PPIs that rapidly interconvert. Consequently, PPI
interfaces from States I−V may serve as better candidates for
further PROTAC design. In the current study, we did not find
any metastable states with extremely low equilibrium
populations. However, we recognize that the population
predicted by the IGME model could be a valuable criterion
for shortlisting PPIs interfaces. Specifically, we recommend
that metastable states with low populations (e.g., < 1%) should
not be prioritized for linker design.
Compared to simple rigid protein docking, our simulation

and dynamic modeling protocol significantly enhances the
refinement of PPI interface patterns and identifies the most
metastable interfaces. Although the interfaces obtained from
docking exhibit considerable diversity, many do not fall within
the free energy basins when projected onto the top two CVs
(see Figure S9). A detailed comparison of the structural
differences between docking interfaces and those from
metastable states revealed noticeable differences in their
contact maps (see Figure S21). Furthermore, assigning
docking interfaces to metastable states showed that while
these interfaces span all six states, 43 out of 50 are
predominantly associated with state VI (see Figure S9),
which is unsuitable for subsequent linker design. This
highlights the importance of dynamic modeling for accurate
interface classification and the identification of the most
metastable PPI interfaces.
2.3. Shortlisting Predicted PPIs Meeting Linker Constraints

The rational design of PROTAC linkers has been limited due
to the challenges associated with predicting the preexisting
PPIs between the POI and the E3 ligase. As our IGME model
has characterized the equilibrium populations and kinetics of
various metastable PPI interfaces across different macrostates,
we next consider the geometries of interfaces and ligands
within each macrostate to evaluate their potential for linker
design. Throughout the MD simulations, we notice that the
warheads and E3 ligand tightly bound to the protein pockets,
with only ∼3.2% of trajectories showing them diffusing away
from the binding site. We further filter out these conformations
from postanalysis. Since the encounter complex exhibits
varying degrees of conformational changes during the
formation of different PPIs, warheads and E3 ligand expose
different atoms and adopt different relative orientations

accordingly. To identify the exposed functional groups in the
warheads and E3 ligand that could potentially be connected via
a linker, we calculate the SASA for each of their atoms (Figure
4a,b). We identify exposed heavy atoms, defined as those with
the top 50% SASA among all atoms, as having the linking
potential. Furthermore, we measure the average pairwise
distances between the exposed heavy atom pairs of the E3
ligand and the warheads to further assess the feasibility of
linker design, as shown in Figures 4c and S22.
Figure 4a,b shows that the E3 ligand generally exhibits larger

SASA compared to the warheads, primarily because of the
shallow pocket of VHL.55,56 The E3 ligand conformations from
States I and IV are considerably more exposed than those from
other states. This suggests that conformations from these two
states may have multiple potential sites to be linked. However,
upon examining the interactive profiles between KRAS and
VHL in these two states (Figures 3e and S19), we find that
developing any linker based on the conformations from these
two states is impractical, as the warheads and E3 ligand are too
far away from each other (between 25 and 30 Å, see Figure
4c). Previous studies have highlighted that linker length is one
of the most crucial factors influencing the effectiveness of
PROTACs, and excessively long linkers often lead to a
reduction in potency. Generally, PROTACs with linkers
containing more than 20 atoms have comparatively low
potency.18,25,57,58 Therefore, designing linkers based on the
PPI interfaces from States I and IV poses significant challenges.
Moreover, after evaluating the conformations from all states,
we observe that warhead 2 (see its chemical structure in Figure
1d) consistently stays distant from the ligase ligand (Figure
S22), suggesting challenges in developing a degrader using it.
Consequently, by excluding State VI due to its kinetically

unstable PPI, and eliminating State I, State IV, and warhead 2
due to inappropriate distances between warheads and E3
ligand, the PPI interfaces from the remaining three states (II,
III, and V) have the potential for further linker development
between E3 ligand and warhead 1. We further visualize the PPI
conformations and the relative positions of ligands for these
three states. As shown in Figure 4d−o, the conformations
within these three states maintain consistent interfaces while
also exhibiting slight heterogeneities. In addition, the warhead
and ligand approach each other at appropriate distances for
adding the linker. As shown in Figure 4(f,j and n), we highlight
the ligand and warhead atoms with the top 50% largest SASA
using dashed boxes in their chemical structures. In these
chemical structures, we have identified potential linking sites,
marking them with colored dots based on their synthetic ease
and frequency of use documented in the literature.23,59−64 In
particular, the red dots correspond to atomic sites that are
commonly used in literature for attaching the linkers, while the
green dots indicate sites that are less frequently used for this
purpose. However, it is important to note that less frequently
used attachment sites for VHL ligands may lead to highly
effective degraders.59 We anticipate that these selected
conformations may aid in designing linkers that could further
stabilize the naturally favorable PPIs.
Through our systematic analysis shown above, we found

there are several crucial factors to consider when evaluating
and selecting appropriate PPI interfaces for linker design. We
summarize these factors and criteria in a schematic workflow,
as illustrated in Figure S23. Specifically, quantifying their
structural heterogeneity and average lifetimes for PPI binding
modes helps in selecting states with long-lived PPI interfaces
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and consistent binding modes. States with interface-RMSD
values larger than 10 Å should be carefully considered, given
that the typical structural heterogeneity of the POI−PROTAC-
E3 ligase ternary complex is moderate.11 And states with large
interface-RMSD usually serve as connectors for diverse, short-
lived PPI binding modes that rapidly interconvert. Sub-
sequently, the equilibrium populations of states and the BSA
of configurations within states can serve as references for PPI
binding affinity. States with very low populations (e.g., < 1%)
and very small BSAs (e.g., < 500 Å2)13 should be used
cautiously for linker design. Then we could employ SASA to
identify solvent-exposed heavy atoms on the warhead or ligand
as potential linking sites. Targeting these exposed sites with a
linker can largely retain the inherent binding modes of the
warhead and ligand. The identification process can be highly
system-dependent, as variations in pocket shapes and PPI
binding modes significantly influence the conformations of the
warhead and ligand. Meanwhile, it is also essential to integrate
chemical synthesis knowledge during this step. Additionally,
the distance between selected linking sites offers guidance for
determining the appropriate linker length. PPI interfaces with
linking sites that are too far apart should be discarded, as
typical linkers span 5 to 15 carbon atoms in length.25

2.4. Our Predicted PPI Interface (State III) Agrees with the
Structure Induced by an Experimentally Designed
PROTAC

A recent experimental study by Johannes et al. successfully
designed and completed the preclinical validation of a single
small molecule degrader, targeting KRAS and related mutant
cancer proteins with VHL E3 ligase.44 In this study, the
authors reported a cocrystal structure of the degrader in
complex with KRAS and VHL at a resolution of 2.2 Å (PDB:

8QVU), as shown in Figure 5a. We find that the PPI interface
in this ternary cocrystal structure is structurally similar to the
most populated microstate from our State III (Figures 5a,b and
S19). Upon further examination of the pairwise distance map
of the crystal PPI interface, we observe a high degree of
consistency with the pairwise distance map of the ensemble of
interfaces within macrostate III (Figure 5c,d), where salt
bridges and dipolar interactions stabilize the PPI. The
interface-RMSDs between the crystal structure and the
ensemble of interfaces from macrostate III and its correspond-
ing most populated microstate are as small as 5.42 ± 3.67 Å
and 3.76 ± 2.37 Å, respectively. The interface with the smallest
interface-RMSD, visualized in Figure 5a, has a value of just
0.68 Å and shares an identical contact map with the crystal
structure. Furthermore, the BSA of crystal structure is 1,556
Å2, which is also consistent with State III (1,612 ± 367 Å2) and
its most populated microstate (1,587 ± 206 Å2). This
agreement between the PPI interfaces in State III with the
experimental crystal structure provides compelling validation
of the predictions from our IGME model. In contrast, among
all interfaces generated from protein docking, we found only
one that is closest to state III and exhibited the smallest
interface-RMSD with the crystal structure. However, the PPI
interfaces in this docking structure still show substantial
differences in the contact map (with a Frobenius norm of 4.82
between the docking and crystal structures) and a significant
interface RMSD of 8.28 Å compared to the crystal structure
(see Figure S24), indicating that our MD simulations and
IGME modeling significantly improve the accuracy of the
initial docking structures.
Probing the dynamical interactions and identifying non-

native PPIs between protein pairs without degrader poses

Figure 5. Comparison between computationally predicted PPI interfaces and the interface induced by the experimentally designed PROTAC. (a)
Structural alignment between the crystal structure (magenta, PDB ID: 8QVU) and one PPI interface from most populated microstate in State III
(orange). The interface with the smallest interface-RMSD (0.68 Å) is selected for visualization, and the alignment is based on the VHL protein. (b)
Projection (blue star) of the crystal PPI interface of the ternary complex onto the top two CVs. (c) Pairwise distances between KRAS residues and
VHL residues in the crystal structure of the ternary complex (PDB: 8QVU). (d) Averaged pairwise distances between KRAS residues and VHL
residues across all conformations within macrostate III.
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significant challenges for various experimental methods. The
weak binding affinity of the encounter complex makes it
challenging for the structure biology approaches like X-ray
crystallography.65−67 While NMR spectroscopy or hydrogen−
deuterium exchange mass spectrometry can detect the
interactions, their time-resolution is limited.11,67 Recently, it
has also been shown that data-driven machine-learning
approaches such as AlphaFold and AlphaFold-Multimer face
challenges in accurately predicting non-native PPIs, particularly
when the interface area is limited.68,69 Our results demonstrate
that non-native PPIs in encounter complex could be
systematically and accurately predicted in atomistic detail by
integrating parallel short unbiased MD simulations with non-
Markovian dynamics modeling (i.e., IGME). Our models
provide advantages of revealing both non-native PPIs and their
dynamic heterogeneities simultaneously, thereby offering
ensembles of metastable PPI interfaces for subsequent high-
throughput linker design. In the future, the transition rates
between macrostates predicted by our IGME model could be
valuable in aiding the design of flexible linkers to stabilize two
distinct metastable PPI interfaces that interconvert rapidly.
Therefore, we anticipate that IGME holds significant potential
for generalization in future PROTAC discovery.

3. CONCLUSIONS
PROTAC-induced TPD is regarded as one of the most
promising approaches for small molecule-based drug discovery.
However, the rational design of PROTACs remains challeng-
ing due to factors such as the large size of the multiprotein
system and the complex, dynamic protein interactions. In this
study, we present a physics-based approach to identify the
complete ensemble of intrinsic and dynamic PPI interfaces
between KRAS and VHL proteins by investigating the linker-
less encounter complex. Specifically, we demonstrate that our
IGME model, a non-Markovian dynamics model, constructed
from extensive MD simulations (∼1.5 ms), is able to elucidate
the metastable states of PPI interfaces and accurately predict
their associated thermodynamic and kinetic properties. We
show that IGME models significantly outperform MSMs in
predicting slow dynamics associated with the encounter
complex formation between KRAS and VHL. The six
metastable states characterized by our IGME model represent
distinct PPI interfaces of the encounter complex. Upon
evaluating the stabilities and geometries of the PPI interfaces
in each state, we narrowed down to three states (State II, III,
and V) with promising PPI interfaces for future PROTAC
linker design. The interfaces from the selected metastable
states are primarily maintained by electrostatic interactions and
display local dynamic heterogeneity, serving as a good basis for
linker docking. We validate our theoretical predictions by
showing that one of our selected PPI interfaces (State III) is
highly consistent with a recent cocrystal structure containing
the PPI induced by an experimentally validated PROTAC for
the KRAS-VHL system. We anticipate that our predicted PPI
interfaces for the KRAS-VHL system will provide valuable
insights for future linker design. We believe that the rigorous
foundations of this strategy, grounded in physical simulations
and statistical thermodynamics, will lead to broad applicability
across diverse systems, facilitating more efficient designs of
efficacious PROTACs.

4. METHODS

4.1. All-Atom MD Simulation Setup for KRAS-VHL
Encounter Complex

The conformation of VHL protein (PDB ID: 1VCB)70 and KRAS
protein (PDB ID: 7RPZ)71 are respectively derived from crystal
structures identified through X-ray diffraction. We first utilize the
PyRosetta docking package72 to generate sets of initial KRAS-VHL
encounter complex structures. The rigid-body docking is performed
while restraining the distance between the linker attachment atoms of
warhead 1 and the E3 ligand as 20 Å, ensuring the formation of
interfaces appropriate for subsequent design. Subsequently, we
employ the K-Means algorithm to categorize the obtained docking
structures into 50 clusters based on their root-mean-square deviations.
The structure nearest to each cluster center is chosen as the initial
structure for the subsequent MD simulations. We then protonate and
solvate the initial poses in cubic boxes with explicit TIP3P water73 and
add counterions to maintain the neutrality of the system. Next, we
employ the OpenMM package74 to conduct all-atom simulations
across Folding@Home,75 with the in-house parametrized force field
for the small molecules (i.e., ligand and warheads) and the AMBER
ff14SB force field76 for the proteins. The final obtained data set used
for postanalysis consists of 2,492 trajectories, totaling 1.51 ms of
aggregate simulation time, with an average trajectory length of 605 ns.
Please refer to Supporting Information Sections 1 and 2 and for more
details of system setup and all-atom MD simulations.

4.2. Construction and Validation for Microstate-MSM

Following our proposed pipeline in Figure 1, we construct the
microstate-MSM to study the inherent PPIs between KRAS and VHL
protein. The detailed procedures are described below:
(1). Classify the collective motions at PPI interfaces via MoSAIC:48

we initially construct representations for PPI interfaces by utilizing the
internal pairwise distances between KRAS residues (170 residues) and
VHL residues (149 residues), leading to 25 330 pairwise distance
features (see Figure S2a). Subsequently, we apply the MoSAIC
algorithm48 to cluster these features into 27 communities, with
approximately 10% of the features filtered out as unimportant noise
(see Figure S2b and more details in Supporting Information Section
3.1). Through visualization of the features within each community, we
further exclude 11 communities associated with collective conforma-
tional changes unrelated to PPI interfaces (see Figure S3), resulting in
16 communities encompassing a total of 14 402 features (see Figure
S4 and more details in Supporting Information Section 3.1).
(2). Select the features capturing slow dynamics by Spectral-

oASIS:49 We apply the spectral-oASIS algorithm49 for the second
round of feature selection, through which 1,500 features are
automatically identified. These features are shown to effectively
capture the top three slowest dynamic modes. (see Figure S2c and
more details in Supporting Information Section 3.2)
(3). Reduce dimensionality by tICA:32,50 We employ tICA with

kinetic mapping51 to linearly construct five collective variables (CVs)
from 1,500 features. The MD conformations are projected on these
CVs and further clustered into 100 microstates using the K-Means
algorithm. The optimal hyper-parameters (i.e., number of CVs, tICA
relaxation time and the number of microstates) are determined by
cross-validations with the generalized matrix Rayleigh quotient
(GMRQ) score52 (see Figure S5 and Supporting Information Section
4).
(4). Validate the microstate MSM: Based on the 100 microstates

model, we further conduct Implied Time Scale (ITS) analysis and
Chapman-Kolmogorov (CK) test and validate the Markovian lag time
for microstates-MSM is 200 ns (see Figure S6 and more details in
Supporting Information Section 4). Additionally, we validated that the
microstates are well-connected and its transition probability matrix
does not contain any disconnected components (see Figures S7 and
S8).

JACS Au pubs.acs.org/jacsau Article

https://doi.org/10.1021/jacsau.4c00503
JACS Au 2024, 4, 3857−3868

3864

https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00503/suppl_file/au4c00503_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00503/suppl_file/au4c00503_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00503/suppl_file/au4c00503_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00503/suppl_file/au4c00503_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00503/suppl_file/au4c00503_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00503/suppl_file/au4c00503_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00503/suppl_file/au4c00503_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00503/suppl_file/au4c00503_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00503/suppl_file/au4c00503_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c00503/suppl_file/au4c00503_si_001.pdf
pubs.acs.org/jacsau?ref=pdf
https://doi.org/10.1021/jacsau.4c00503?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


4.3. IGME Modeling of Encounter Complex
To identify metastable states of the PPI interface, facilitate the
interpretation, and acquire the associated thermodynamic and kinetic
properties, we employ our recently developed IGME method38 to
construct a model comprising only six representative states. We first
utilize the PCCA+ algorithm53,54 to lump the 100 microstates into 6
macrostates, given the largest time scale gap is between the fifth and
sixth transition modes (see Figure S6a). We performed a crisp state
lumping by assigning each microstate to the macrostate with the
highest membership value. Subsequently, the IGME is applied to
accurately model the transition dynamics between macrostates,
accounting for non-Markovian dynamics through the time-integration
of memory kernel functions. Specifically, IGME precisely describes
the evolution of the transition probabilities matrices (TPMs) with the
lag time longer than memory relaxation time τk by T t AT( )k

t= ,
where matrices A and T are estimated from simulations (Supporting
Information Section 5).
To determine τk, we utilize two approaches: one employs our

previous quasi-MSM technique,41 which computes the memory kernel
matrix at various times using the greedy algorithm with discretized
GME, the other approach involves applying IGME to approximate the
time-integrated memory kernel (see more details in Supporting
Information Section 5). The mean integral memory kernel (MIK),

defined as MIK t K d( ) ( ( ) )
N i j

N t
ij

1
, 1 0

2= = , computed from two

approaches are well consistent and the memory relaxation time τk is
decided as 50ns (Figure 2a).
To build the optimal non-Markovian dynamics model, we employ

multiple sets of TPMs with different lag time range
T n t( )MD

k n
L

0
fit{ + } = to estimate the matrices A and T using least-

squares fitting with a Lagrangian approach.77 The optimal range,
parametrized by τk and Lfit are decided by time-averaged root mean
squared error (RMSE) with respect to MD simulations. After a
systematic scan, we ultimately identify the optimal fitting range: τk =
70ns and Lfit = 80ns (see Figure S11a). The optimal IGME model,
along with its predicted thermodynamic and kinetic properties for the
metastable states, is visualized as a transition network (Figure S12 and
more details in Supporting Information Section 5).
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