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ABSTRACT 

Aim: This study aims to evaluate whether biochemical alterations caused by methylglyoxal (MG), improves by the administration of 

gallic acid (GA), crocin (Cr), and metformin (MT) in the liver. 

Background: MG is produced naturally through various physiological processes, but high levels of MG cause inflammation in 

hepatocytes. Normal liver function is essential for maintaining glucose homeostasis. Gallic acid and crocin can reduce inflammation.  

Methods: This experiment was done in 5 weeks. 50 male NMRI mice were randomly divided into 5 groups (n=10): 1) Control, 2) 

MG (600 mg/Kg/d, p.o.), 3) MG+GA (30 mg/kg/day, p.o.), 4) MG+Cr (60 mg/kg/day, p.o.), 5) MG+MT (150 mg/kg/day, p.o.). After 

one week of habituation, MG was administered for four weeks. Gallic acid, crocin, and metformin were administered in the last two 

weeks. Biochemical and histologic evaluations were assessed after plasma collection and tissue sample preparation. 

Results: Gallic acid and crocin-received groups significantly reduced fasting blood glucose, total cholesterol, triglyceride levels, and 

elevated insulin sensitivity. Administration of MG exerted a marked increase in the levels of hepatic enzymes. Treatment with gallic 

acid, crocin, and metformin significantly decreased them. The altered levels of inflammatory factors in the diabetic group were 

significantly improved in the diabetic-treated groups. High levels of steatosis and red blood cells (RBCs) accumulation in the MG 

group markedly recovered in other treated mice. 

Conclusion: Harmful effects of accumulated MG in the liver of diabetic mice were effectively attenuated by using gallic acid and 

crocin. 
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Introduction
1Recent assessments have shown that the diabetic 

population will reach 629 million by 2045. It is striking 

when compared to 425 million in 2017 (1). Mainly, in 

recent decades the dramatic increase in type 2 diabetes 
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(T2D) has occurred due to lifestyle changes, such as 

less physical activity and obesity growth (2). T2D is 

defined by hyperglycemia, insulin resistance (IR), and 

insulin secretion impairment, which can induce via an 

endogenous substance like MG (3). Additionally, T2D 

is contributed to the development of liver damage 

because of its ability to induce systemic inflammation. 

Changes in liver structure and functions due to 

inflammation induced by T2D have been reported by a 

previous study via evaluation of inflammatory 

mechanisms (4). Changes in liver cell function can be 

diagnosed by measuring key liver enzymes, including 
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aspartate aminotransferase (AST), alanine 

aminotransferase (ALT), and alkaline phosphatase 

(ALP) (5). High-mobility group box 1 (HMGB1) 

induces different biological processes, such as 

inflammatory diseases (6). HMGB1 is released from 

necrotic cells and secreted by activated macrophages, 

mediating responses to infection, injury, and 

inflammation (7). Based on previous studies, HMGB1 

indicates a pivotal role in liver damage induced by 

diabetes and carbon tetrachloride via inflammation of 

nuclear factor-kappa B (NF-κB) and tumor necrosis 

factor-alpha (TNF-α) activation (8, 9). In addition, 

another factor is autophagy-related genes 7 (ATG7), 

which plays a vital role in liver metabolic function and 

regeneration,; the absence of ATG7 showed hepatic 

regeneration disturbance after liver damage (10). A 

recent review study demonstrated that inflammation, 

steatosis, and liver damage quickly progressed by 

genetic deletion of ATG7 in mice (11).  

MT is used as a hypoglycemic medicine by people 

with diabetes. In several studies, MT has indicated 

hepatoprotective properties in animal models of 

diabetes (12–14). Moreover, previous observations 

have revealed the interaction of MT with HMGB1 to 

inhibit its pro-inflammatory activity and the 

ameliorative effect of MT on liver autophagy by 

increasing the ATG7 expression level of aged mice (14, 

15). According to a review study, MT can improve 

liver damage in nonalcoholic steatohepatitis and 

nonalcoholic fatty liver disease (16). Also, it was 

proven that metformin has a protective effect in 

streptozotocin-induced diabetic liver damage (17).  

Based on these results, MT has been selected as 

positive control medicine in this work.  

Up to now, many studies have been done to identify 

natural compounds with the most negligible side 

effects, accessibility, and effectiveness in the field of 

diabetes-induced liver damage. In recent years, using 

natural compounds instead of or together with chemical 

drugs (dual therapy) has become common in research. 

Gallic acid, a famous natural phenolic acid, has 

demonstrated gastrointestinal, cardiovascular, 

metabolic diseases, and kidney protection (18, 19). 

Other results also show that GA ameliorates liver 

damage complications associated with T2D and 

inflammation induced by nitrosodiethylamine via 

various signaling pathways (20–22). Crocin, the main 

bioactive component of saffron, demonstrates 

beneficial effects on various tissues. Based on a review 

study, Cr has anti-inflammatory effects on bowel 

diseases, gastritis, hepatitis, atherosclerosis, asthma, 

and depression (23). Notably, evidence reported that Cr 

ameliorates liver damage induced by diabetes (24), 

carbon tetrachloride (25), and methotrexate (26). 

To our knowledge, no previous study has 

investigated whether GA and Cr had ameliorative 

effects on MG-induced diabetic liver damage in mice. 

Therefore, considering that GA and Cr are natural 

compounds with antioxidant actions, they may 

probably be diminished diabetic liver damage. The 

present study aimed to evaluate thethese compounds' 

effects concerning inflammation, autophagy 

biomarkers, and histological parameters in the liver of 

MG-induced diabetic mice. 

Methods 

Experimental Design 
This study lasted five weeks (Figure 1). For this 

purpose, 50 male NMRI mice (four weeks old, 20-25 g) 

were purchased from Ahvaz Jundishapur University of 

Medical Sciences, Ahvaz, Iran. Animals were attributed 

by AJUMS experimental animal care guidelines under 

an ethics committee grantee No. 

(IR.AJUMS.ABHC.REC.1400.071). GA (Sigma St. 

Louis, MO), Cr (Sigma–Aldrich, USA), and MT (Solar, 

bio, South Korea) were purchased. During the 

experiment, the animals used water and rodent chow 

freely, and the room temperature was 25 °C, a 12 hr 

light/12 hr dark cycle, and humidity was 10%. All 

drugs were administered once a day orally by gavage. 

The dose of the drugs used in this study was obtained 

from previous research and our previous pilot study 

(18, 27). The animals habituated for one week. After 

that, MG was administered for four weeks. So, at the 

beginning of the fourth week, the mice were randomly 

divided into five groups (n=10), which included:  

1. Control: orally received normal saline  

2. MG (600 mg/kg, p.o): as a diabetic group (3)  

3. MG+GA:  diabetic mice received GA (30 mg/kg, 

p.o), (18, 28) 

4. MG+Cr: diabetic mice received Cr (60 mg/kg, p.o), 

(27, 29) 
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5. MG+MT: diabetic mice received MT (150 mg/kg, 

p.o), (30) 

Animals were anesthetized by combining ketamine 

10% + xylazine 2% (90 +10 mg/kg, respectively) to 

collect liver tissues. The liver was then washed with 

normal saline, and a piece of the liver was removed for 

histological evaluation. Also, the isolated tissue 

samples were frozen in liquid nitrogen and stored at -80 

°C for biochemical evaluation. 

Induction of type 2 diabetes mellitus 
According to a previous study, MG can induce 

T2D, and IR is one of the adverse consequences of MG 

accumulation (3). In this study, MG dissolved in 

normal saline. The mice were gavaged by MG for four 

weeks, once a day. At the beginning of the fourth week, 

fasting blood glucose (FBG) was measured after six 

hours of fasting from the tail vein. Then, animals with 

FBG above 180 mg/dl were used as diabetic mice (27). 

At this time, the grouping of animals began for drug 

treatment. 

Biochemical assays 

Determination of diabetic variables 
Plasma insulin concentration was measured by 

ELISA assay kits. Blood glucose levels were measured 

by a glucometer (Elegance CT-X10, convergent 

technologies, Germany). Homeostatic Model 

Assessment for Insulin Resistance (HOMA-IR) was 

calculated by the following formula: 

HOMA-IR: Insulin (µIU/mL) × FBG (mg/dL) / 405 

Lipid profile measurement 

The plasma level of total cholesterol (TC) and 

triglyceride (TG) were assessed using commercial kits 

(Pars Azmoon, Iran) and the auto-analyzer method. 

Determination of hepatic enzymes 

and inflammatory factors 
The liver tissue was homogenized in ice-cold Tris–

HCl buffer (0.1 M, pH 7.4, ratio 1:4 w/v), centrifuged 

for 15 min at 10,000 g, and supernatants were used for 

assessment of TNF-α, NF-κB, ATG7, and HMGB. 

AST, ALT, and ALP plasma levels were measured 

using an Autoanalyzer device (BT3000, Italy) and 

biochemical assay kits (Pars Azmoon, Iran). 

Inflammatory factors were determined by ELISA kits 

(ZellBio Gmbh, Germany).  

Histology assessment 
The mouse liver was removed immediately and 

fixed in a 10% formalin solution. Then isolated liver 

was dehydrated in graded alcohol concentrations and 

embedded in paraffin. Sections 4-6 μm were prepared 

and stained with hematoxylin and eosin (H&E). Six 

microscopic images per animal were prepared and used 

to assess steatosis, congestion of erythrocytes, and 

infiltration of inflammatory cells using a digital 

research microscope (BMZ-04- DZ, Behin Pajouhesh 

ENG. CO., Iran). A mean of 10 fields was considered 

for each slide and was read in a “blind” fashion. 

Statistical analysis 
The data were analyzed by GraphPad Prism 9 and 

represented as mean ± standard error of the mean 

(SEM). One-way analysis of variance (ANOVA) was 

used for statistical analysis comparison between 

 
Figure 1. Diagrammatic representation of experimental protocol. A: Habituation, B: Diabetes induction by methylglyoxal (600 

mg/kg), C: Administration of gallic acid (30 mg/kg, p.o), crocin (60 mg/kg, p.o), and metformin (150 mg/kg, p.o). At the end of 3th 

week, diabetic mice were selected based on their fasting blood glucose (FBG) levels and divided into Control: received normal 

saline, MG: diabetic with methylglyoxal administration (600 mg/kg), MG+Cr: diabetic + crocin 60 mg/kg, MG+MT: diabetic + 

metformin 150 mg/kg, lasted 2 weeks. Finally, biochemical and histological evaluations were assessed after anesthesia. 
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different groups, followed by post hoc high significant 

difference (HSD) tests (with Bonferroni correction 

method), P<0.05. 

 

Results 

Effects of GA, Cr, and MT on FBG, 

HOMA-IR, TC, and TG  
The levels of FBG significantly increased in the 

MG group and markedly decreased in the antioxidant-

treated mice (P<0.001). Meanwhile, evaluation of 

HOMA-IR indicated that insulin sensitivity decreased, 

as disclosed by increased HOMA-IR in the MG group 

(P<0.001). This variable decreased in all antioxidant-

receiving mice (P<0.001). Elevated TG and TC levels 

in the MG group were remarkably reduced as a result 

of treatment with all antioxidants for TG (P<0.001), as 

well as GA (P<0.05), Cr (P<0.05), and MT (P<0.01) 

for TC. Comparison between treated groups showed 

that MT had a better effect than GA in improving TG 

level (P<0.05), (Figure 2).  

Effects of GA, Cr, and MT on liver 

enzymes alterations 
The levels of AST and ALT increased in the MG 

group (P˂0.001). Administration of GA (P˂0.001), Cr 

(P˂0.01), and MT (P˂0.001) improved the AST levels. 

The ALT levels in GA (P˂0.01), Cr, and MT (P˂0.05) 

groups were lower than in the MG group. Increased 

levels of ALP in the MG group (P˂0.001) were 

markedly decreased in all diabetic-treated groups 

(P˂0.001), (Figure 3). 

 
Figure 2. Effects of crocin, gallic acid, and metformin on fasting blood glucose (FBG), insulin resistance index (HOMA-IR), and 

lipid profile indexes. MG: diabetic with methylglyoxal administration (600 mg/kg), MG+GA: diabetic + gallic acid 30 mg/kg, 

MG+Cr: diabetic + crocin 60 mg/kg, MG+MT: diabetic + metformin 150 mg/kg. Data are presented as mean ± SEM, n=10 in each 

group. * Significant difference with control; # significant difference with MG; 1 symbols P<0.05; 2 symbols P<0.01, 3 symbols 

P<0.001. 
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Effects of GA, Cr, and MT on 

inflammatory factors 
A comparison of inflammatory factors between 

control and MG groups exhibited that TNF-α, NF-κB, 

and HMGB1 remarkably increased, and the levels of 

ATG7 decreased in the MG group (P˂0.001). The 

levels of TNF-α dramatically decreased in the liver of 

diabetic-treated groups (P˂0.001). Also, the levels of 

NF-κB decreased in GA (P˂0.01), and those that 

received Cr and MT (P˂0.001). In addition, Cr and MT 

efficiently reduced the levels of NF-κB compared to 

GA (P˂0.001). There were significant differences 

among the MG group and diabetic-treated mice when 

checking ATG7 levels, as, GA (P˂0.001), Cr (P˂0.05), 

and MT (P˂0.01) effectively improved the level of this 

variable. Furthermore, in the evaluation of HMGB1 

levels, the ameliorative effects of GA (P˂0.05), Cr 

(P˂0.05), and MT (P˂0.01) were observed (Figure 4). 

Effects of GA, Cr, and MT on liver 

histology 
There was an increase in inflammatory cell 

inflammation in the MG group (P˂0.001), and 

treatment with MT remarkably reduced it (P˂0.001). 

There was no significant effect between GA and Cr in 

evaluating this parameter. Indeed, MT has a better 

effect on reducing inflammatory cell inflammation than 

GA and Cr (P˂0.001). Accumulation of RBCs 

markedly increased in the MG group (P˂0.001), and 

administration of GA (P˂0.01), Cr (P˂0.001), and MT 

(P˂0.05) reduced it. There was no steatosis in the 

control group, while it increased sharply in the MG 

group (P˂0.001). Administration of GA, Cr, and MT 

showed a significant reduction in the percentage of 

steatosis (P˂0.001). In general, MT had a better effect 

on reducing inflammation, and Cr had a better effect on 

RBCs accumulation. The efficacy of GA, Cr, and MT 

was similar in evaluating steatosis (Figures 5A and 5B). 

 

Discussion 

Acceptable evidence has illustrated that T2D lead to 

the progression of diabetic complications in various 

tissue (31). Studies have shown that MG can activate 

extensive pro-inflammatory cytokines and is involved 

in the pathogenesis of inflammation and diabetes (18, 

32, 33). Evidence has acknowledged that T2D leads to 

liver morphology changes and promotes liver damage 

such as inflammation, steatosis, and hepatocyte 

degeneration (8, 14, 21). The present study increased 

glycemic indices, liver enzymes, and plasma levels of 

TG and TC. Also, liver histological changes such as 

inflammation, RBC accumulation, and steatosis in MG-

treated mice were observed. 

According to a previous study, elevated levels of 

TG and TC that characterize diabetic dyslipidemia are 

associated with IR (34). Moreover, the accumulation of 

lipids in the liver strongly relates to hyperglycemia and 

IR (22, 35). Thus, adjusting the TG and TC levels 

effectively prevents diabetes and its complications (10, 

22). Present results showed that GA and Cr remarkably 

 
Figure 3. Effects of crocin, gallic acid, and metformin on liver enzymes. MG: diabetic with methylglyoxal administration (600 

mg/kg), MG+GA: diabetic + gallic acid 30 mg/kg, MG+Cr: diabetic + crocin 60 mg/kg, MG+MT: diabetic + metformin 150 

mg/kg. Data are presented as mean ± SEM, n=10 in each group. * Significant difference with control; # significant difference with 

MG; 1 symbols P<0.05; 2 symbols P<0.01, 3 symbols P<0.001. 
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decreased TG and TC serum levels, indicating their 

ability to improve lipid metabolism and reduce IR. 

Also, partial recovery of liver inflammation, RBCs 

accumulation, and steatosis further confirmed the 

improvement effects of GA and Cr that agree with 

previous results (22, 26). Liver enzyme amelioration is 

another helpful effect of GA and Cr.  AST, ALT, and 

ALP are intracellular enzymes of hepatocytes; 

therefore, their leakages into the circulation are crucial 

for diagnosing liver damage (36). Current findings 

exhibited the ability of GA and Cr to modulate liver 

enzymes in diabetic mice. 

Research showed that HMGB1 is an important 

mediator of inflammation and is expressed and released 

by damaged or activated immune cells when liver 

damage occurs; then, it activates the NF-κB and finally 

leads to inflammation (8, 14). In the present study, the 

levels of HMGB1 and NF-κB expression in the liver 

 
Figure 4. Effects of crocin, gallic acid, and metformin on inflammatory factors. MG: diabetic with methylglyoxal administration 

(600 mg/kg), MG+GA: diabetic + gallic acid 30 mg/kg, MG+Cr: diabetic + crocin 60 mg/kg, MG+MT: diabetic + metformin 150 

mg/kg. Data are presented as mean ± SEM, n=10 in each group. * Significant difference with control; # significant difference with 

MG; 1 symbols P<0.05; 2 symbols P<0.01, 3 symbols P<0.001. 
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tissues of MG-receiving mice were higher than in the 

control. These findings indicated that inflammation 

occurred in the liver of diabetic mice, while treatment 

with GA and Cr restored these alterations and inhibited 

the inflammatory response. 

Basal secretion of liver TNF-α strikingly is 

increased during liver damage (37), which can induce 

liver cell apoptosis by caspase-3 activation (38). 

Besides, TNF-α affects the NF-κB signaling pathway 

and initiates liver inflammation (37). Consistent with 

this, we observed an enhancement of liver TNF-α 

levels in the MG group. Administration of GA and Cr 

decreased TNF-α levels and alleviated the 

inflammatory response in the liver of diabetic mice. 

Notably, the inhibitory effects of GA and Cr on TNF-α 

and HMGB1 levels were equal; but the effect of Cr on 

NF-κB was stronger than GA.  

According to a review study, autophagy as a bulk 

catabolic process has a protective function allows lipid 

droplet degradation, and its impairment could 

contribute to steatosis in the liver. Moreover, the 

absence of ATG7 leads to impaired insulin signaling, 

and its restoration ameliorates the function of insulin in 

the liver of animals with ATG7 deficiency (39). In 

addition, autophagy defects compromise liver cell 

survival, leading to TNF-α elevation, and, eventually, 

hepatocellular carcinoma (40). Also, the absence of 

Atg7 disturbs liver regeneration after damage (10). 

Regarding the relation between ATG7 and liver 

steatosis, and in agreement with previous research (39), 

Figure 5. Effects of crocin, gallic acid, and metformin on liver histology. White arrows: Inflammation, Black arrows: 

Accumulation of red blood cells, yellow arrows: Steatosis, Scale bar: 250 µm. MG: diabetic with methylglyoxal administration 

(600 mg/kg), MG+GA: diabetic + gallic acid 30 mg/kg, MG+Cr: diabetic + crocin 60 mg/kg, MG+MT: diabetic + metformin 150 

mg/kg. Data are presented as mean ± SEM, n=10 in each group. * Significant difference with control; # significant difference with 

MG; 1 symbols P<0.05; 2 symbols P<0.01, 3 symbols P<0.001. 
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in our study, decreased levels of ATG7 raised liver 

steatosis in the diabetic group. 

Nonetheless, GA and Cr administration noticeably 

prevented the excessive reduction of ATG7. However, 

GA and Cr attenuated the size and number of lipid 

droplets and liver steatosis extent in diabetic mice. 

Here, the effects of GA and Cr on liver steatosis 

reduction were similar. Little studies reported the 

effects of GA and Cr on the levels of liver ATG7; 

however, we observed that GA and Cr could simulate 

the effect of ATG7 on steatosis and adjust it. 

 

Conclusion 

Accumulation of MG, which occurs in T2D, 

triggers inflammatory factors and causes damage to 

hepatocytes. Cr and GA have anti-diabetic and anti-

inflammatory effects. Our data showed that GA and Cr 

modulate the levels of ATG7, HMGB1, NF-κB, and 

TNF-α in the liver and thus exert considerable 

hepatoprotective effects. These findings indicated that 

GA and Cr are inhibitory in the progression of liver 

steatosis and inflammation in diabetic mice. Evaluation 

of other supporting molecular mechanisms and the 

exact signaling pathways, such as gene or microRNA 

expression, will be helpful in providing better results. 
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