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Optical coherence tomography (OCT) is a noninvasive imaging test. OCT imaging is analogous to ultrasound imaging, except
that it uses light instead of sound. In this type of image, microscopic quality intratissue images are provided. In addition, fast and
direct imaging of tissue morphology and reproducibility of results are the advantages of this imaging. Macular holes are a common
eye disease that leads to visual impairment. The macular perforation is a rupture in the central part of the retina that, if left
untreated, can lead to vision loss. A novel method for detecting macular holes using OCT images based on multilevel thresholding
and derivation is proposed in this paper. This is a multistep method, which consists of segmentation, feature extraction, and
feature selection. A combination of thresholding and derivation is used to diagnose the macular hole. After feature extraction, the
features with useful information are selected and finally the output image of the macular hole is obtained. An open-access data
set of 200 images with the size of 224 x 224 pixels from Sankara Nethralaya (SN) Eye Hospital, Chennai, India, is used in the

experiments. Experimental results show better-diagnosing results than some recent diagnosing methods.

1. Introduction

Optical coherence tomography (OCT) is a fundamentally new
type of optical imaging modality. OCT performs high-reso-
lution, cross-sectional tomographic imaging of the internal
microstructure in materials and biologic systems by measuring
backscattered or backreflected light. OCT images are two-di-
mensional data sets that represent the optical backscattering in
a cross-sectional plane through the tissue. Image resolutions of
1 to 15 um can achieve one to two orders of magnitude higher
than conventional ultrasound. Imaging can be performed in
situ and in real-time [1]. The unique features of this technology
enable a broad range of research studies and clinical appli-
cations [2]. Mendes and Abrah 2019 provide an overview of
OCT technology, its background, and its potential biomedical
and clinical applications. OCT, imaging the internal cross-
sectional microstructure of tissues using measurements of

optical backscattering or backreflection, was first demonstrated
in 1991. OCT imaging was performed in vitro in the human
retina and atherosclerotic plaque as examples of imaging in
transparent, weakly scattering media and nontransparent,
highly scattering media. OCT was initially applied for imaging
in the eye and to date. OCT has had the largest clinical impact
in ophthalmology. The first in vivo tomograms of the human
optic disc and macula were demonstrated in 1993 [3]. OCT
enables the noncontact, noninvasive imaging of the anterior
eye as well as imaging of morphologic features of the human
retina including the fovea and optic disc. Numerous clinical
studies have been performed by many groups in the last several
years. More recently, advances in OCT technology have made it
possible to image nontransparent tissues, thus enabling OCT to
be applied in a wide range of medical specialties. Imaging depth
is limited by optical attenuation from tissue scattering and
absorption. However, imaging up to 2 to 3mm deep can be
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achieved in most tissues. This is the same scale as that typically
imaged by conventional biopsy and histology. Although im-
aging depths are not as deep as with ultrasound, the resolution
of OCT is more than 10 to 100 times finer than the standard
clinical ultrasound [4]. OCT has been applied in vitro to image
arterial pathology and can differentiate plaque morphologies.
Imaging studies have also been performed in vitro to inves-
tigate applications in dermatology, gastroenterology, urology,
gynecology, surgery, neurosurgery, and rheumatology. OCT
has also been applied in vivo to image developing biologic
specimens for applications in developmental biology. OCT is of
interest because it allows repeated imaging of developing
morphology without the need to sacrifice specimens. Nu-
merous developments in OCT technology have also been
made. High-speed real-time OCT imaging has been demon-
strated with acquisition rates of several frames per second.
High-resolution and ultrahigh-resolution OCT imaging has
been demonstrated using novel laser light sources, and axial
resolutions as high as 1 ym have been achieved. Cellular level
OCT imaging has recently been demonstrated in develop-
mental biology specimens. CT has been interfaced with
catheters, endoscopes, and laparoscopes which permit internal
body imaging. Catheter and endoscope OCT imaging of the
gastrointestinal, pulmonary, and urinary tracts as well as ar-
terial imaging has been demonstrated in vivo in an animal
model. In many cases, the disease is examined only superficially
(without considering the complete characteristics involved in
the disease). Many research groups are currently performing
preliminary clinical studies.

The macular located in the middle of the retina is where
most of the cone cells accumulate. A small depression in the
middle of the macular called FOA has the largest cone cell.
The macular is responsible for central vision, hue vision, and
accurate detail recognition. The cylindrical cells are located
in the peripheral part of the retina (around the retina) and
allow night vision and the movement of objects around. The
partial or complete absence of the macular sensory mem-
brane is called macular perforation. The macular hole may
be of an unknown and age-related cause (age-related
macular hole) or maybe caused by trauma to the eye. The
age-related type of the disease is most prevalent in older
women in the seventh decade of life. The OCT images of
normal and abnormal macular are shown in Figure 1.

2. Related Works

In connection with macular pathologies, we face some
harms such as macular edema, age-related macular de-
generation (AMD), macular edema, central serous reti-
nopathy (CSR), and macular hole (MH) [5-7]. Macular
holes lead to low vision and blindness, which can lead to
retinal holes due to overuse of fovea [8]. The disease is more
likely to occur in people over 40 years of age [9].

Early diagnosis of the disease will help a lot in its treatment
because if the disease progresses little, it can be treated with the
help of medicine or surgery. Therefore, knowing the charac-
teristics of the hole such as shape, size, width, diameter, and
length can be very effective [10-12]. OCT image is an effective
tool to diagnose the condition of an MH [13-15].
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The OCT is an applicable tool to diagnose the retina
pathologies, which can visualize the 3D shape and structure
of the retina without physical contact [16-18]. The high-
resolution OCT images of the retina usually have speckle
noise and shadows caused by retinal blood vessels and other
abnormalities on retina, which are challenges in the seg-
mentation process [19-26].

Because the disease can cause irreparable damage if mis-
diagnosed by algorithms, manual segmentation has always been
a priority, but our algorithm ignores the use of this method with
a very low error coefficient to detect the macular hole [27-32]
Even in some cases, the correct diagnosis of a disease depends
on several studies. Nevertheless, the need for fully automatic
diagnostic methods for retinal pathology is now felt.

One of the important applications of OCT images is to
detect MH (Figure 1). Therefore, the researchers want to
propose full automated, novel, and trustfully methods for MH
diagnosis and segmentation [33, 34]. New research studies in
this area seek to cover each other to reduce each other’s
shortcomings and to make them acceptable methods by
experts. The valuable information and features provided by
OCT images can help researchers develop more valuable
segmentation and automated diagnostic techniques to help
patients lead better lives [35, 36].

In [37], a fully automatic method to identify the main
layers of the retinal that delimits the retinal area is proposed.
Therefore, an active contour-based model is used to segment
the main retinal boundaries. This method uses the horizontal
placement information of these layers and their relative
location on the images to restrict the search space. A new
OCT-based method to investigate epiretinal membrane
(ERM) pathology in human eyes is proposed by Gonz’alez-
L’opez et al. [38]. The new approach assesses automatically
the ERM thickness and the space between the epiretinal
membrane (ERM) and the retina surface. The adjusted mean
arc length (AMAL) for segmenting OCT images for macular
pathology is being used for segmenting OCT images for
macular pathology [39]. This metric is used for automated
OCT segmentation. In recent years, a segmentation method
based on feature extraction using SFTA-based histological
analysis has been introduced by Keller et al. [40]. In this
research, a graph-based segmentation is used to find the
layers of retina. The 3D level set segmentation approach
based on the level set method can used to accurate seg-
mentation of the MH [41]. This method is fully automatic
and shows robust results in a variety of conditions. A novel
layer guided convolutional neural network (LGCNN) is
proposed by Nasrulloh et al. [42] to identify the common
types of macular pathologies and normal retina. In this
method, the retinal layer segmentation maps are generated
by an efficient segmentation network, which can determine
two lesion-related retinal layers associated with the mean-
ingful retinal lesions. Then, two subnetworks in LGCNN
integrate the information of these layers. Consequently, by
focusing on the significant lesion-related layer regions,
LGCNN can effectively modify OCT classification. Huang et
al. [43] proposed a multi-instance multilabel-based lesions
recognition method to detect and recognize simultaneously
multiple lesions. The proposed method consists of the
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FIGURE 1: Samples macular images.

segmentation based on the different lesions and feature
extraction and constructs multilabel detectors and recog-
nizes the region of interests. A unique joint model that
combines multiple information is proposed for retinal
segmenting using OCT images [44]. A multimodal multi-
resolution graph-based method is proposed for internal
limiting membrane segmentation within OCT images [45].
A hybrid method using multilevel thresholding and deri-
vation on optical coherence tomographic images was pro-
posed for automated detection [46, 47].

In this paper, a new combination is proposed to obtain
more information for macular hole diagnostic. This is a
multistep method, which consists of segmentation, feature
extraction, and feature selection. A combination of
thresholding and derivation is used to diagnose the macular
hole. After feature extraction, the features with useful in-
formation are selected and finally the output image of the
macular hole is obtained. The main contributions of the
proposed method are (1) high sensitivity in the various OCT
images, (2) better accuracy and reliability than the con-
ventional methods, and (3) short processing time.

The remaining parts of this paper are organized as
follows: In Section 3, the mentioned proposed method is
introduced. Experiments and results can be found in Section
4. Comparison with some recent methods is demonstrated
in Section 5, and the conclusion is given in Section 6.

3. Proposed Methods

The block diagram of the proposed method is shown in
Figure 2. The proposed method consists of multiple steps.
The preprocessing step is usually used before the main
image analysis and data extraction, and its purpose is to
obtain an accurate image that removes annoying data
from the image. In medical imaging, major disorders are

FiGUure 2: Macular hole detection block diagram.
observed, including noise due to high-frequency recep-
tion, different brightness in the field, and problems due to
distant orientation. For this reason, preprocessors are
applied to all images taken from a device. For this reason,
these processes are usually device dependent and must be
fast and efficient. Photogrammetric methods are used
when the spatial or luminous properties of the noise are
known. In this paper, we used an adaptive filter to remove
noise from OCT images. In the next step, the proposed
algorithm is implemented on the images, and images have
been qualitatively improved; therefore, their character-
istics must be determined and extracted. Most image data
may be subdivided into enclosed areas, dots, and lines. To
identify objects, they must be able to distinguish them
from the context. It is usually best to convert the gray
spectrum image to a binary image (black and white).
Techniques such as image splitting and edge recognition
work best on binary images but are sometimes applied to
images in the gray or color spectrum. The purpose of
feature extraction is to extract features that are directly
related to the output. After this step, the extracted features
with basic information are selected and finally the output
image is obtained.



In the proposed method block diagram (Figure 2), a
combination of thresholding and derivation is used for
diagnosis. This method has been implemented with special
emphasis on FOA depression and image features in this area,
and finally a suitable segmentation has been used to dis-
tinguish this disease from other diseases and the rate of
disease progression. Edge as the location of changes in
lighting levels, the range of these changes should also be
considered to decide on the presence of the edge and its exact
location. In this case, if the edges of an image are exposed,
the location of all the prominent and opaque objects in the
image is determined. As a result, the use of an accurate edge
detector directly helps to increase the feature recognition
rate and the ability to accurately segment the image. The
vector f (x, y) represents the maximum rate of change of
brightness.

I.-1, x
fx)= 5 (erf<ﬁ0)+2)+le. (1)

Outset of edge (I;) and end of edge (1) are defined in the
following equation:

Lx)=-1-I(x-1)+0-I(x)+1-I(x+1),

+1.2
(2)
L,=[+12 0 -1.2]LandL,=| 0 |L
-1.2
+1 0 -1 +1 +2 +1
L. =142 0 -2 LandLy: 0 0 0 |L (3
+1 0 -1 -1 -1 -1
2, 12
IVL| = /L, + L}, 0 = arg tan 2(Ly, Lx). (4)

On the other hand, when the multilevel thresholding
method is applied, it converts the gray level into a binary
code. The key point in this method is to select the threshold
value (or threshold values for the case where several levels
are desired). Most images include objects with a uniform
brightness level on a background with different brightness
levels. For such images, brightness is a distinguishing feature
that can separate the object from the background. Another
way to choose the value of the threshold of light is to place
the threshold value equal to the minimum point of the
histogram between the two peaks.

4. Experiments and Results

4.1. Data Set. In this paper, we use the open-access database
collected by Lakshminarayanan et al. 2019 [48]. This data-
base includes more than 500 high-resolution OCT images of
different pathological conditions. A raster scan protocol with
a2 mm scan length was used to obtain these images. The size
of these images is 512 x 1024 pixels and took using a Cirrus
HD-OCT machine (Carl Zeiss Meditec, Inc., Dublin, CA) at
Sankara Nethralaya (SN) Eye Hospital, Chennai, India. In
each volumetric scan, a fovea-centered image was selected by
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an experienced clinical optometrist (MKP). The axial res-
olution was 5um, and the transverse resolution was 15 ym
(in tissue). The images were then resized to a 224 x 224 pixel
size. The pathological conditions were determined by cli-
nicians, and the labeling process was done by retinal clinical
experts at SN hospital. Progressive stages and macular de-
generation are given. This wide range of stages, less severe,
medium severe, and more severe stages, in each disease
would be ideal for the researchers; therefore, they can test
their proposed method in various scenarios. MH OCT
images are the main category of the database, and we used
several images of MH cases.

4.2. Initialization. The raw data were used separately, in the
mentioned method using MATLAB 2019a software to
identify macular hole; in the first stage, OCT images were
collected as input, with background uniformity and im-
proved image resolution, under preprocessing. In the second
stage, identification was performed using the segmentation
method and the desired points were examined from the
image. In the third and final step, a new hybrid method is
implemented on the images. To implement the simulated
results, Corei7 CPU, GeForce 7900GTX graphics processing
unit, and 16 GB of memory were used.

4.3. Experiments. In this part, the implementation results of
the proposed method on OCT images provided by
Lakshminarayanan et al. [48] are presented. The image
derivation is an important step in many image-processing
algorithms. The simplest case may involve applying one
algorithm. More complex cases include more accurate
margin detection algorithms or applying several separable
models, given that time processing is also important. Using
two methods of thresholding and derivation, we introduced
a new and more efficient method than other methods
(Figure 3). In the recognition of surfaces, the most im-
portant features can be extracted from the surfaces (in-
cluding corners and lines). The output of the process is a set
of parts whose community includes the whole image or a
set of lines extracted from the image. Each pixel in each
section is similar in which it has specific properties such as
hue, brightness, or texture. Adjacent sections are consid-
ered different from each other according to the mentioned
features. By recognizing the pixels in the image, consid-
ering the existence of valuable and important information
in the image, a segmentation algorithm was used in which
each pixel is assigned a label so that pixels with the same
label have similar properties These features must have
properties so that with a set of these features, each image
can be described uniquely in order to identify the identity
of an image from the patterns of that image. Mean sen-
sitivity and mean accuracy for 12 sample OCT images are
shown in Table 1.

The accuracy is computed by comparing the automated
results with the ophthalmologist’s diagnosis opinions. The
proposed algorithm helps the ophthalmologist to educate
the patient about the progression of the disease. This
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FIGUure 3: Macular hole detection by the proposed method.

TaBLE 1: Results by applying the proposed algorithm to the OCT
images.

Experiment Mean sensitivity (%) Mean accuracy (%)
Image 1 87.56 97.25
Image 2 86.65 98.76
Image 3 88.87 96.98
Image 4 89.20 97.75
Image 5 87.12 98.15
Image 6 89.32 96.99
Image 7 88.59 96.50
Image 8 86.75 94.20
Image 9 89.99 98.81
Image 10 88.22 97.98
Image 11 87.70 96.93
Image 12 86.13 98.82

algorithm can aid the ophthalmologist by analysing the huge
number of samples in a short time and presenting only the
samples exhibiting features of diseases. An automated pre-
exclusion of normal cases might help to improve the pro-
gram’s efficiency. In future work, we consider to improve the
accuracy in the detection of macular hole. The results of
applying the proposed algorithm are clearly shown on the
images at each stage of processing.

5. Comparison

In order to compare the results of our proposed method
with some recent segmentation methods, we compare it
with SVM, KNN, Navie Bayes, Decision Tree, MS-LGDF,
and CMF [49]. SVM, KNN, Navie Bayes, and Decision
Tree are four traditional segmentation methods; MS-
LGDF is a segmentation method based on the local
Gaussian distribution fitting (LGDF) energy functional
which can collect various macular hole measurements.
The segmentation results such as accuracy, sensitivity,
Jaccard index, and DSC are shown and compared in
Table 2.

According to the comparison, it can be concluded that
the proposed method is much better than the other methods.
Image segmentation methods are of two main categories:
border-based logic and area-based logic, and each of them it
is divided into several techniques [50]. The output of a
process is a set of sections whose assembly comprises the
entire image or a set of lines extracted from the image [49].
Each pixel in each section is similar in which it has specific
properties such as color, brightness, or texture. Adjacent
sections are considered different from each other according
to the mentioned features [51, 52].
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TaBLE 2: Comparison between the proposed method and the other methods.
Image Accuracy Sensitivity Jaccard index DSC
SVM 80.5 79.2 65.3 78.2
KNN 75.7 72.4 63.8 73.1
Navie Bayes 78.4 78.2 64.2 74.2
Decision Tree 69.6 67.5 62.2 66.3
MS-LGDF 96.2 84.3 75.1 83.2
CMF 94.4 67.5 63.2 75.4
The proposed method 97.5 88.3 78.5 85.3

TaBLE 3: Average run time comparison between the proposed method and some recent segmentation methods.

Methods SVM KNN Navie Bayes Decision Tree MS-LGDF CMF Proposed method
Average run time (s) 68 72 59 70 89 86 54
In traditional methods, due to the complexity of the  Data Availability

surface of the algorithms used, the accuracy was always low,
the sensitivity was at the lowest level, and the long data
processing time was clearly visible [52]. Image fragmenta-
tion has been done in areas such as computer vision and
image processing, and due to its wide and wide application,
it has suitable research fields. Despite the complexity of the
algorithm, fragmentation has high accuracy and sensitivity
and on the other hand fewer data processing time than
traditional methods. The success of this research can be seen
in other areas as well such as medicine. Remote and image
retrieval is crucial, which helps to save, maintain, and protect
human life [53].

The run times of the proposed combination method and
other compared methods are tabulated in Table 3. The ex-
periments were conducted on a computer with an Intel
Corei7 CPU and 16 GB RAM running Windows 7 64Bit
operating system. In addition, MATLAB version 2019a is
used to obtain the computational times. As can be observed,
the run time of the proposed method is better than that of
the competition methods.

6. Conclusions

In this paper, we proposed an automatic and powerful
method to segment OCT images to detect macular holes.
This is a multistep method, which consists of segmentation,
feature extraction, and feature selection. A combination of
thresholding and derivation was used to diagnose the
macular hole. After feature extraction, the features with
useful information were selected and finally the output
image of the macular hole was obtained. The proposed
method was evaluated on an open-access data set from
Sankara Nethralaya (SN) Eye Hospital, Chennai, India.
Comparison with some state-of-the-art MH segmentation
methods reveals the robustness of the proposed method. In
the future, we want to develop this method for 3D seg-
mentation and measurements.

All data used in the database are valid.
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